
Lower Approximations by Fuzzy Consequence
Operators

J. Elorza1 J. Recasens2
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2Sec. Matemàtiques i Informàtica. ETSAV. U. Politècnica de Catalunya, Spain, j.recasens@upc.edu

Abstract

Three ways to find lower approximations of a given
fuzzy operator are given.

A Representation Theorem for fuzzy consequence
operators is obtained.
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1. Introduction

Consequence operators are essential in the defini-
tion of several logics. In fact, Tarski considered that
a logic is defined by giving a universe and a con-
sequence operator on it [19]. In particular, fuzzy
consequence operators (FCO) are consequence op-
erators defined on the set of fuzzy subsets of a uni-
verse and have been proved essential in the study of
mathematical fuzzy logic.

FCOs are not only considered as consequence op-
erators (in order to obtain consequences from a
fuzzy predicate) but also have been applied to a
wide range of topics. For example, they have been
used to generate upper approximations of fuzzy sets
in fuzzy rough set theory [15] [3], as closure opera-
tors in fuzzy topology [14], to model the fuzzy pos-
sibility quantifier in modal logic [6], in the study of
fuzzy relational equations [16], in fuzzy mathemati-
cal morphology [8], [11] and in fuzzy context theory
[2].

There are cases when a given or obtained fuzzy
operator c is not a FCO but for technical or theo-
retical reasons it should be such. In these cases, the
operator must be replaced by a FCO. The usual way
is replacing c by its closure (see Section 2), which
is the smallest FCO greater than or equal to c. In
this way the best upper approximation of a fuzzy
operator by a FCO is obtained.

The question arises whether there can be found
the best lower approximation of a fuzzy operator
c, but the answer is negative because, in general,
the supremum of FCOs is not a FCO anymore. We
could instead try to find maximal lower approxima-
tions of c, but this seems a very difficult task. As a
realistic alternative, in this paper three methods to
find “good” lower approximations of a fuzzy opera-
tor by FCOs are provided (Sections 5, 6 and 7).

In Section 2, we recall the basic results needed in
the paper. In Section 3, we recall some relationships
between Fuzzy Relations and Fuzzy Operators, we
generalize the operator induced by a fuzzy relation
through Zadeh’s compositional rule to a fuzzy oper-
ator induced by a fuzzy relation and another fuzzy
operator and we introduce the notion of concor-
dance between a fuzzy operator and a fuzzy rela-
tion as sufficient condition for inducing fuzzy con-
sequence operators through this generalization. In
Section 4, we present the Representation Theorem
for FCOs and some consequences of this result will
be obtained. In Section 5, using the Representation
Theorem for FCOs, we will show lower approxima-
tions of a given fuzzy operator c by FCOs. In Sec-
tion 6, we present the second lower approximations
of a given fuzzy operator c that it is based on the
FCO associated with the largest fuzzy preorder Rc

c

for which c can be ∗-concordant with Rc
c. In Sec-

tion 7, the third method is based on the obtention
of ∗-transitive openings of fuzzy relations and, as
result, a FCO smaller than or equal to c at least in
the crisp sets of the universe is obtained. Section 8
with concluding remarks ends this work.

2. Preliminaries

A fuzzy operator on a non-empty universe X is a
map c : [0, 1]X −→ [0, 1]X .

Definition 2.1. A fuzzy operator c : [0, 1]X −→
[0, 1]X on X is called a fuzzy consequence operator
or fuzzy closure operator (FCO for short) when it
satisfies for all µ, ν ∈ [0, 1]X :

• Inclusion µ ⊆ c(µ)
• Monotonicity µ ⊆ ν ⇒ c(µ) ⊆ c(ν)
• Idempotence c(c(µ)) = c(µ),

where inclusion of fuzzy subsets are defined as usual:
For µ, ν ∈ [0, 1]X , µ ⊆ ν if and only if for all x ∈ X
µ(x) ≤ ν(x).

