Automatic mapping of seagrass beds in alfacs bay using Sentinel-2 imagery

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Comunicació de congrés

Data publicació

Editor

Condicions d'accés

Accés obert

item.page.rightslicense

Creative Commons
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-SenseObraDerivada 3.0 Espanya

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

Seagrass are marine flowering plants that form extensive meadows in shallow coastal waters. They play a critical role in coastal ecosystems by providing food and shelter for animals, recycling nutrients, and stabilizing sediments. Therefore, they are widely used as an ideal biological indicator for assessing the health status and quality of coastal ecosystems. In the Alfacs Bay (Ebro Delta), seagrasses are located in the shores, showing an annual variation with a peak in summer. The decreasing of averaged salinity and increasing of nutrients concentration and turbidity, has led to a notable reduction of the seagrass beds. Thus, a cartography to monitor spatiotemporal changes of meadows and to forecast the evolution of the environmental characteristics of the system, is needed. Nowadays, the standard methodology is a combination of photointerpretation and field prospection with significant workload resources. In contrast, an automatic methodology relying on multispectral moderate resolution Sentinel 2 (S2) satellite imagery is proposed. The methodology consists of: atmospheric correction of Level-1C images, application of Green Normalized Difference Vegetation Index, statistic thresholding to tell apart possible seagrass areas and a supervised learning method to refine this classification and to identify habitats. The methodology has been applied and calibrated using S2 satellite imagery and reference data comprising several patches distributed along the Alfacs Bay. In these patches, seagrass areas were identified (visually and location with GNSS). The results showed that seagrass meadows can be automatically delineated using S2 imagery.

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

Angelats, E.; Soriano-González, J.; Alcaraz, C. Automatic mapping of seagrass beds in alfacs bay using Sentinel-2 imagery. A: X Jornadas de Geomorfología Litoral. "X Jornadas de Geomorfología Litoral : Libro de ponencias: 1-292 (2019)". 2019, p. 209-212. ISBN 978-84-09-12002-4. DOI 10.5281/zenodo.3629244.

Ajut

Forma part

Dipòsit legal

ISBN

978-84-09-12002-4

ISSN

Referències