Geometric tree graphs of points in convex position
Carregant...
El pots comprar en digital a:
El pots comprar en paper a:
Títol de la revista
ISSN de la revista
Títol del volum
Col·laborador
Editor
Tribunal avaluador
Realitzat a/amb
Tipus de document
Article
Data publicació
Editor
Condicions d'accés
Accés obert
item.page.rightslicense
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-SenseObraDerivada 2.5
Publicacions relacionades
Datasets relacionats
Projecte CCD
Abstract
Given a set $P$ of points in the plane, the geometric tree graph of $P$ is defined as the graph $T(P)$ whose vertices are non-crossing rectilinear spanning trees of $P$, and where two trees $T_1$ and $T_2$ are adjacent if $T_2 = T_1 -e+f$ for some edges $e$ and $f$. In this paper we concentrate on the geometric tree graph of a set of $n$ points in convex position, denoted by $G_n$. We prove several results about $G_n$, among them the existence of Hamilton cycles and the fact that they have maximum connectivity.


