Detecting freezing of gait with a tri-axial accelerometer in Parkinson’s disease patients
| dc.contributor.author | Ahlrichs, Claas |
| dc.contributor.author | Samà Monsonís, Albert |
| dc.contributor.author | Lawo, Michael |
| dc.contributor.author | Cabestany Moncusí, Joan |
| dc.contributor.author | Rodríguez Martín, Daniel Manuel |
| dc.contributor.author | Pérez López, Carlos |
| dc.contributor.author | Quinlan, Leo R. |
| dc.contributor.author | ÓLaighin, Gearóid |
| dc.contributor.author | Counihan, Timothy |
| dc.contributor.author | Lewy, Hadas |
| dc.contributor.author | Annicchiarico, Roberta |
| dc.contributor.author | Bayés, Àngels |
| dc.contributor.author | Rodríguez Molinero, Alejandro |
| dc.contributor.group | Universitat Politècnica de Catalunya. CETpD -Centre d'Estudis Tecnològics per a l'Atenció a la Dependència i la Vida Autònoma |
| dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica |
| dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial |
| dc.date.accessioned | 2016-05-02T11:26:58Z |
| dc.date.available | 2016-05-02T11:26:58Z |
| dc.date.issued | 2015-10-01 |
| dc.description.abstract | Freezing of gait (FOG) is a common motor symptom of Parkinson’s disease (PD), which presents itself as an inability to initiate or continue gait. This paper presents a method to monitor FOG episodes based only on acceleration measurements obtained from a waist-worn device. Three approximations of this method are tested. Initially, FOG is directly detected by a support vector machine (SVM). Then, classifier’s outputs are aggregated over time to determine a confidence value, which is used for the final classification of freezing (i.e., second and third approach). All variations are trained with signals of 15 patients and evaluated with signals from another 5 patients. Using a linear SVM kernel, the third approach provides 98.7 % accuracy and a geometric mean of 96.1 %. Moreover, it is investigated whether frequency features are enough to reliably detect FOG. Results show that these features allow the method to detect FOG with accuracies above 90 % and that frequency features enable a reliable monitoring of FOG by using simply a waist sensor. |
| dc.description.version | Postprint (published version) |
| dc.format.extent | 11 p. |
| dc.identifier.citation | Ahlrichs, C., Sama, A., Lawo, M., Cabestany, J., Rodriguez-Martin, D., Perez, C., Quinlan, L., ÓLaighin, G., Counihan, T., Lewy, H., Annicchiarico, R., Bayés, À., Rodríguez, A. Detecting freezing of gait with a tri-axial accelerometer in Parkinson’s disease patients. "Medical and biological engineering and computing", 01 Octubre 2015, p. 1-11. |
| dc.identifier.doi | 10.1007/s11517-015-1395-3 |
| dc.identifier.issn | 0140-0118 |
| dc.identifier.uri | https://hdl.handle.net/2117/86472 |
| dc.language.iso | eng |
| dc.relation.publisherversion | http://link.springer.com/article/10.1007/s11517-015-1395-3 |
| dc.rights.access | Open Access |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
| dc.subject | Àrees temàtiques de la UPC::Enginyeria biomèdica |
| dc.subject.lcsh | Parkinson's disease |
| dc.subject.lemac | Parkinson, Malaltia de |
| dc.subject.lemac | Enginyeria biomèdica |
| dc.subject.other | Parkinson’s disease Freezing of Gait Machine learning Support vector machines |
| dc.title | Detecting freezing of gait with a tri-axial accelerometer in Parkinson’s disease patients |
| dc.type | Article |
| dspace.entity.type | Publication |
| local.citation.author | Ahlrichs, C.; Sama, A.; Lawo, M.; Cabestany, J.; Rodriguez-Martin, D.; Perez, C.; Quinlan, L.; ÓLaighin, G.; Counihan, T.; Lewy, H.; Annicchiarico, R.; Bayés, À.; Rodríguez, A. |
| local.citation.endingPage | 11 |
| local.citation.publicationName | Medical and biological engineering and computing |
| local.citation.startingPage | 1 |
| local.identifier.drac | 17549354 |
Fitxers
Paquet original
1 - 1 de 1
Carregant...
- Nom:
- template.pdf
- Mida:
- 301.89 KB
- Format:
- Adobe Portable Document Format
- Descripció:
- Fichero previo envío

