A Speech-based Dialogue System for Household Robots

Carregant...
Miniatura

Fitxers

Report (.pdf, 3.12 MB) (Accés restringit)
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Correu electrònic de l'autor

Tutor / director

Tribunal avaluador

Realitzat a/amb

Tipus de document

Projecte/Treball Final de Carrera

Data

Condicions d'accés

Accés restringit per decisió de l'autor

item.page.rightslicense

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització de la persona titular dels drets

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

This thesis studies mechanisms to improve human-robot-interaction through a spoken dialogue for household robots. Therefore, a full dialogue system, in which the semantics of the words play an important role, is implemented. Nowadays, robots are found to be helpful in a lot of applications. One important eld during the last decades is to design household robots capable of helping people with disabilities. For this purpose, the robot has to be able to communicate with humans so it knows what it has to do. A natural way to do so is by speech, which still needs further research. With the controller implemented, the robot is expected to grasp objects, navigate, learn and follow people, clean up a room, etc. So the rst goal of this thesis is to give the robot the ability to understand these tasks through a spoken dialogue system. Furthermore, the robot has to be able to understand complex tasks where the information to achieve the task is incomplete. The second goal of this thesis is that the robot has the ability to learn new words, for example, names of people, because it is impossible to have all the names stored in a database in advance. In addition, learning people not only implies learning the physical body, e.g., the face, but also their names. The dialogue system implemented has an accuracy of 80.45% for isolate words, 90.56% for simple commands and 96.66% for complex commands that provide incomplete information for the robot to achieve the task. Finally, the accuracy of recognizing words learnt on-line is 33.33%.

Descripció

Provinença

Titulació

ENGINYERIA INDUSTRIAL (Pla 1994)

Document relacionat

Citació

Ajut

DOI

Versió de l'editor

Altres identificadors

Referències