SOME NUMERICAL INVARIANTS OF LOCAL RINGS

JOSEP ÀLVAREZ MONTANER

ABSTRACT. Let R be a formal power series ring over a field of characteristic zero and $I\subseteq R$ be any ideal. The aim of this work is to introduce some numerical invariants of the local rings R/I by using the theory of algebraic \mathcal{D} -modules. More precisely, we will prove that the multiplicities of the characteristic cycle of the local cohomology modules $H_{\mathfrak{p}}^{n-i}(R)$ and $H_{\mathfrak{p}}^{\mathfrak{p}}(H_{\mathfrak{p}}^{n-i}(R))$, where $\mathfrak{p}\subseteq R$ is any prime ideal that contains I, are invariants of R/I.

1. Introduction

Let (R, \mathfrak{m}, k) be a regular local ring of dimension n containing the field k, and A a local ring which admits a surjective ring homomorphism $\pi: R \longrightarrow A$. Set $I = \operatorname{Ker} \pi$. G. Lyubeznik [10] defines a new set of numerical invariants of A by means of the Bass numbers $\lambda_{p,i}(A) := \mu_p(\mathfrak{m}, H_I^{n-i}(R)) := \dim_k \operatorname{Ext}_R^p(k, H_I^{n-i}(R))$. This invariant depends only on A, i and p, but neither on R nor on π . Completion does not change $\lambda_{p,i}(A)$ so one can assume $R = k[[x_1, \ldots, x_n]]$, with x_1, \ldots, x_n independent variables.

Lyubeznik numbers can be described as the multiplicities of the characteristic cycle of the local cohomology modules $H^p_{\mathfrak{m}}(H^{n-i}_I(R))$. The aim of this work is to prove that the multiplicities of the characteristic cycle of the local cohomology modules $H^{n-i}_I(R)$ and $H^p_{\mathfrak{p}}(H^{n-i}_I(R))$, where $\mathfrak{p}\subseteq R$ is any prime ideal that contains I, are also invariants of R/I. Among these invariants we may find the Bass numbers $\mu_p(\mathfrak{p},H^{n-i}_I(R)):=\dim_{k(\mathfrak{p})}\mathrm{Ext}^p_{R_\mathfrak{p}}(k(\mathfrak{p}),H^{n-i}_{IR_\mathfrak{p}}(R_\mathfrak{p}))$.

I would like to thank my advisor Santiago Zarzuela for his unvaluable assistance to write this paper and the referee for many helpful suggestions.

2. The characteristic cycle

In the sequel, \mathcal{D} will denote the ring of differential operators corresponding to the formal power series ring $R = k[[x_1, \ldots, x_n]]$, where k is a field of characteristic zero and x_1, \ldots, x_n are independent variables. For details we refer to [5], [6]. The ring \mathcal{D} has a natural increasing filtration given by the order such that the corresponding associated graded ring $gr(\mathcal{D})$ is isomorphic to the polynomial ring $R[\xi_1, \ldots, \xi_n]$.

Let M be a finitely generated \mathcal{D} -module equipped with a good filtration, i.e. an increasing sequence of finitely generated R-submodules such that the associated graded module gr(M) is a finitely generated $gr(\mathcal{D})$ -module. The characteristic ideal of M is the ideal in $gr(\mathcal{D}) = R[\xi_1, \ldots, \xi_n]$ given by $J(M) := \operatorname{rad}(\operatorname{Ann}_{gr(\mathcal{D})}(gr(M)))$. One may prove that J(M) is independent of the good

Date: December 2, 2002.

2000 Mathematics Subject Classification. Primary 13D45, 13N10.

Key words and phrases. Local cohomology, D-modules.

filtration on M. The characteristic variety of M is the closed algebraic set given by:

$$C(M) := V(J(M)) \subseteq \operatorname{Spec}(gr(\mathcal{D})) = \operatorname{Spec}(R[\xi_1, \dots, \xi_n]).$$

The characteristic variety allows us to describe the support of a finitely generated \mathcal{D} -module as R-module. Let $\pi: \operatorname{Spec}(R[\xi_1,\ldots,\xi_n]) \longrightarrow \operatorname{Spec}(R)$ be the map defined by $\pi(x,\xi)=x$. Then $\operatorname{Supp}_R(M)=\pi(C(M))$.

