A multi-scale smoothing kernel for measuring time-series similarity

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Tribunal avaluador

Realitzat a/amb

Tipus de document

Article

Data publicació

Editor

Condicions d'accés

Accés obert

item.page.rightslicense

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització de la persona titular dels drets

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

In this paper a kernel for time-series data is introduced so that it can be used for any data mining task that relies on a similarity or distance metric. The main idea of our kernel is that it should recognize as highly similar time-series that are essentially the same but may be slightly perturbed from each other: for example, if one series is shifted with respect to the other or if it slightly misaligned. Namely, our kernel tries to focus on the shape of the time-series and ignores small perturbations such as misalignments or shifts. First, a recursive formulation of the kernel directly based on its definition is proposed. Then it is shown how to efficiently compute the kernel using an equivalent matrix-based formulation. To validate the proposed kernel three experiments have been carried out. As an initial step, several synthetic datasets have been generated from UCR time-series repository and the KDD challenge of 2007 with the purpose of validating the kernel-derived distance over shifted time-series. Also, the kernel has been applied to the original UCR time-series to analyze its potential in time-series classification in conjunction with Support Vector Machines. Finally, two real-world applications related to ozone concentration in atmosphere and electricity demand have been considered.

Descripció

Persones/entitats

Document relacionat

item.page.versionof

Citació

Troncoso, A., Arias, M., Riquelme, J.C. A multi-scale smoothing kernel for measuring time-series similarity. "Neurocomputing", 01 Novembre 2015, vol. 167, p. 8-17.

Ajut

Forma part

Dipòsit legal

ISBN

ISSN

0925-2312

Altres identificadors

Referències