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ABSTRACT 

In this study the modes produced by a defect inserted in a macroporous silicon (MPS) photonic crystal 

(PC) have been studied theoretical and experimentally. In particular, the transmitted and reflected spectra 

have been analyzed for variations in the defect’s length and width. The performed simulations show that 

the resonant frequency is more easily adjusted for the fabricated samples by length tuning rather than 

width. The optimum resonance peak results when centered in the PC bandgap. The changes in the defect 

geometry result in small variations of the optical response of the PC. The resonance frequency is most 

sensitive to length variations, while the mode linewidth shows greater change with the defect width 
variation. Several MPS photonic crystals were fabricated by the electrochemical etching (EE) process 

with optical response in the range of        to       . Results of the characterization are in good 

agreement with simulations. Further samples were fabricated consisting of ordered modulated pores with 

a pitch of       . This allowed to reduce the vertical periodicity and therefore to have the optical 

response in the range of        to       . To our knowledge, modes working in this range of 

wavelengths have not been previously reported in 3-d MPS structures. Experimental results match with 

simulations, showing a linear relationship between the defect’s length and working frequency inside the 

bandgap. We demonstrate the possibility of tailoring the resonance peak in both ranges of wavelengths, 

where the principal absorption lines of different gases in the mid infrared are placed. This makes these 

structures very promising for their application to compact gas sensors. 

1. INTRODUCTION 

Optical properties of photonic crystals (PCs) are very interesting for a wide range of application areas, 

such as optical communications or sensing 1. The particular optical spectrum of a PC is obtained by the 

periodical ordering of different refractive index materials. The main characteristic of PCs is the 

occurrence of photonic bandgaps (PBG) at which wavelengths light cannot propagate through the PC. 

The introduction of defects, that break the periodicity in the structure, confers new optical features to the 

PC 2. One example is the embedding of line defects that work as waveguides 3. Likewise, planar or point 

defect cavities can be included in a PC. These kind of cavities create resonant states—modes—within the 

photonic bandgap at specific frequencies 4,5, that are used for the development of optical resonators 6, 

thermal emitters7 or tunable filters 8. 

As reported in the literature, the crystal’s structure, and, in particular, the shape of the defect, 
influence the optical response of the PC 

4
. An important number of papers have dealt with this issue in 1-

d and 2-d PCs 9–12. However, the influence of the defect’s morphology on the optical response of 3-d 

photonic crystals has not been so thoroughly analyzed. This may be due to the high dependence of the 

optical spectrum on the method used to fabricate the PC 13,14. A number of different techniques have been 

proposed to incorporate defect structures within the PCs in woodpile structures 15, synthetic opals 16,17 or 

macroporous silicon 18, among others. 

In this paper we focus on macroporous silicon (MPS), which is a versatile material that can be 

successfully fabricated by the electrochemical etching (EE) of silicon. With this technique it is possible to 

etch pores with different radius profiles and incorporate planar defects inside the crystal structure, see Fig. 

1. Previous studies reported MPS structures with a cavity in the middle of the PC that had a resonant 

mode around        18. The reported PC had a pitch of      and a vertical periodicity of about 

      . In general, the EE of silicon limits the depth minimum modulation period to be about the lattice 

pitch for a stable pore growth 19. The work herein considers PCs with an embedded cavity in the middle. 

Samples have been fabricated of MPS with a pitch of 700 nm. Vertical periodicities of the samples were 

close to the lattice parameter, giving a PBG centered at          and with a band-width approximately 

of     . The included defect was designed for an initial resonance in the range          to       . 

We firstly report the influence that small variations in the defect’s length and width have on the 

resonating modes inside the bandgap. It is shown that there exists an optimal defect shape that ensures the 

best quality factor as well as that lengthening the defect is a better choice than widening it, to control the 

frequency of the resonant modes. Experimental data exhibit a linear relationship between the defect’s 
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length and the peak’s position inside the bandgap. These results are in good agreement with the results of 

the theoretical study.  

2. EXPERIMENTAL AND SIMULATIONS 

Preparation of macroporous silicon PC with defect 

 the EE technique, as first described by Lehmann and 

Föll 20. An n-type         silicon wafer with suitable resistivity was used to etch pores in a square 

arrangement with a 700 nm separation. Nano Imprint Lithography (NIL) was used to define the 

nucleation centers. The 3-d structures were obtained by modulating the currents during EE, thus changing 

the diameter along the pore depth. 
The depth periodicity 

was set to be near       , resulting in a PBG in the range        to     . 

was introduced halfway the PC by suppressing one of the modulations and leaving a constant 

diameter section. The length of the cavity was varied from             to        while the width was 

set to              for all the samples. To work at shorter wavelengths, the vertical modulation period 

of the pore was reduced. In particular, it was set to the lattice constant value (        ). This results in a 

PBG in the range of        to     . The defect’s length was adjusted to the range             to 

      . The total depth of the PC was about      . A complete description of the process can be found 

elsewhere 
21

. 
The optical response of the fabricated samples was measured in the MIR range using a Bruker Optic’s 

Vertex 70 FT-IR spectrometer. Measurements were taken with light incidence aligned to the     

direction (along one lattice axis in the surface), an aperture of 1 mm, and a resolution of 4 cm-1 was used. 