The characteristic cycle of M is defined as:

$$CC(M) = \sum m_i V_i$$

where the sum is taken over all the irreducible components $V_i = V(\mathfrak{q}_i)$ of the characteristic variety C(M), where $\mathfrak{q}_i \in \operatorname{Spec}(gr(\mathcal{D}))$ and m_i is the multiplicity of the module $gr(M)_{\mathfrak{q}_i}$. Notice that the contraction of \mathfrak{q}_i to R is a prime ideal so the variety $\pi(V_i)$ is irreducible.

2.1. Bass numbers and characteristic cycle. Let $\mathfrak{p} \in \operatorname{Spec}(R)$ be a prime ideal. The Bass numbers $\mu_p(\mathfrak{p}, H_I^{n-i}(R))$ of the local cohomology modules $H_I^{n-i}(R)$, where $I \subseteq R$ is any ideal, can be described as the multiplicities of the characteristic cycle of $H_{\mathfrak{p}}^p(H_I^{n-i}(R))$. Namely we have:

Proposition 2.1. Let $I \subseteq R$ be an ideal, $\mathfrak{p} \subseteq R$ a prime ideal and

$$CC(H_{\mathfrak{p}}^{p}(H_{I}^{n-i}(R))) = \sum \lambda_{\mathfrak{p},p,i,\alpha} V_{\alpha}$$

be the characteristic cycle of the local cohomology module $H^p_{\mathfrak{p}}(H^{n-i}_I(R))$. Then, the Bass numbers with respect to \mathfrak{p} of $H^{n-i}_I(R)$ are

$$\mu_p(\mathfrak{p}, H_I^{n-i}(R)) = \lambda_{\mathfrak{p}, p, i, \alpha_n},$$

where $\pi(V_{\alpha_{\mathfrak{p}}})$ is the subvariety of $X = \operatorname{Spec}(R)$ defined by \mathfrak{p} .

Proof. Let $\widehat{R_{\mathfrak{p}}}$ be the completion with respect to the maximal ideal $\mathfrak{p}R_{\mathfrak{p}}$ of the localization $R_{\mathfrak{p}}$. Notice that $\widehat{R_{\mathfrak{p}}}$ is a formal power series ring of dimension ht \mathfrak{p} . Since Bass numbers are invariant by completion we have:

$$\mu_p(\mathfrak{p},H^{n-i}_I(R)) = \mu_p(\mathfrak{p}\widehat{R_{\mathfrak{p}}},H^{n-i}_{I\widehat{R_{\mathfrak{p}}}}(\widehat{R_{\mathfrak{p}}})) = \mu_0(\mathfrak{p}\widehat{R_{\mathfrak{p}}},H^p_{\mathfrak{p}\widehat{R_{\mathfrak{p}}}}(H^{n-i}_{I\widehat{R_{\mathfrak{p}}}}(\widehat{R_{\mathfrak{p}}}))),$$

where the last assertion follows from [10, Lemma 1.4]. By using [10, Theorem 3.4] we have:

$$H^p_{\mathfrak{p}\widehat{R_{\mathfrak{p}}}}\big(H^{n-i}_{I\widehat{R_{\mathfrak{p}}}}(\widehat{R_{\mathfrak{p}}})\big) = E_{\widehat{R_{\mathfrak{p}}}}\big(\widehat{R_{\mathfrak{p}}}/\mathfrak{p}\widehat{R_{\mathfrak{p}}}\big)^{\mu_{0}(\mathfrak{p}\widehat{R_{\mathfrak{p}}},H^p_{\mathfrak{p}\widehat{R_{\mathfrak{p}}}}(H^{n-i}_{I\widehat{R_{\mathfrak{p}}}}(\widehat{R_{\mathfrak{p}}})))}.$$

