Ara es mostren els items 1-20 de 27

  • Addendum to "Frobenius and Cartier algebras of Stanley-Reisner rings" [J.Algebra 358 (2012), 162-177] 

    Álvarez Montaner, Josep; Yanagawa, Kohji (2013-05)
    Report de recerca
    Accés obert
    We give a purely combinatorial characterization of complete Stanley-Reisner rings having a principally generated (equivalently, nitely generated) Cartier algebra
  • Addendum to “Frobenius and Cartier algebras of Stanley–Reisner rings” [J. Algebra 358 (2012) 162–177] 

    Álvarez Montaner, Josep; Yanagawa, Kohji (2014-09)
    Article
    Accés restringit per política de l'editorial
    We give a purely combinatorial characterization of complete Stanley–Reisner rings having a principally generated (equivalently, finitely generated) Cartier algebra.
  • Characteristic cycle of local cohomology modules of monomial ideals II 

    Álvarez Montaner, Josep (2003)
    Article
    Accés obert
  • Characteristic cycles of local cohomology modules of monomial ideals 

    Álvarez Montaner, Josep (1998)
    Article
    Accés obert
    By using the theory of D-modules we express the characteristic cycle of a local cohomology module supported on a monomial ideal in terms of conormal bundles relative to a subvariety. As a consequence we can decide when a ...
  • Characteristic cycles of localizations: algorithmic approach 

    Álvarez Montaner, Josep; Leykin, Anton (2004)
    Article
    Accés obert
    For a polynomial ring R = k[x1, ..., xn], we present an algorithm for computing the characteristic cycle of the localization Rf for any nonzero polynomial f ∈ R. The approach is useful to answer certain questions regarding ...
  • Cohomología local con soporte un ideal monomial (D-módulos y combinatoria) 

    Álvarez Montaner, Josep (2000)
    Article
    Accés obert
    We study, by using the theory of algebraic $\cD$-modules, the local cohomology modules supported on a monomial ideal $I$ of the polynomial ring $R=k[x_1,\dots,x_n]$, where $k$ is a field of characteristic zero. We compute ...
  • Computing jumping numbers and multiplier ideals in two-dimensional regular local rings 

    Alberich Carramiñana, Maria; Álvarez Montaner, Josep; Dachs Cadefau, Ferran (Universitat de Barcelona. Edicions i Publicacions, 2014)
    Text en actes de congrés
    Accés restringit per política de l'editorial
    We give a new algorithm that computes the jumping numbers with their multiplicities and multiplier ideals of any ideal in a regular two-dimensional local ring.
  • D-modules, Bernstein-Sato polynomials and F-invariants of direct summands 

    Álvarez Montaner, Josep; Huneke, Craig; Núñez-Betancourt, Luis (2017-12-01)
    Article
    Accés restringit per política de l'editorial
    We study the structure of D -modules over a ring R which is a direct sum- mand of a polynomial or a power series ring S with coefficients over a field. We relate properties of D -modules over R to D -modules over S . We ...
  • Effective computation of base points of ideals in two-dimensional local rings 

    Alberich Carramiñana, Maria; Álvarez Montaner, Josep; Blanco Fernández, Guillem (2018-01-04)
    Article
    Accés restringit per política de l'editorial
    © 2018 Elsevier Ltd. We provide an algorithm that allows to describe the minimal log-resolution of an ideal in a smooth complex surface from the minimal log-resolution of its generators. In order to make this algorithm ...
  • Frobenius and Cartier algebras of Stanley-Reisner rings 

    Álvarez Montaner, Josep; Boix, Alberto F.; Zarzuela Armengou, Santiago (2011-09)
    Report de recerca
    Accés obert
    We study the generation of the Frobenius algebra of the injective hull of a complete Stanley-Reisner ring over a field with positive characteristic. In particular, by extending the ideas used by M. Katzman to give a ...
  • Frobenius and Cartier algebras of Stanley-Reisner rings 

    Álvarez Montaner, Josep; Boix, Alberto F.; Zarzuela Armengou, Santiago (2011-05-15)
    Article
    Accés restringit per política de l'editorial
    We study the generation of the Frobenius algebra of the injective hull of a complete Stanley–Reisner ring over a field with positive characteristic. In particular, by extending the ideas used by M. Katzman to give a ...
  • Generators of D-modules in positive characteristic 

    Álvarez Montaner, Josep; Blickle, Manuel; Lyubeznik, Gennady (2004)
    Article
    Accés obert
    Let R = k[x1, . . . , xd] or R = k[[x1, . . . , xd]] be either a polynomial or a formal power series ring in a finite number of variables over a field k of characteristic p > 0 and let DR|k be the ring of klinear differential ...
  • Linearization of local cohomology modules 

    Álvarez Montaner, Josep; Zarzuela Armengou, Santiago (American Mathematical Society, 2003)
    Capítol de llibre
    Accés obert
    The aim of this work is to describe the linear structure of regular holonomic $\mathcal D$-modules with support a normal crossing with variation zero introduced in [Local cohomology, arrangements of subspaces and monomial ...
  • Local cohomology, arrangement of subspaces and monomial ideals 

    Álvarez Montaner, Josep; García López, Ricardo; Zarzuela Armengou, Santiago (2000)
    Article
    Accés obert
  • Local cohomology supported on monomial ideals 

    Álvarez Montaner, Josep (2013-09-02)
    Article
    Accés restringit per política de l'editorial
  • Localizations at hyperplane arrangements: combinatorics and D-modules 

    Álvarez Montaner, Josep; Jiménez, Francisco Jesús Castro; Enríquez, José María Ucha (2004)
    Article
    Accés obert
    We describe an algorithm deciding if the annihilating ideal of the meromorphic function 1 f , where f = 0 defines an arrangement of hyperplanes, is generated by linear differential operators of order 1. The algorithm is ...
  • Lyubeznik numbers of local rings and linear strands of graded ideals 

    Álvarez Montaner, Josep (2018-09-01)
    Article
    Accés obert
    In this work, we introduce a new set of invariants associated to the linear strands of a minimal free resolution of a -graded ideal . We also prove that these invariants satisfy some properties analogous to those of Lyubeznik ...
  • Lyubeznik numbers of local rings and linear strands of graded ideals 

    Álvarez Montaner, Josep; Yanagawa, Kohji (2014-08)
    Report de recerca
    Accés obert
    n this work we intro duce a new set of invariants asso ciated to the linear strands of a minimal free resolution of a Z -graded ideal I R = | [ x 1 ;:::;x n ] . We also prove that these invariants satisfy ...
  • Lyubeznik numbers of local rings and linear strands of graded ideals 

    Álvarez Montaner, Josep (Springer, 2016)
    Text en actes de congrés
    Accés restringit per política de l'editorial
    We report recent work on the study of Lyubeznik numbers and their relation to invariants coming from the study of linear strands of free resolutions.
  • Lyubeznik numbers of monomial ideals 

    Álvarez Montaner, Josep; Vahidi, Alireza (2011-09)
    Report de recerca
    Accés obert
    In this work we will study Bass numbers of local cohomology modules supported on a squarefree monomial ideal. Among them we are mainly interested in Lyubeznik numbers. We build a dictionary between these local cohomology ...