Now showing items 1-6 of 6

    • Examen Final 

      Escudero López, Manuel; Martín Mollevi, Sebastià; Muñoz López, Francisco Javier (Universitat Politècnica de Catalunya, 2022-01-17)
      Exam
      Restricted access to the UPC academic community
    • Examen Final 

      Aroca Farrerons, José María; Escudero Royo, Miguel; Martín Mollevi, Sebastià; Muñoz López, Francisco Javier (Universitat Politècnica de Catalunya, 2021-01-20)
      Exam
      Restricted access to the UPC academic community
    • Frameproof codes, separable codes and B2 codes: bounds and constructions 

      Fernández Muñoz, Marcel; Livieratos, John; Martín Mollevi, Sebastià (Springer, 2023-11-10)
      Article
      Open Access
      In this paper, constructions of frameproof codes, separable codes, and B2 codes are obtained. For each family of codes, the Lovász Local Lemmais used to establish lower bounds for the codes. The obtained bounds match all ...
    • Improving the linear programming technique in the search for lower bounds in secret sharing 

      Farràs Ventura, Oriol; Kaced, Tarik; Martín Mollevi, Sebastià; Padró Laimon, Carles (2020-11)
      Article
      Open Access
      We present a new improvement in the linear programming technique to derive lower bounds on the information ratio of secret sharing schemes. We obtain non-Shannon-type bounds without using information inequalities explicitly. ...
    • Linear threshold multisecret sharing schemes 

      Farras Ventura, Oriol; Gràcia Rivas, Ignacio; Martín Mollevi, Sebastià; Padró Laimon, Carles (Springer Verlag, 2009)
      Conference report
      Open Access
      In a multisecret sharing scheme, several secret values are distributed among a set of n users, and each secret may have a differ- ent associated access structure. We consider here unconditionally secure schemes with ...
    • Secret sharing, rank inequalities, and information inequalities 

      Martín Mollevi, Sebastià; Padró Laimon, Carles; Yang, An (2016-01)
      Article
      Open Access
      Beimel and Orlov proved that all information inequalities on four or five variables, together with all information inequalities on more than five variables that are known to date, provide lower bounds on the size of the ...