Probabilistic and physically-based modelling of rainfall-induced landslide susceptibility using integrated GIS-FORM algorithm

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Article

Data publicació

Editor

Springer

Condicions d'accés

Accés obert

item.page.rightslicense

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització de la persona titular dels drets

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

The susceptibility mapping of rainfall-induced landslides is an effective tool for predicting and locating disaster-prone zones at the regional scale. One of the most important parts of landslide susceptibility models is the hydrological model. In this context, the present study considers three pore water pressure (PWP) profiles with surface runoff to estimate the spatiotemporal variation of wetting front depth (WFD) during rainfall episodes. To reasonably simulate the inherent uncertainty and variability involved in the hydrogeomechanical properties of the surficial soil layers at the regional scale, probabilistic analysis based on the recursive first-order reliability method (FORM) is employed to calculate the probability of slope failure. The regional time-dependent landslide susceptibility mapping is realised using a newly developed model called Physically-based probabilistic modelling of Rainfall Landslides using Simplified Transient Infiltration Model (PRL-STIM). The proposed model is applied in a representative area that suffered extensive rainfall-induced landslides in July 2013 (Niangniangba Town, Gansu Province, China). The results indicate that the PRL-STIM model achieved a satisfactory prediction accuracy of 75% AUC compared to existing models like transient rainfall infiltration and grid-based regional slope-stability model (72%) and the probabilistic analysis results based on the first-order second moment method (74%). It also performed well in predicting the spatial distribution of shallow landslides, with a success rate of 81.6%. Regarding the model efficiency, the completion of a raster file for calculating the landslide probabilities of the study area (including 711,051 cells) requires only 17.1 s. It is thus hoped that the proposed calculation framework of PRL-STIM that considers various uncertainties (e.g., nonlinearity of the physical model, non-normal probability distributions, random variable cross correlations, etc.) in geotechnical parameters is better suited for landslide susceptibility mapping at the regional scale, where only limited historical event data is available.

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

Cui, H. [et al.]. Probabilistic and physically-based modelling of rainfall-induced landslide susceptibility using integrated GIS-FORM algorithm. "Landslides (Berlin)", Juny 2024, vol. 21, núm. 6, p. 1461-1481.

Ajut

Forma part

Dipòsit legal

ISBN

ISSN

1612-510X

Referències