On the representativeness of convolutional neural networks layers

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Capítol de llibre

Data publicació

Editor

IOS PRESS EBOOKS

Condicions d'accés

Accés obert

item.page.rightslicense

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització de la persona titular dels drets

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

Convolutional Neural Networks (CNN) are the most popular of deep network models due to their applicability and success in image processing. Although plenty of effort has been made in designing and training better discriminative CNNs, little is yet known about the internal features these models learn. Questions like, what specific knowledge is coded within CNN layers, and how can it be used for other purposes besides discrimination, remain to be answered. To advance in the resolution of these questions, in this work we extract features from CNN layers, building vector representations from CNN activations. The resultant vector embedding is used to represent first images and then known image classes. On those representations we perform an unsupervised clustering process, with the goal of studying the hidden semantics captured in the embedding space. Several abstract entities untaught to the network emerge in this process, effectively defining a taxonomy of knowledge as perceived by the CNN. We evaluate and interpret these sets using WordNet, while studying the different behaviours exhibited by the layers of a CNN model according to their depth. Our results indicate that, while top (i.e., deeper) layers provide the most representative space, low layers also define descriptive dimensions.

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

García, D., Moreno, J., Ramos-Pollan, R., Barrios, R., Béjar, J., Cortés, C., Ayguadé, E., Labarta, J., Suzumura, T. On the representativeness of convolutional neural networks layers. A: "Artificial Intelligence Research and Development: proceedings of the 19th International Conference of the Catalan Association for Artificial Intelligence: Barcelona, Catalonia, Spain, October 19–21, 2016". IOS PRESS EBOOKS, 2016, p. 29-38.

Ajut

Forma part

Dipòsit legal

ISBN

978-1-61499-695-8

ISSN

Altres identificadors

Referències