Carathodory's theorem in depth
Carregant...
Fitxers
El pots comprar en digital a:
El pots comprar en paper a:
Títol de la revista
ISSN de la revista
Títol del volum
Col·laborador
Editor
Tribunal avaluador
Realitzat a/amb
Tipus de document
Article
Data publicació
Editor
Condicions d'accés
Accés obert
item.page.rightslicense
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-SenseObraDerivada 3.0 Espanya
Publicacions relacionades
Datasets relacionats
Projecte CCD
Abstract
Let X be a finite set of points in RdRd . The Tukey depth of a point q with respect to X is the minimum number tX(q)tX(q) of points of X in a halfspace containing q. In this paper we prove a depth version of Carathéodory’s theorem. In particular, we prove that there exist a constant c (that depends only on d and tX(q)tX(q) ) and pairwise disjoint sets X1,…,Xd+1¿XX1,…,Xd+1¿X such that the following holds. Each XiXi has at least c|X| points, and for every choice of points xixi in XiXi , q is a convex combination of x1,…,xd+1x1,…,xd+1 . We also prove depth versions of Helly’s and Kirchberger’s theorems.
Descripció
Persones/entitats
Document relacionat
Versió de
Citació
Fabila, R., Huemer, C. Carathodory's theorem in depth. "Discrete and computational geometry", 1 Juliol 2017, vol. 58, núm. 1, p. 51-66.
Ajut
Forma part
Dipòsit legal
ISBN
ISSN
0179-5376


