Flow physics characterization of microconfined high-pressure transcritical fluids turbulence

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Tribunal avaluador

Realitzat a/amb

Tipus de document

Report de recerca

Data publicació

Editor

Condicions d'accés

Accés obert

item.page.rightslicense

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització de la persona titular dels drets

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

Microfluidics technology has grown rapidly over the past decades due to its high surface-to-volume ratios, flow controllability, and length scales efficiently suited for interacting with microscopic elements. These properties have proven to be well-suited to biology and chemistry, in which localized precision is usually an advantage. However, as a consequence of the small rates of mixing and transfer they achieve due to operating under laminar (smooth) flow regimes, the utilization of microfluidics for energy applications has long been a key challenge. In this regard, as a result of the thermophysical properties they exhibit in the vicinity of the pseudo-boiling region, it has been recently proposed that microconfined turbulence could be achieved by operating at high-pressure transcritical fluid conditions. However, the underlying flow mechanisms of such systems are still not well characterized and thus need to be carefully investigated. Consequently, this work analyzes supercritical microconfined turbulence by computing direct numerical simulations of high-pressure (P/Pc = 2) N2 at transcritical temperature conditions imposed by a temperature difference between the bottom (T /Tc = 0.75) and top (T /Tc = 1.5) walls for a friction Reynolds number of Ret = 100 (bottom wall). The results obtained indicate that microconfined turbulence can be achieved under such conditions, leading to transfer increments up to 20× those that occur in equivalent low-pressure configurations.

Descripció

Technical report

Persones/entitats

Document relacionat

item.page.versionof

Citació

Bernades, M. [et al.]. Flow physics characterization of microconfined high-pressure transcritical fluids turbulence. 2022.

Ajut

Forma part

DOI

Dipòsit legal

ISBN

ISSN

Versió de l'editor

Referències