Retrieval of aged biomass-burning aerosol properties by using GRASP code in synergy with polarized micro-pulse lidar and sun/sky photometer
Títol de la revista
ISSN de la revista
Títol del volum
Col·laborador
Editor
Tribunal avaluador
Realitzat a/amb
Tipus de document
Data publicació
Editor
Condicions d'accés
item.page.rightslicense
Publicacions relacionades
Datasets relacionats
Projecte CCD
Projecte
SEGUIMIENTO INTEGRADO DEL INTERCAMBIO DE GASES DE EFECTO INVERNADERO Y AEROSOLES ENTRE ATMOSFERA Y ECOSISTEMA EN TIERRAS SECAS: TECNICAS DE TELEDETECCION Y EDDY COVARIANCE (AEI-PID2020-117825GB-C21)
GRASP-ACE - Development of GRASP radiative transfer code for the retrieval of aerosol microphysics vertical-profiles from space measurements and its impact in ACE mission (EC-H2020-778349)
ACTRIS-2 - Aerosols, Clouds, and Trace gases Research InfraStructure (EC-H2020-654109)
ACTRIS IMP - Aerosol, Clouds and Trace Gases Research Infrastructure Implementation Project (EC-H2020-871115)
Abstract
The aim of this study was to analyze the potential of the GRASP code to retrieve optical and microphysical properties vertically-resolved using a synergy of polarized Micro-Pulse Lidar and Sun/sky photometer observations. The focus was on the long-range transport of Canadian aged-smoke plumes observed at El Arenosillo/Huelva (Spain) from 7 to 8 September 2017. Both the columnar and height-resolved microphysical and optical properties were assessed in comparison with AERONET data and vertical lidar-retrieved profiles, respectively. In particular, the vertical properties were also derived using the POLIPHON approach, which serves as a comparison for GRASP retrievals. The retrieved columnar aerosol microphysical properties (volume concentration and effective radius) showed an excellent agreement, with negligible differences, and were within the uncertainties. Nevertheless, for the retrieved columnar optical properties, we could only perform an individual comparison, due to the strong AERONET limitations, and although the agreements were generally good, no conclusions were obtained, due to differences in the real refractive index and due to the large uncertainties obtained in the retrievals. For the vertical profiles, however, we present a large advance that permits obtaining aerosol backscatter and extinction coefficients, plus volume concentrations, without the need for internal assumptions (extinction-to-backscatter ratios and depolarization measurements), due to the very good agreement observed between GRASP and the lidar-derived methodologies. However, the separation of the properties into their fine and coarse modes was not feasible using the one-wavelength elastic lidar measurements with the GRASP retrieval configuration used in this work. Therefore, current studies are being addressed to assessing the introduction of lidar depolarization in the GRASP code as an encouraged added-value, for the improvement of the retrieval of vertical aerosol properties.