So, its characteristic cycle is:

$$CC(H^p_{\mathfrak{p}\widehat{R_p}}(H^{n-i}_{I\widehat{R_p}}(\widehat{R_p}))) = \mu_p(\mathfrak{p}, H^{n-i}_I(R)) \ V'_{\alpha_{\mathfrak{p}}},$$

where $\pi(V'_{\alpha_{\mathfrak{p}}})$ is the subvariety of $X' = \operatorname{Spec} \widehat{R_{\mathfrak{p}}}$ defined by the ideal $\mathfrak{p}\widehat{R_{\mathfrak{p}}}$. Notice that we have used the following fact (see [10] and [1] for details):

$$CC(H^{\operatorname{ht}\,\mathfrak{p}}_{\mathfrak{p}\,\widehat{R_{\mathfrak{p}}}}(\widehat{R_{\mathfrak{p}}})) = CC(E_{\widehat{R_{\mathfrak{p}}}}(\widehat{R_{\mathfrak{p}}}/\mathfrak{p}\widehat{R_{\mathfrak{p}}})) = V'_{\alpha_{\mathfrak{p}}}.$$

Finally, by using the flatness of the morphism $R \longrightarrow \widehat{R_{\mathfrak{p}}}$, this characteristic cycle can be obtained from the characteristic cycle of $H^p_{\mathfrak{p}}(H^{n-i}_I(R))$. Namely, if

$$CC(H_{\mathfrak{p}}^{p}(H_{I}^{n-i}(R))) = \sum \lambda_{\mathfrak{p},p,i,\alpha} V_{\alpha}$$

is the characteristic cycle of the module $H_{\mathfrak{p}}^p(H_I^{n-i}(R))$, then we have

$$CC(H^p_{\widehat{\mathfrak{p}}\widehat{R}_{\widehat{\mathfrak{p}}}}(H^{n-i}_{I\widehat{R}_{\widehat{\mathfrak{p}}}}(\widehat{R_{\widehat{\mathfrak{p}}}}))) = \lambda_{\mathfrak{p},p,i,\alpha_{\widehat{\mathfrak{p}}}} \ V'_{\alpha_{\widehat{\mathfrak{p}}}}.$$

2.2. **Inverse and direct image.** Some geometrical operations as the direct image have a key role in the theory of \mathcal{D} -modules. Our aim in this section is to give a brief survey of this operations in the particular case of the injection of \mathbb{A}^n_k in \mathbb{A}^{n+1}_k . The main references we will use in this section are [6] and [11].

Let \mathcal{D}_{n+1} and \mathcal{D}_n be the rings of differential operators corresponding to $R' = k[[x_1, \ldots, x_n, t]]$ and $R = k[[x_1, \ldots, x_n]]$ respectively. Let M be a \mathcal{D}_n -module. The direct image corresponding to the injection is the \mathcal{D}_{n+1} -module $i_+(M)$ defined as

$$i_{+}(M) = k[\partial_{t}] \widehat{\otimes}_{k} M = M[\partial_{t}].$$

The characteristic variety of $i_+(M)$ can be computed from the characteristic variety of M. Namely, we have:

$$C(i_+(M)) = \{ (\mathbf{x}, 0, \xi, \tau) \mid (\mathbf{x}, \xi) \in C(M) \} \subseteq \operatorname{Spec}(R'[\xi_1, \dots, \xi_n, \tau]),$$

where we have considered $C(M) \subset \operatorname{Spec}(R[\xi_1, \dots, \xi_n])$.

The direct image of local cohomology modules can be easily described. The following result is stated in the way we will use in our work.

