Generalized perfect codes for symmetric classical-quantum channels

dc.contributor.authorBlasco Coll, Andreu
dc.contributor.authorVázquez Vilar, Gonzalo
dc.contributor.authorRodríguez Fonollosa, Javier
dc.contributor.groupUniversitat Politècnica de Catalunya. SPCOM - Grup de Recerca de Processament del Senyal i Comunicacions
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Teoria del Senyal i Comunicacions
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.date.accessioned2022-09-29T10:53:55Z
dc.date.available2022-09-29T10:53:55Z
dc.date.issued2022-09
dc.description.abstractWe define a new family of codes for symmetric classical-quantum channels and establish their optimality. To this end, we extend the classical notion of generalized perfect and quasi-perfect codes to channels defined over some finite dimensional complex Hilbert output space. The resulting optimality conditions depend on the channel considered and on an auxiliary state defined on the output space of the channel. For certain N-qubit classical-quantum channels, we show that codes based on a generalization of Bell states are quasi-perfect and, therefore, they feature the smallest error probability among all codes of the same blocklength and cardinality.
dc.description.peerreviewedPeer Reviewed
dc.description.sponsorshipThis work was supported in part by the European Research Council (ERC) under Grant 714161; in part by the Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, the Spanish Government, under Grant RED2018-102668-T, Grant PID2019-104958RB-C41, and Grant PID2020-116683GB-C21; and in part by the Catalan Government, within the ERDF Program of Catalunya, under Grant 2017 SGR 578 AGAUR and Grant 001-P001644 QuantumCAT.
dc.description.versionPostprint (author's final draft)
dc.format.extent14 p.
dc.identifier.citationBlasco, A.; Vázquez, G.; R. Fonollosa, J. Generalized perfect codes for symmetric classical-quantum channels. "IEEE transactions on information theory", Setembre 2022, vol. 68, núm. 9, p. 5923-5936.
dc.identifier.doi10.1109/TIT.2022.3170868
dc.identifier.issn1557-9654
dc.identifier.urihttps://hdl.handle.net/2117/373658
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104958RB-C41/ES/AVANCES EN CODIFICACION Y PROCESADO DE SEÑAL PARA LA SOCIEDAD DIGITAL/
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9764678
dc.rights.accessOpen Access
dc.subjectÀrees temàtiques de la UPC::Informàtica::Informàtica teòrica
dc.subject.lcshQuantum communication
dc.subject.lcshError-correcting codes (Information theory)
dc.subject.lemacComunicació quàntica
dc.subject.lemacCodis correctors d'errors (Teoria de la informació)
dc.subject.otherCodes
dc.subject.otherError probability
dc.subject.otherQuantum channels
dc.subject.otherChannel capacity
dc.subject.otherQuantum system
dc.subject.otherTask analysis
dc.subject.otherQuantum state
dc.titleGeneralized perfect codes for symmetric classical-quantum channels
dc.typeArticle
dspace.entity.typePublication
local.citation.authorBlasco, A.; Vázquez, G.; Fonollosa, J. R.
local.citation.endingPage5936
local.citation.number9
local.citation.publicationNameIEEE transactions on information theory
local.citation.startingPage5923
local.citation.volume68
local.identifier.drac33746408

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
quantum_quasiperfect.pdf
Mida:
400.56 KB
Format:
Adobe Portable Document Format
Descripció: