Fracturing in concrete via lattice-particle model
Títol de la revista
ISSN de la revista
Títol del volum
Autors
Col·laborador
Editor
Tribunal avaluador
Realitzat a/amb
Càtedra / Departament / Institut
Tipus de document
Data publicació
Editor
Part de
Condicions d'accés
item.page.rightslicense
Datasets relacionats
Projecte CCD
Abstract
Numerical simulation is used to explore the behavior of concrete beams of different sizes and different notch lengths, loaded in three-point bending. The entire range of notch depth is studied. One limit case is type 1 fracture, which occurs when the notch depth is zero and the crack initiates from a smooth surface (this is the case of the modulus of rupture test). Another limit is type 2 fracture, which occurs for deep enough notches. Both cases exhibit very different size effects. The fracture is simulated numerically with a robust mesolevel lattice-particle model. The results shed light on the transitional behavior in which the notch depth is non-zero but not deep enough for developing the the type 2 size effect dominated by energy release from the structure. In agreement with experimental observations and theoretical predictions, the numerical results show evidence of a decreasing macroscopic fracture energy as the ligament gets very short.

