SVM-based feature selection to optimize sensitivity–specificity balance applied to weaning

Carregant...
Miniatura

Fitxers

1-s2.0-S0010482513000280-main.pdf (540.99 KB) (Accés restringit) Sol·licita una còpia a l'autor
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Article

Data publicació

Editor

Elsevier

Condicions d'accés

Accés restringit per política de l'editorial

item.page.rightslicense

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització de la persona titular dels drets

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

Classification algorithms with unbalanced data sets tend to produce high predictive accuracy over the majority class, but poor predictive accuracy over the minority class. This problem is very common in biomedical data mining. This paper introduces a Support Vector Machine(SVM)-based optimized features election method, to select the most relevant features and maintain an accurate and well-balanced sensitivity–specificity result between unbalanced groups. A new metric called the balance index(B) is defined to implement this optimization. The balance index measures the difference between the misclassified data within each class. The proposed optimized feature selection is applied to the classification of patients’ weaning trials from mechanical ventilation: patients with successful trials who were able to maintain spontaneous breathing after 48 h and patients who failed to maintain spontaneous breathing and were reconnected to mechanical ventilation after 30min. Patients are characterized through cardiac and respiratory signals, applying joint symbolic dynamic (JSD) analys is to cardiac interbeat and breath durations. First, the most suitable parameters (C þ ,C ,s)are selected to define the appropriate SVM. Then, the features election process is carried out with this SVM, to maintain B lower than 40%. The best result is obtained using 6 features with an accuracy of 80%, a B of 18.64%, a sensitivity of 74.36% and a specificity of 82.42%.

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

Garde, A. [et al.]. SVM-based feature selection to optimize sensitivity–specificity balance applied to weaning. "Computers in biology and medicine", 2013, vol. 43, p. 533-540.

Ajut

Forma part

DOI

Dipòsit legal

ISBN

ISSN

0010-4825

Altres identificadors

Referències