Comparing MapReduce and pipeline implementations for counting triangles

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Text en actes de congrés

Data publicació

Editor

Condicions d'accés

Accés obert

item.page.rightslicense

Creative Commons
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement 3.0 Espanya

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

A generalized method to define the Divide & Conquer paradigm in order to have processors acting on its own data and scheduled in a parallel fashion. MapReduce is a programming model that follows this paradigm, and allows for the definition of efficient solutions by both decomposing a problem into steps on subsets of the input data and combining the results of each step to produce final results. Albeit used for the implementation of a wide variety of computational problems, MapReduce performance can be negatively affected whenever the replication factor grows or the size of the input is larger than the resources available at each processor. In this paper we show an alternative approach to implement the Divide & Conquer paradigm, named pipeline. The main features of pipeline are illustrated on a parallel implementation of the well-known problem of counting triangles in a graph. This problem is especially interesting either when the input graph does not fit in memory or is dynamically generated. To evaluate the properties of pipeline, a dynamic pipeline of processes and an ad-hoc version of MapReduce are implemented in the language Go, exploiting its ability to deal with channels and spawned processes. An empirical evaluation is conducted on graphs of different sizes and densities. Observed results suggest that pipeline allows for the implementation of an efficient solution of the problem of counting triangles in a graph, particularly, in dense and large graphs, drastically reducing the execution time with respect to the MapReduce implementation.

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

Edelmira Pasarella, Maria-Esther Vidal, Cristina Zoltan. Comparing MapReduce and pipeline implementations for counting triangles. A: Jornadas sobre Programación y Lenguajes. "Actas de las XVI Jornadas de Programación y Lenguajes (PROLE 2016): Salamanca, septiembre de 2016". Salamanca: 2016, p. 178-187.

Ajut

Forma part

DOI

Dipòsit legal

ISBN

ISSN

Altres identificadors

Referències