Ara es mostren els items 1-20 de 378

  • 3D point cloud correspondences using deep learning 

    Rica Palma, Javier de la (Universitat Politècnica de Catalunya, 2018-05)
    Treball Final de Grau
    Accés obert
    The main goal of the project is to find correspondences between points in two 3D point clouds using deep learning. A deep learning network is trained to select key points and find correspondences between two point clouds ...
  • 3D scene reconstruction and understanding from single shot pictures 

    García González, Alfredo (Universitat Politècnica de Catalunya, 2012-09)
    Projecte Final de Màster Oficial
    Accés obert
    Augmented reality mixes computer generated graphics with real imaging using computer vision techniques. However, nowadays, augmented reality is still a very young field of research, and its applications usually involve ...
  • Abstractive text summarization with attention-based mechanism 

    Sanjabi, Nima (Universitat Politècnica de Catalunya, 2018-04)
    Projecte Final de Màster Oficial
    Accés obert
    In this work, we explore the evolution of Sequential Neural Models, and their use as a Summarizer System. Transformer is a recently proposed model with a high potential. We experiment and compare their result in abstractive ...
  • ACon: A learning-based approach to deal with uncertainty in contextual requirements at runtime 

    Knauss, Alessia; Damian, Daniela; Franch Gutiérrez, Javier; Rook, Angela; Müller, Haussi A.; Thomo, Alex (2016-02)
    Article
    Accés obert
    Context: Runtime uncertainty such as unpredictable operational environment and failure of sensors that gather environmental data is a well-known challenge for adaptive systems. Objective: To execute requirements that ...
  • Action rule induction from cause-effect pairs learned through robot-teacher interaction 

    Agostini, Alejandro Gabriel; Celaya Llover, Enric; Torras, Carme; Wörgötter, Florentin (University of Karlsruhe, 2008)
    Text en actes de congrés
    Accés obert
    In this work we propose a decision-making system that efficiently learns behaviors in the form of rules using natural human instructions about cause-effect relations in currently observed situations, avoiding complicated ...
  • Adaptative case-based reasoning: maintenance and learning strategies 

    Nakhjiri, Nariman (Universitat Politècnica de Catalunya, 2018-04)
    Projecte Final de Màster Oficial
    Accés restringit per acord de confidencialitat
    Realitzat a/amb:  Universitat de Barcelona
    In this master thesis, two novel families of methods in the field of Case-Base Maintenance have been presented. Both of the proposed methods have successful results and one of them even surpass well-known state-of-the-art ...
  • Adapting deep neural networks to a low-power environment 

    Mañas Sánchez, Oscar (Universitat Politècnica de Catalunya, 2017)
    Treball Final de Grau
    Accés obert
    These days, working with deep neural networks goes hand in hand with the use of GPUs. Once a deep neural network has been trained for hours, days, or even weeks on a desktop GPU, it is deployed in the field where it runs ...
  • Adaptive distributed mechanism againts flooding network attacks based on machine learning 

    Berral García, Josep Lluís; Poggi Mastrokalo, Nicolas; Alonso López, Javier; Gavaldà Mestre, Ricard; Torres Viñals, Jordi; Parashar, Manish (ACM Press, NY, 2008)
    Text en actes de congrés
    Accés restringit per política de l'editorial
    Adaptive techniques based on machine learning and data mining are gaining relevance in self-management and self- defense for networks and distributed systems. In this paper, we focus on early detection and stopping of ...
  • Adaptive on-line software aging prediction based on machine learning 

    Alonso López, Javier; Torres Viñals, Jordi; Berral García, Josep Lluís; Gavaldà Mestre, Ricard (IEEE Computer Society Publications, 2010)
    Text en actes de congrés
    Accés obert
    The growing complexity of software systems is resulting in an increasing number of software faults. According to the literature, software faults are becoming one of the main sources of unplanned system outages, and have ...
  • Adarules: Learning rules for real-time road-traffic prediction 

    Mena Yedra, Rafael; Gavaldà Mestre, Ricard; Casas Vilaró, Jordi (Elsevier, 2017-12-17)
    Text en actes de congrés
    Accés obert
    Traffic management is being more important than ever, especially in overcrowded big cities with over-pollution problems and with new unprecedented mobility changes. In this scenario, road-traffic prediction plays a key ...
  • A decision making support tool: The resilience management fuzzy controller 

