Artificial intelligence and machine learning for the physical layer of 6G communication Systems

dc.audience.degreeGRAU EN ENGINYERIA DE SISTEMES AEROESPACIALS/GRAU EN ENGINYERIA TELEMÀTICA (Pla 2015)
dc.audience.educationlevelEstudis de primer/segon cicle
dc.audience.mediatorEscola d'Enginyeria de Telecomunicació i Aeroespacial de Castelldefels
dc.contributorGarcía Villegas, Eduard
dc.contributorAntón Haro, Carles
dc.contributorPastore, Adriano
dc.contributor.authorAzlor Solé, Marc
dc.contributor.covenanteeCentre Tecnològic de Telecomunicacions de Catalunya (CTTC)
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Telemàtica
dc.date.accessioned2024-07-16T09:05:44Z
dc.date.available2025-06-27T00:26:31Z
dc.date.issued2024-06-27
dc.date.updated2024-07-09T03:34:03Z
dc.description.abstractIn the modern world, the use of Internet based communications has become a daily activity for a big part of the population. In particular, mobile communications are experiencing a relentless growth in the number of users, which has become an issue as they must be allocated in the channels with the limited available time and frequency resources in the physical layer. This is why Non-Orthogonal Multiple Access (NOMA) schemes are being used in 5G mobile communications and are expected to be a key factor in the future 6G communications. Another factor to take into account is the evolution in technologies such as Artificial Intelligence (AI) and Machine Learning (ML) that, as proven in literature, can perform tasks in the telecommunications world. NOMA will play an important role in 6G communications, while AI/ML has proven to play a key role in many layers including the physical layer, to improve the performance. In particular, constellation design to optimize BER vs SNR performance has proven to be feasible via Deep Learning (DL). In this study, we focus on neural design of demappers for an uplink NOMA system, to demonstrate the performance advantages of these systems against classical demapping techniques. The traditional demapping techniques to evaluate are the Successive Interference Cancellation (SIC) and the Joint Demapper. On the other hand, the SICNet demapper , a ML version of the traditional SIC, has been adapted to the uplink NOMA system. The comparison of the performance of all the demappers has been done with BER-EbN0 curves. The results show that the Joint demapper is the most optimal technique in a two-user uplink system. Meanwhile, the SICNet demapper has proven to outperform the SIC demapper in most of the studied scenarios.
dc.identifier.slugPRISMA-183866
dc.identifier.urihttps://hdl.handle.net/2117/411734
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.rights.accessOpen Access
dc.subjectÀrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic
dc.subject.lcshMachine learning
dc.subject.lcshArtificial intelligence
dc.subject.lemacAprenentatge automàtic
dc.subject.lemacIntel·ligència artificial
dc.subject.other6G
dc.subject.otherMachie Learning
dc.subject.otherML
dc.subject.otherArtificial Intelligence
dc.subject.otherIA
dc.subject.otherWireless communications
dc.titleArtificial intelligence and machine learning for the physical layer of 6G communication Systems
dc.typeBachelor thesis
dspace.entity.typePublication

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
2.04 MB
Format:
Adobe Portable Document Format