Lemma 2.2. Let $\mathfrak{p} \subseteq R$ be a prime ideal that contains an ideal $I \subseteq R$. The direct image of the local cohomology module $H^p_{\mathfrak{p}}(H^{n-i}_I(R))$ is:

$$i_+(H^p_{\mathfrak{p}}(H^{n-i}_I(R))) = H^1_{(t)}(H^p_{\mathfrak{p}R'}(H^{n-i}_{IR'}(R'))).$$

Proof. Let \mathcal{D}_t be the ring of differential operators corresponding to the formal power series ring k[[t]]. For simplicity we will denote the local cohomology modules $H^p_{\mathfrak{p}}(H^{n-i}_{\mathfrak{p}}(R))$ and $H^p_{\mathfrak{p}_{H'}}(H^{n-i}_{IR'}(R'))$ by N and N' respectively. Then we have:

$$H^1_{(t)}(N') = H^1_{(t)}(N \hat{\otimes}_k k[[t]]) = H^1_{(t)}(k[[t]]) \hat{\otimes}_k N = (\mathcal{D}_t/\mathcal{D}_t \cdot (t)) \hat{\otimes}_k N = i_+(N)$$

Remark 2.3. In general, let I_1, \ldots, I_s be a set of ideals of R. Then, the direct image of the local cohomology module $H^{i_1}_{I_1}(\cdots(H^{i_s}_{I_s}(R))\cdots)$ is:

$$i_+(H^{i_1}_{I_1}(\cdots (H^{i_s}_{I_s}(R))\cdots))=H^1_{(t)}(H^{i_1}_{I_1R'}(\cdots (H^{i_s}_{I_sR'}(R'))\cdots)).$$

3. Multiplicities of the characteristic cycle

Let A be a ring that admits a presentation $A \cong R/I$ for a given ideal $I \subseteq R = k[[x_1, \ldots, x_n]]$. Recall that we have $\operatorname{Spec}(A) = \{\mathfrak{p} \in \operatorname{Spec}(R) \mid I \subseteq \mathfrak{p}\}$. Throughout this section, a prime ideal of A will also mean the corresponding prime ideal of R that contains I.

Let R/I and R'/I' be two different presentations of the local ring A. Then, for any prime ideal of A, we will denote $\mathfrak{p}' \in \operatorname{Spec}(R')$ the prime ideal that corresponds to $\mathfrak{p} \in \operatorname{Spec}(R)$ by the isomorphism $\operatorname{Spec}(R/I) \cong \operatorname{Spec}(R'/I')$

Theorem 3.1. Let A be a local ring which admits a surjective ring homomorphism $\pi: R \longrightarrow A$, where $R = k[[x_1, \ldots, x_n]]$ is the formal power series ring. Set $I = \ker \pi$, let $\mathfrak{p} \subseteq A$ be a prime ideal and let

$$CC(H_{\mathfrak{p}}^{p}(H_{I}^{n-i}(R))) = \sum \lambda_{\mathfrak{p},p,i,\alpha} \ V_{\alpha},$$

be the characteristic cycle of the local cohomology modules $H^p_{\mathfrak{p}}(H^{n-i}_I(R))$. Then the multiplicities $\lambda_{\mathfrak{p},p,i,\alpha}$ depend only on A, \mathfrak{p} , p, i and α but neither on R nor on π .

The proof of the theorem is inspired in the proof of [10, Theorem 4.1], but here we must be careful with the behavior of the characteristic cycle so instead of [10, Lemma 4.3] we will use the following:

Lemma 3.2. Let $g: R' \longrightarrow R$ be a surjective ring homomorphism, where R' is a formal power series ring of dimension n'. Set $I' = \ker \pi g$ and let

$$CC(H_{\mathfrak{p}}^{p}(H_{I}^{n-i}(R))) = \sum \lambda_{\mathfrak{p},p,i,\alpha} V_{\alpha},$$

be the characteristic cycle of the local cohomology modules $H^p_{\mathfrak{p}}(H^{n-i}_I(R))$. Then, the characteristic cycle of $H^p_{\mathfrak{p}'}(H^{n'-i}_{I'}(R'))$ is

$$CC(H_{\mathfrak{p}'}^p(H_{I'}^{n'-i}(R'))) = \sum \lambda_{\mathfrak{p},p,i,\alpha} \ V_{\alpha}',$$

where $\pi(V'_{\alpha})$ is the subvariety of $X' = \operatorname{Spec} R'$ defined by the defining ideal of $\pi(V_{\alpha})$ contracted to R'.

