Extensive domain wall contribution to strain in a (K,Na)NbO3-based lead-free piezoceramics quantified from high energy X-ray diffraction
Títol de la revista
ISSN de la revista
Títol del volum
Col·laborador
Editor
Tribunal avaluador
Realitzat a/amb
Tipus de document
Data publicació
Editor
Condicions d'accés
item.page.rightslicense
Publicacions relacionades
Datasets relacionats
Projecte CCD
Abstract
The origins of high piezoelectric properties in the lead-free (K,Na)NbO3-based tetragonal composition (K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3 (KNL-NTS) is investigated by quantifying the intrinsic and extrinsic contributions from high energy X-ray diffraction measurements. The applied methodology, which allows discerning between the intrinsic contribution, related to the field induced lattice distortion, and the extrinsic contributions, related to non-180° domain wall motion, is widely described in this work. The non-180° domain reorientation of the KNL-NTS piezoceramic is quantify from the integrated intensities of the 002 and 200 reflections obtained from line profile, while the shifts in peak position versus the applied electric field is used to obtain the lattice strain contribution. Large non-180° domain wall contribution to the electric field induced macroscopic strain (80% of the macroscopic strain) is verified in KNL-NTS.


