A Stiffness-fault-tolerant control strategy for an elastically actuated powered knee orthosis
Fitxers
Títol de la revista
ISSN de la revista
Títol del volum
Col·laborador
Tribunal avaluador
Realitzat a/amb
Tipus de document
Data publicació
Editor
Condicions d'accés
item.page.rightslicense
Publicacions relacionades
Datasets relacionats
Projecte CCD
Abstract
Elastic actuators can provide safe human-robot interaction and energy efficient mobility. For this purpose they are ideal for wearable robotic applications. However, such actuators are subject to stiffness faults. We present a stiffness-fault-tolerant control strategy for complex elastic actuators, capable of adapting to changes in output stiffness, and demonstrate it on a smart variable stiffness actuator based on the MACCEPA concept. We develop the dynamics of the actuator and a model-based impedance control scheme. Biomechanical data extracted from the flexion/extension of a real knee joint are used as trajectory reference for the evaluation of the control concept in simulation. Results show that the controlled actuator is capable of tracking a reference trajectory under fault conditions and interaction disturbance while maintaining physical human-robot characteristics.