Proof. R is regular so Ker g is generated by n'-n elements that form part of a minimal system of generators of the maximal ideal $\mathfrak{m}'\subseteq R'$. By induction on n'-n we are reduced to the case n'-n=1, so Ker g is generated by one element $f\in\mathfrak{m}'\setminus\mathfrak{m}'^2$. By Cohen's structure theorem $R'=k[[x_1,\ldots,x_n,t]]$ where we assume f=t by a change of variables. We identify R with the subring $k[[x_1,\ldots,x_n]]$ of R'. In particular we have to consider I'=IR'+(t) and $\mathfrak{p}'=\mathfrak{p}R'+(t)$.

By using Lemma 2.2 and the degeneration of the Grothendieck's spectral sequence $E_2^{p,q}=H^p_{(t)}(H^q_J(M))\Longrightarrow H^{p+q}_{J+(t)}(M)$ we have:

$$\begin{split} i_{+}(H^{p}_{\mathfrak{p}}(H^{n-i}_{I}(R))) &= H^{1}_{(t)}(H^{p}_{\mathfrak{p}R'}(H^{n-i}_{IR'}(R'))) = H^{p}_{\mathfrak{p}R'}(H^{1}_{(t)}(H^{n-i}_{IR'}(R'))) = \\ &= H^{p}_{\mathfrak{p}R'}(H^{n+1-i}_{IR'+(t)}(R')) = H^{p}_{\mathfrak{p}R'}(H^{n'-i}_{I'}(R')) = \\ &= H^{p}_{\mathfrak{p}R'+(t)}(H^{n'-i}_{I'}(R')) = H^{p}_{\mathfrak{p}'}(H^{n'-i}_{I'}(R')), \end{split}$$

where the second last assertion comes from the fact that $H_{I'}^{n'-i}(R')$ is a (t)-torsion module. Then we are done by the results in Section 2.2.

Now we continue the proof of Theorem 3.1.

Proof. Let $\pi': R' \longrightarrow A$ and $\pi'': R'' \longrightarrow A$ be surjections with $R' = k[[y_1, \dots, y_{n'}]]$ and $R'' = k[[z_1, \dots, z_{n''}]]$. Let $I' = \ker \pi'$ and let $I'' = \ker \pi''$. Let $R''' = R' \widehat{\otimes}_k R''$ be the external tensor product, $\pi''' = \pi' \widehat{\otimes}_k \pi'' : R' \widehat{\otimes}_k R'' \longrightarrow A$ and $I''' = \ker \pi'''$.

By Lemma 3.2, if the characteristic cycle of $H^p_{\mathfrak{p}'}(H^{n'-i}_{I'}(R'))$ is

$$CC(H_{\mathfrak{p}'}^{p}(H_{I'}^{n'-i}(R'))) = \sum \lambda'_{\mathfrak{p},p,i,\alpha} V'_{\alpha},$$

then the characteristic cycle of $H^p_{\mathfrak{p}'''}(H^{n'+n''-i}_{I'''}(R'''))$ is

$$CC(H^p_{\mathfrak{p}'''}(H^{n'+n''-i}_{I'''}(R'))) = \sum \lambda'_{\mathfrak{p},p,i,\alpha} \ V'''_{\alpha},$$

where $\pi(V_{\alpha}''')$ is the subvariety of $X''' = \operatorname{Spec} R'''$ defined by the defining ideal of $\pi(V_{\alpha}')$ contracted to R'''.

