Semi-supervised fuzzy DBN-based broad learning system for forecasting ICU admissions in post-transplant COVID-19 patients

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Text en actes de congrés

Data publicació

Editor

SciTePress

Condicions d'accés

Accés obert

item.page.rightslicense

Creative Commons
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-SenseObraDerivada 4.0 Internacional

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

This paper introduces a novel semi-supervised neuro-fuzzy system to predict ICU admissions among post-COVID organ transplant recipients. Addressing the challenges of small sample sizes and lacking labels in organ transplantation, our study takes on these issues by proposing a DBN-Based Dual Manifold Regularized Fuzzy Broad Learning System (D-DMR-FBLS). This system utilizes the streamlined and flat architecture of the Broad Learning System (BLS), integrating Deep Belief Networks (DBN) and Takagi-Sugeno-Kang (TSK) systems to enhance representation learning capacities during the Unsupervised Training Phase (UTP). The system combines the strong feature learning capabilities of DBN with the powerful fuzzy rule extraction capacity of the TSK system, enhancing the model’s predictive performance and generalization capability. Moreover, we propose two types of graph-based manifold regularization, sample-based and feature-based, within this novel D-DMR-FBLS framework. Our method enhances its predictive ability by exploiting both the similarity among unlabeled and labeled patient samples, as well as the correlations between features within the fuzzy feature space. Employed to predict ICU admission risks in post-transplant COVID-19 patients, the method has demonstrated superior performance over existing methods, particularly in scenarios with limited samples and labels, thereby providing more accurate decision support for medical professionals in optimizing resource allocation for transplant patients.

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

Zhang, X.; Nebot, A. Semi-supervised fuzzy DBN-based broad learning system for forecasting ICU admissions in post-transplant COVID-19 patients. A: International Conference on Simulation and Modeling Methodologies, Technologies and Applications. "Proceedings of the 14th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, July 10-12 2024, Dijon, France". Setúbal: SciTePress, 2024, p. 415-422. ISBN 978-989-758-708-5. DOI 10.5220/0012856300003758 .

Ajut

Forma part

Dipòsit legal

ISBN

978-989-758-708-5

ISSN

Altres identificadors

Referències