    González Cardenas, Rubén; Nebot Castells, M. Àngela; Múgica Álvarez, Francisco; Vellido Alcacena, Alfredo (Institute of Electrical and Electronics Engineers (IEEE), 2017)
    Text en actes de congrés
    Accés obert
    In this paper a fuzzy controller capable to perform an automated estimation of the period of time necessary to recover a resilience level is proposed. Estimations where made by considering realistic time-dependent action ...
  • Advances in Computational Intelligence and Learning (ESANN 2009) 

    Angulo Bahón, Cecilio; Lee, John A.; Schleif, Frank-Michael (Elsevier Science Direct, 2010-03)
    Article
    Accés restringit per política de l'editorial
  • Advances in machine learning and computational intelligence 

    Schleif, Frank-Michael; Biehl, Michael; Vellido Alcacena, Alfredo (2009-03)
    Article
    Accés restringit per política de l'editorial
  • A fuzzy rule model for high level musical features on automated composition systems 

    Paz Ortiz, Iván; Nebot Castells, M. Àngela; Múgica Álvarez, Francisco; Romero Merino, Enrique (Springer, 2017)
    Capítol de llibre
    Accés restringit per política de l'editorial
    Algorithmic composition systems are now well-understood. However, when they are used for specific tasks like creating material for a part of a piece, it is common to prefer, from all of its possible outputs, those exhibiting ...
  • A general guide to applying machine learning to computer architecture 

    Nemirovsky, Daniel; Arkose, Tugberk; Markovic, Nikola; Nemirovsky, Mario; Unsal, Osman Sabri; Cristal Kestelman, Adrián; Valero Cortés, Mateo (2018)
    Article
    Accés obert
    The resurgence of machine learning since the late 1990s has been enabled by significant advances in computing performance and the growth of big data. The ability of these algorithms to detect complex patterns in data which ...
  • Algorismes d'aprenentatge per reforç en micro-robots 

    Palma Pérez, Juan (Universitat Politècnica de Catalunya, 2016)
    Projecte/Treball Final de Carrera
    Accés obert
    The aim of this project is the study of reinforcement learning algorithms for micro-robots. It begins with the description of the collective intelligence concept and its main characteristics. Then it presents concepts such ...
  • ALOJA: A framework for benchmarking and predictive analytics in Hadoop deployments 

    Berral García, Josep Lluís; Poggi Mastrokalo, Nicolas; Carrera Pérez, David; Call, Aaron; Reinauer, Rob; Green, Daron (Institute of Electrical and Electronics Engineers (IEEE), 2015-10)
    Article
    Accés obert
    This article presents the ALOJA project and its analytics tools, which leverages machine learning to interpret Big Data benchmark performance data and tuning. ALOJA is part of a long-term collaboration between BSC and ...
  • ALOJA-ML: a framework for automating characterization and knowledge discovery in Hadoop deployments 

    Berral García, Josep Lluís; Poggi, Nicolas; Carrera Pérez, David; Call, Aaaron; Reinauer, Rob; Green, Daron (Association for Computing Machinery (ACM), 2015)
    Text en actes de congrés
    Accés obert
    This article presents ALOJA-Machine Learning (ALOJA-ML) an extension to the ALOJA project that uses machine learning techniques to interpret Hadoop benchmark performance data and performance tuning; here we detail the ...
  • A lower bound for learning distributions generated by probabilistic automata 

    Balle Pigem, Borja de; Castro Rabal, Jorge; Gavaldà Mestre, Ricard (Springer, 2010)
    Text en actes de congrés
    Accés obert
    Known algorithms for learning PDFA can only be shown to run in time polynomial in the so-called distinguishability μ of the target machine, besides the number of states and the usual accuracy and confidence parameters. ...
  • A machine learning approach for layout inference in spreadsheets 

    Koci, Elvis; Thiele, Maik; Romero Moral, Óscar; Lehner, Wolfgang (SciTePress, 2016)
    Text en actes de congrés
    Accés obert
    Spreadsheet applications are one of the most used tools for content generation and presentation in industry and the Web. In spite of this success, there does not exist a comprehensive approach to automatically extract and ...