Carathodory's theorem in depth

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Article

Data publicació

Editor

Condicions d'accés

Accés obert

item.page.rightslicense

Creative Commons
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-SenseObraDerivada 3.0 Espanya

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

Let X be a finite set of points in RdRd . The Tukey depth of a point q with respect to X is the minimum number tX(q)tX(q) of points of X in a halfspace containing q. In this paper we prove a depth version of Carathéodory’s theorem. In particular, we prove that there exist a constant c (that depends only on d and tX(q)tX(q) ) and pairwise disjoint sets X1,…,Xd+1¿XX1,…,Xd+1¿X such that the following holds. Each XiXi has at least c|X| points, and for every choice of points xixi in XiXi , q is a convex combination of x1,…,xd+1x1,…,xd+1 . We also prove depth versions of Helly’s and Kirchberger’s theorems.

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

Fabila, R., Huemer, C. Carathodory's theorem in depth. "Discrete and computational geometry", 1 Juliol 2017, vol. 58, núm. 1, p. 51-66.

Ajut

Forma part

Dipòsit legal

ISBN

ISSN

0179-5376

Altres identificadors

Referències