Diagnosis of fluid leaks in pipelines using dynamic PCA?

Carregant...
Miniatura

Fitxers

Postprint (.pdf, 951.18 KB) (Accés restringit) Sol·licita una còpia a l'autor
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Article

Data publicació

Editor

Condicions d'accés

Accés restringit per política de l'editorial

item.page.rightslicense

Creative Commons
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-SenseObraDerivada 3.0 Espanya

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

In this paper, a data-driven system based on PCA is described to detect and quantify fluid leaks in an experimental pipeline. A dynamic PCA implementation (DPCA) was used to capture the process dynamics because the system variables are time-correlated. To detect leaks online, the Hotelling’s T2 statistic and the squared prediction error (SPE) were used as residuals, which are compared against statistically defined thresholds from a set of training data. To determine the number of delays to be included in the DPCA model as well as the number of principal components to be used, a tuning process was executed to find the residual with the optimal number of delays and components that showed the best correlation between the residuals and the leakage size. This allowed the construction of a regression model to estimate the flow rate of the leaks directly from the residual.

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

Santos, I.; López, F.; Puig, V. Diagnosis of fluid leaks in pipelines using dynamic PCA?. "IFAC-PapersOnLine", 1 Gener 2018, vol. 51, núm. 24, p. 373-380.

Ajut

Forma part

Dipòsit legal

ISBN

ISSN

2405-8963

Altres identificadors

Referències