Dynamic Pipeline: an adaptive solution for big data
Títol de la revista
ISSN de la revista
Títol del volum
Col·laborador
Editor
Tribunal avaluador
Realitzat a/amb
Tipus de document
Data publicació
Editor
Condicions d'accés
item.page.rightslicense
Publicacions relacionades
Datasets relacionats
Projecte CCD
Abstract
The Dynamic Pipelineis a concurrent programming pattern amenable to be parallelized. Furthermore, the number of processing units used in the parallelization is adjusted to the size of the problem, and each processing unit uses a reduced memory footprint. Contrary to other approaches, the Dynamic Pipeline can be seen as ageneralization of the (parallel) Divide and Conquer schema, where systems can be reconfigured depending on the particular instance of the problem to be solved. We claim that the Dynamic Pipelines is useful to deal with Big Data related problems. In particular, we have designed and implemented algorithms for computing graphs parameters as number of triangles, connected components, and maximal cliques, among others. Currently, we are focused on designing and implementing an efficient algorithm to evaluate conjunctive query.

