Nanoscale Imaging and Control of hexagonal BoronNitride Single Photon Emitters by a Resonant Nano-antenna
Fitxers
Títol de la revista
ISSN de la revista
Títol del volum
Col·laborador
Tribunal avaluador
Realitzat a/amb
Tipus de document
Data publicació
Editor
Condicions d'accés
item.page.rightslicense
Publicacions relacionades
Datasets relacionats
Projecte CCD
Projecte
2D-SIPC - Two-dimensional quantum materials and devices for scalable integrated photonic circuits (EC-H2020-820378)
VISUALIZACION EN 3D DE PROCESOS DINAMICOS EN CELULAS VIVAS (AEI-RTI2018-099957-J-I00)
ACOPLAMIENTO OPTICO RESONANTE GIGANTE (AEI-PGC2018-096875-B-I00)
FEMTONANO : VISTAS ULTRARRAPIDAS DE TRANSPORTE CUANTICO EN NANO-REDES FOTONICAS NATURALES (MINECO-FIS2015-69258-P)
undefined-undefined
AGR-INSTITUTO DE CIENCIAS FOTONICAS (MINECO-SEV-2015-0522)
undefined-undefined
Abstract
Defect centers in two-dimensional hexagonal boron nitride (hBN) are drawing attention as single photon emitters with high photo-stability at room temperature. With their ultra-high photon-stability, hBN single photon emitters are promising for new applications in quantum technologies and for two-dimensional material based optoelectronics. Here, we control the emission rate of hBN-defects by coupling these to resonant plasmonic nanocavities. By deterministic control of the antenna we acquire high-resolution emission maps of the single hBN-defects. Using time-gating, we can discriminate the hBN defect emission from the antenna luminescence. We observe sharp dips (40 nm FWHM) in emission, together with a reduction with the luminescence lifetime. Comparing with FDTD simulations we conclude that both radiative and non-radiative rates are enhanced, which effectively reduce the quantum efficiency. Also, the large refractive index of the hBN largely screens off the local antenna field enhancement. Finally, based on the insight gained, we propose a close-contact design for an order of magnitude brighter hBN single photon emission.