Measuring spatial subdivisions in urban mobility with mobile phone data

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Tribunal avaluador

Realitzat a/amb

Tipus de document

Text en actes de congrés

Data publicació

Editor

Association for Computing Machinery (ACM)

Condicions d'accés

Accés obert

item.page.rightslicense

Creative Commons
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement 4.0 Internacional

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

Urban population grows constantly. By 2050 two thirds of the world population will reside in urban areas. This growth is faster and more complex than the ability of cities to measure and plan for their sustainability. To understand what makes a city inclusive for all, we define a methodology to identify and characterize spatial subdivisions: areas with over- and under-representation of specific population groups, named hot and cold spots respectively. Using aggregated mobile phone data, we apply this methodology to the city of Barcelona to assess the mobility of three groups of people: women, elders, and tourists. We find that, within the three groups, cold spots have a lower diversity of amenities and services than hot spots. Also, cold spots of women and tourists tend to have lower population income. These insights apply to the floating population of Barcelona, thus augmenting the scope of how inclusiveness can be analyzed in the city.

Descripció

Persones/entitats

Document relacionat

item.page.versionof

Citació

Graells, E. [et al.]. Measuring spatial subdivisions in urban mobility with mobile phone data. A: International World Wide Web Conference. "The Web Conference 2020, companion of The World Wide Web Conference, WWW 2020: April 20–24, 2020, Taipei, Taiwan". New York: Association for Computing Machinery (ACM), 2020, p. 485-494. ISBN 978-1-4503-7024-0. DOI 10.1145/3366424.3384370.

Ajut

Forma part

Dipòsit legal

ISBN

978-1-4503-7024-0

ISSN

Altres identificadors

Referències