Normalized measurements were done for both reflectance and transmittance. Additionally, all 

measurements are specular. 

 

 

Fig. 1. 
 

Simulations 

To study the effects that morphological changes in the defect produce in a finite PC structure, the 

Optiwave’s OptiFDTD software suite was used. This software uses the finite-difference time-domain 

method (FDTD) to simulate EM wave propagation through a PC, schematized in Fig. 2(a). A single pore 

was designed using its graphical interface. Each period was inserted in a normalized cell size of 1 µm ×1 

µm ×1 µm box –see Fig. 2(a). The pore axis was aligned to the Z axis. Periodic boundary conditions were 

set on the side walls—XZ and YZ—while perfect absorbing layers were used for the top and bottom of the 
simulation cell.  

 

 

 

 

 

 

 

 

 



  

 

 

 

 
 

Fig. 2. (A) Schematic representation of the structure and its mode of operation. The unitary cell is one period of the PC in the three 

space directions. The unitary cell detail gives the principal design parameters. (B) comparison of simulated profile (left), 
which is a staircase approximation of the experimental profile (right). 

The illumination was done with a plane wave arriving from the top and impinging on the front face of 

the PC. The light wave was a Gaussian pulse with a linewidth of      m and a central wavelength 

 src       m. The reflection and transmission spectra were obtained by placing a plane detector    m 

and    m before and after the pore, respectively. Both spectra were calculated by integrating the power 

flux through the detector plane and normalized to the incident wave.  

The refractive index of the bulk material was set to        , which corresponds to the average value 
of silicon in the mid- infrared range at room temperature 22. Previous works reported that the absorption 

in low doped silicon has almost no effect on the propagation of light along the PC 23. Consequently, in 

this study no losses were considered in the bulk material. The cavities inside the bulk material were filled 

with air. The considered PC structure used in the simulations is an approximate geometrical description of 

the profile depicted in Fig. 1.  In concrete, the staircase approximation (see Fig. 2(b)) has been used in 

order to reduce the morphological differences between both profiles and diminish, as a consequence, the 

divergence in the optical response between experimental and simulated structures. Several simulations 

were performed changing the dimensions of the defect site, both length and diameter, to determine the 

evolution of the cavity mode and the correlation with the measured samples. 

3. RESULTS AND DISCUSSIONS 

The main results of the theoretical study are summarized in 3; 3 (A) shows the spectra variation of the 
PC when the length of the defect takes values from 1.6 µm up to 2.4 µm. In 3 (B), the different spectra 

correspond to a width variation in the range of         to         for the mentioned defect. The 

optimum solution—highest Q-factor—is emphasized with a thicker line, and lies in the middle of the 

bandgap, in agreement with previous studies made in 1-d and 2-d 24. Comparing 3 (A) to 3 (B), two 

differences stand out. The first one is that the central frequency of the resonant mode      is much more 

sensitive to changes in the length of the defect than to the width of the defect. A length variation of 

      allows the peak to move anywhere in the PBG. However, in the case of modifying the width, a 

      variation results in a much smaller shift of the peak. 
The second difference is higher sensitivity of the resonance Q-factor to changes of the defect’s 

width—widening and thus reducing the Q-factor,—while remaining practically constant with the 

variation of the length of the cavity. However, the EE fabrication limits for the pore geometry impose 

restrictions on the realizable PC structures. In particular, too small diameter may lead to pores dying, and 

too large diameter can result in uncontrolled growth or electropolishing 25. Considering this, the range of 

the simulated parameters has been adjusted accordingly. On the other hand, the length of the defect has 

looser constraints, and can be extended many periods. As observed in Fig. 3(b), it is enough, with the 

simulated interval, to place the peak at any position inside the bandgap. Nonetheless, further studies 

should explore the convenience of lengthening the defect. Several reports have demonstrated in 1-d and 

2-d that longer defects may allow to excite two or more frequencies that, in turn, will enable the 

appearance of two or more peaks 26,27.  



  
 

Fig. 3. 
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Taking into account all these considerations, we can conclude that the best way of controlling the 

position of the peak is to modify the length of the defect, instead of its width. According to this, some 

MPS PCs were fabricated with different defect lengths to place the resonant mode in the range of 

         to       . In 4(a) is shown the reflectance and transmittance spectra for 3 different samples. 

It can be observed that the peak’s amplitude in the reflectance spectrum matches fairly well with that 
predicted by simulations. In particular, the simulation data for reflection show that amplitude at the 

resonance frequency is   
       , while the measured data has   

        . This difference in    

and, as a consequence, in the Q-factor, can be attributed to the irregularities in the experimental profile 

with respect to the simulated one 28–30.  