By Lemma 3.2, if the characteristic cycle of $H_{\mathfrak{n}''}^p(H_{I''}^{n''-i}(R''))$ is

$$CC(H_{\mathfrak{p}''}^{p}(H_{I''}^{n''-i}(R''))) = \sum \lambda_{\mathfrak{p},p,i,\alpha}'' V_{\alpha}'',$$

then the characteristic cycle of $H^p_{\mathfrak{p}'''}(H^{n'+n''-i}_{I'''}(R'''))$ is

$$CC(H^p_{\mathfrak{p}'''}(H^{n'+n''-i}_{I'''}(R'))) = \sum \lambda''_{\mathfrak{p},p,i,\alpha} \ V'''_{\alpha},$$

where $\pi(V_{\alpha}^{"'})$ is the subvariety of $X^{"'} = \operatorname{Spec} R^{"'}$ defined by the defining ideal of $\pi(V_{\alpha}^{"'})$ contracted to $R^{"'}$.

In particular we have $\lambda'_{\mathfrak{p},p,i,\alpha} = \lambda''_{\mathfrak{p},p,i,\alpha}$ for all \mathfrak{p}, p, i and α .

Remark 3.3. With the same arguments one may prove that the multiplicities of the characteristic cycle of the local cohomology modules $H_{I_1}^{i_1}(\cdots(H_{I_s}^{i_s}(R))\cdots)$, where I_1,\ldots,I_s is a set of ideals of R containing the ideal $I=I_s$, are also invariants of R/I.

Since Bass numbers $\mu_p(\mathfrak{p}, H_I^{n-i}(R))$ are multiplicities of the characteristic cycle of $H_{\mathfrak{p}}^p(H_I^{n-i}(R))$, we recover Lyubeznik's result:

Corollary 3.4. Let A be a ring which admits a surjective ring homomorphism $\pi: R \longrightarrow A$, where $R = k[[x_1, \ldots, x_n]]$ is the formal power series ring. Set $I = \ker \pi$ and let $\mathfrak{p} \subseteq A$ be a prime ideal. The Bass numbers $\mu_p(\mathfrak{p}, H_I^{n-i}(R))$ depend only on A, \mathfrak{p}, p and i but neither on R nor on π .

When \mathfrak{p} is the zero ideal, we obtain the invariance with respect to R/I of the multiplicities of the characteristic cycle of $H_I^{n-i}(R)$.

Corollary 3.5. Let A be a local ring which admits a surjective ring homomorphism $\pi: R \longrightarrow A$, where $R = k[[x_1, \ldots, x_n]]$ is the formal power series ring. Set $I = \ker \pi$ and let

$$CC(H_I^{n-i}(R)) = \sum m_{i,\alpha} V_{\alpha},$$

be the characteristic cycle of the local cohomology modules $H_I^{n-i}(R)$. Then the multiplicities $m_{i,\alpha}$ depend only on A, i and α but neither on R nor on π .

Collecting these multiplicities by the dimension of the corresponding irreducible varieties we define the following invariants:

Definition 3.6. Let $I \subseteq R$ be an ideal. If $CC(H_I^{n-i}(R)) = \sum m_{i,\alpha} V_{\alpha}$ is the characteristic cycle of the local cohomology modules $H_I^{n-i}(R)$ then we define:

$$\gamma_{p,i}(R/I) := \{ \sum m_{i,\alpha} \mid \dim(\pi(V_\alpha)) = p \}.$$

One may prove that these invariants have the same properties as Lyubeznik numbers (see [10, Section 4]). Namely, let $d = \dim(R/I)$ then $\gamma_{p,i}(R/I) = 0$ if i > d, $\gamma_{p,i}(R/I) = 0$ if p > i and $\gamma_{d,d}(R/I) \neq 0$. In particular we can collect them in a triangular matrix that we will denote by $\Gamma(R/I)$. We point out that these invariants are finer than the Lyubeznik numbers.

Example 3.7. Let $R = k[[x_1, x_2, x_3, x_4, x_5]]$. Consider the ideals:

- $I_1 = (x_1, x_2, x_5) \cap (x_3, x_4, x_5).$
- $I_2 = (x_1, x_2, x_5) \cap (x_3, x_4, x_5) \cap (x_1, x_2, x_3, x_4)$.

