Enabling data analytics and machine learning for 5G services within disaggregated multi-layer transport networks

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Text en actes de congrés

Data publicació

Editor

Institute of Electrical and Electronics Engineers (IEEE)

Condicions d'accés

Accés obert

item.page.rightslicense

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització de la persona titular dels drets

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

Recent advances, related to the concepts of Artificial Intelligence (AI) and Machine Learning (ML) and with applications across multiple technology domains, have gathered significant attention due, in particular, to the overall performance improvement of such automated systems when compared to methods relying on human operation. Consequently, using AI/ML for managing, operating and optimizing transport networks is increasingly seen as a potential opportunity targeting, notably, large and complex environments.Such AI-assisted automated network operation is expected to facilitate innovation in multiple aspects related to the control and management of future optical networks and is a promising milestone in the evolution towards autonomous networks, where networks self-adjust parameters such as transceiver configuration.To accomplish this goal, current network control, management and orchestration systems need to enable the application of AI/ML techniques. It is arguable that Software-Defined Networking (SDN) principles, favouring centralized control deployments, featured application programming interfaces and the development of a related application ecosystem are well positioned to facilitate the progressive introduction of such techniques, starting, notably, in allowing efficient and massive monitoring and data collection.In this paper, we present the control, orchestration and management architecture designed to allow the automatic deployment of 5G services (such as ETSI NFV network services) across metropolitan networks, conceived to interface 5G access networks with elastic core optical networks at multi Tb/s. This network segment, referred to as Metro-haul, is composed of infrastructure nodes that encompass networking, storage and processing resources, which are in turn interconnected by open and disaggregated optical networks. In particular, we detail subsystems like the Monitoring and Data Analytics or the in-operation planning backend that extend current SDN based network control to account for new use cases.

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

Casellas, R. [et al.]. Enabling data analytics and machine learning for 5G services within disaggregated multi-layer transport networks. A: International Conference on Transparent Optical Networks. "ICTON 2018: 20th International Conference on Transparent Optical Networks: 1-5 July 2018, Bucharest, Romania". Institute of Electrical and Electronics Engineers (IEEE), 2018, p. 1-4.

Ajut

Forma part

Dipòsit legal

ISBN

978-1-5386-6605-0

ISSN

Altres identificadors

Referències