On the other hand, the measured transmitted spectra of the MPS samples are significantly weaker than 

expected from the simulated results. This is because the PCs fabricated have a total thickness—       
approximately—of the wafer used as a substrate for the EE: i.e. the PC sits on top of the silicon bulk. 

Furthermore, the backside of the samples is not polished, so light scattering further reduces the light 

intensity. A solution that is explored elsewhere 31 is to use MPS membranes, such that the total thickness 

is substantially reduced.  

To achieve shorter wavelengths, several PCs with shorter modulation period were fabricated. As 

depicted in 4(b), the resonance position could also be tuned, although the features of the cavity modes 

were a little worse than that obtained in the larger design. The cause is attributed to the increased 

irregularity of the etched pores. This stems from the added difficulty to control the pore growth when the 

period approaches the pitch of 700 nm. Even so, these results show the feasibility of working at the range 

of          to        with such MPS PCs. 

 

Fig. 4. 
 

In Fig. 5 the relationship between the defect length and the position of the resonant frequencies is 

plotted for the long and short period PCs. The center wavelength of the cavity    is compared for the 

fabricated and numerically studied PCs. It can be seen that there is some offset for the fabricated samples 



  

with respect to the simulated case. It is suggested that this offset arises because of the difference between 

the simulation model and the etched pores –see Fig. 2(b). As reported in previous studies, subtle 

variations in the porosity— —

will affect the local effective refractive index, what will generate some modifications in the optical 

response of the photonic crystal 
23

. In concrete, if those differences are given in the defect—i.e. a little 

eccentricity or roughness in the cavity respect to the perfect cylinder used in simulations—, there will be 

a shift in the peak position in reference to the ideal case. As seen in Fig. 2(b), the shape of the simulated 
and experimental pores fit fairly well. However, there are some visible differences between them in both, 

cavity and modulated zones, such as little variations in the radius and the unitary cell period. These 

differences may lead to a displacement of the whole bandgap and also a shift in the peak position what, in 

tum, would produce the offset between the expected and the experimental results. Looking at the slopes in 

5, it can be seen that for the larger period samples, there seems to be a good match between theoretical 

and actual values. However, for the shorter period PCs, the slope for the samples appears to be different 

from the theoretical one. This may be also attributed to the greater difference of shape in these samples 

with respect to the desired profile. Further studies are necessary to search how to accurately predict this 

offset at    . Nevertheless, as    can be precisely shifted experimentally, this can be used to tune the PC 

to work at a desired frequency; for instance, at the absorption line of a target gas. Therefore, such MPS 

devices may be proposed for use as spectroscopic gas sensors.  
Tuning the resonances in the mid-infrared range for the long vertical period PCs, allows targeting the 

absorption spectrum substances such as ammonia, formaldehyde (CH2O) or the contaminant agent 

nitrogen dioxide (NO2). On the other hand, for the short period PCs, it is possible to detect gases involved 

in industrial processes—such as carbon monoxide, carbon dioxide or nitrous oxide.  

 

Fig. 5. 

 

4. CONCLUSIONS 

Macroporous silicon photonic crystals with a defect embedded in the middle of the structure have 

been studied. The PCs have a PBG in the MIR region with a resonance state due to the cavity formed by 

the defect. The simulations show a shift in the resonating states when we change either the width or the 

length of the defect and leave the rest of the PC unchanged. Our results show that the defect length is the 

best option for tuning the resonance position. This helps the design of sharp MIR filters with little 

variation of the Q-factor for all the tuning range. The relationship between the geometrical variation and 

the working frequency of the resonating states follows a linear regression.  

From the theoretical study, samples with different defect lengths were fabricated with optical response 

in two wavelength intervals:      and       . The experimental data show good agreement with the 
theoretical results in both cases, although some improvements have to be done in further studies to 

improve the transmission amplitude and the Q-factor of the resonance, especially for the short period 

samples in the range of       . Finally, we show that MPS PCs are a viable solution for the design of gas 

detection devices in the mid-infrared, which includes formaldehyde, carbon monoxide, nitrogen dioxide 

or nitrous oxide, among others. 
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Highlights 
 

 Macroporous silicon photonic crystals with 700 nm of pitch that have a cavity embedded in the 

middle of the structure have been fabricated and analyzed. 

 Samples with different defect lengths were fabricated with optical response in two wavelength 

intervals:    m and      m. 

 The relationship between the geometrical variation and the working frequency of the resonating 

states follows an experimental linear regression, as predicted in simulations, in both studied 

ranges.  

 Although further studies have to be done to improve the figures, this study shows that MPS PCs 

are a viable solution for the design of gas detection devices in the mid-infrared, which includes 

formaldehyde, carbon monoxide, nitrogen dioxide or nitrous oxide, among others. 

 

 