The characteristic cycle of the corresponding local cohomology modules can be computed by means of [1, Theorem 3.8]. Collecting the multiplicities we obtain the triangular matrices:

$$\Gamma(R/I_1) = \begin{pmatrix} 0 & 1 & 0 \\ & 0 & 0 \\ & & 2 \end{pmatrix} \qquad \Gamma(R/I_2) = \begin{pmatrix} 0 & 2 & 0 \\ & 1 & 0 \\ & & 2 \end{pmatrix}$$

Computing the Lyubeznik numbers (see [1, Theorem 4.4]), we obtain the triangular matrix:

$$\Lambda(R/I_1) = \Lambda(R/I_2) = \begin{pmatrix} 0 & 1 & 0 \\ & 0 & 0 \\ & & 2 \end{pmatrix}$$

We have to point out that the quotient ring R/I_1 is Buchsbaum but R/I_2 is not.

Remark 3.8. In order to compute the Lyubeznik numbers $\lambda_{p,i}(R/I)$ for a given ideal $I \subseteq R$ and arbitrary i,p we have to refer to U. Walther's algorithm [12]. When I is a squarefree monomial ideal, a description of these invariants is given [1] and [14]. Some other particular computations may also be found in [7], [8],[9] and [13]. The multiplicities of the characteristic cycle of $H^p_{\mathfrak{p}}(H^{n-i}_I(R))$, where I is a squarefree monomial ideal and \mathfrak{p} is any homogeneous prime ideal, have been computed in [2].

When I is a squarefree monomial ideal (resp. the defining ideal of an arrangement of linear varieties), the multiplicities of the characteristic cycle of $H_I^{n-i}(R)$ have been computed in [1] (resp. [3]).

References

- J. Alvarez Montaner, Characteristic cycles of local cohomology modules of monomial ideals,
 J. Pure Appl. Algebra 150 (2000), 1-25.
- J. Alvarez Montaner, Local cohomology modules supported on monomial ideals, Ph.D. Thesis, Univ. Barcelona, 2002.
- 3. J. Alvarez Montaner, R. García López and S. Zarzuela, Local cohomology, arrangements of subspaces and monomial ideals, to appear in Adv. in Math.
- J. E. Björk, Rings of differential operators, North Holland Mathematics Library, Amsterdam, 1979.
- S. C. Coutinho, A primer of algebraic D-modules, London Mathematical Society Student Texts, Cambridge University Press, 1995.
- R. Garcia and C. Sabbah, Topological computation of local cohomology multiplicities, Collect. Math. 49 (1998), 317-324.

- 8. K. I. Kawasaki, On the Lyubeznik number of local cohomology modules, Bull. Nara Univ. Ed. Natur. Sci., 49 (2000) 5-7.
- 9. K. I. Kawasaki, On the highest Lyubeznik number, to appear in Math. Proc. Cambridge Philos. Soc.
- G. Lyubeznik, Finiteness properties of local cohomology modules, Invent. Math., 113 (1993) 41-55.
- 11. Z. Mebkhout, Le formalisme des six opérations de Grothendieck pour les \mathcal{D}_X -modules cohérents, Travaux en Cours, Hermann, 1989.
- 12. U. Walther, Algorithmic computation of local cohomology modules and the cohomological dimension of algebraic varieties, J. Pure Appl. Algebra 139 (1999), 303-321.
- 13. U. Walther, On the Lyubeznik numbers of a local ring, Proc. Amer. Math. Soc. 129(6) (2001), 1631–1634.
- K. Yanagawa, Bass numbers of local cohomology modules with supports in monomial ideals, Math. Proc. Cambridge Philos. Soc. 131 (2001), 45-60.

DEPARTAMENT DE MATEMÀTICA APLICADA I, UNIVERSITAT POLITÈCNICA DE CATALUNYA, AVINGUDA DIAGONAL 647, BARCELONA 08028, SPAIN

 $E ext{-}mail\ address: }$ Josep.Alvarez@upc.es