Stabbing circles for sets of segments in the plane
Títol de la revista
ISSN de la revista
Títol del volum
Col·laborador
Editor
Tribunal avaluador
Realitzat a/amb
Tipus de document
Data publicació
Editor
Condicions d'accés
item.page.rightslicense
Publicacions relacionades
Datasets relacionats
Projecte CCD
Abstract
Stabbing a set S of n segments in the plane by a line is a well-known problem. In this paper we consider the variation where the stabbing object is a circle instead of a line. We show that the problem is tightly connected to two cluster Voronoi diagrams, in particular, the Hausdorff and the farthest-color Voronoi diagram. Based on these diagrams, we provide a method to compute a representation of all the combinatorially different stabbing circles for S, and the stabbing circles with maximum and minimum radius. We give conditions under which our method is fast. These conditions are satisfied if the segments in S are parallel, resulting in a O(nlog2n) time and O(n) space algorithm. We also observe that the stabbing circle problem for S can be solved in worst-case optimal O(n2) time and space by reducing the problem to computing the stabbing planes for a set of segments in 3D. Finally we show that the problem of computing the stabbing circle of minimum radius for a set of n parallel segments of equal length has an O(nlogn) lower bound.