Fuzzy consequence operators were introduced by
Pavelka in 1979 as an extension of Tarski’s conse-
quence operators to fuzzy sets [17].

Let us recall the definition of the fuzzy closure
of a fuzzy operator. This notion was first defined
for general lattices [21] and later translated to the
fuzzy context by Pavelka [17]. It can be thought as
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the best upper approximation provided by a fuzzy
consequence operator of a given operator.

Definition 2.2. Let c : [0, 1]X −→ [0, 1]X be a fuzzy
operator on X. We define the fuzzy closure c of c
as the fuzzy operator given by

c = inf
φ∈Ω
c≤φ

{φ} .

where Ω denotes the set of fuzzy consequence oper-
ators on X.

The fuzzy closure is uniquely determined and it
is a fuzzy consequence operator since the infimum
of fuzzy consequence operators so is.

Definition 2.3. Let ∗ be a t-norm. A fuzzy relation
R : X×X −→ [0, 1] on a universe X is called a fuzzy
∗-preorder if it satisfies ∀x, y, z ∈ X:

• Reflexivity: R(x, x) = 1
• ∗-Transitivity: R(x, y) ∗R(y, z) ≤ R(x, z).

A fuzzy ∗-preorder is called a fuzzy ∗-indistin-
guishability operator if it also satisfies

• Symmetry: R(x, y) = R(y, x) ∀x, y ∈ X

We will consider the sup-∗ composition of fuzzy
relations.

Definition 2.4. Let R, S be fuzzy relations on a set
X and ∗ a t-norm. The sup-∗ composition R ◦ S of
R and S is the fuzzy relation defined for all x, y ∈ X
by

R ◦ S(x, y) = sup
z∈X

{R(x, z) ∗ S(z, y)}

Due to associativity of t-norms, for continuous t-
norms we can define Rn for every fuzzy relation R
on X and n ∈ N.

Definition 2.5. Let ∗ be a t-norm and R a fuzzy
relation on a set X. The ∗-transitive closure R of
R is the fuzzy relation R of X satisfying

• R ≤ R
• If S is another ∗-transitive fuzzy relation on X

satisfying R ≤ S, then R ≤ S.

Proposition 2.6. [13] For a continuous t-norm ∗,
the transitive closure R of a fuzzy relation R on X
is R = supn∈NRn.

Proposition 2.7. [13] If R is a reflexive fuzzy rela-
tion on X, then its ∗-transitive closure R is a fuzzy
∗-preorder on X.

Definition 2.8. For a given t-norm ∗ and a given
fuzzy relation R on X, a fuzzy subset µ of X is called
∗-compatible with R if and only if µ(x) ∗ R(x, y) ≤
µ(y) for all x, y ∈ X.

This notion gets special interest when R is a fuzzy
∗-preorder [7]. When R is an indistinguishability
operator, these sets are called extensional sets and
they have been largely studied [18].

3. Connections between Fuzzy Relations
and Fuzzy Operators

Concepts of fuzzy relations and fuzzy operators are
closely related. Every fuzzy relation R induces a
fuzzy operator cR through the well-known Zadeh’s
rule of inference [22].

Definition 3.1. Let R be a fuzzy relation on X.
The fuzzy operator cR induced by R through Zadeh’s
compositional rule is defined by

cR(µ)(x) = sup
y∈X

{µ(y) ∗R(y, x)} (1)

Notice that from a logical point of view, cR can be
understood as the operator that sends every fuzzy
set µ to the fuzzy set containing all the elements
which are related to some element y in µ by means
of the relation R.

Proposition 3.2. [10] Let σ be the function that
sends every fuzzy relation R to the operator cR in-
duced by means of equation (1). Then, σ is injec-
tive.

In other words, injectivity of σ states that for any
two fuzzy relations R and S, we have cR = cS if and
only if R = S. The relationship between fuzzy ∗-
preorders and fuzzy consequence operators is well
established [9] [7].

Proposition 3.3. [9] Let R be a fuzzy relation.
Then cR is a fuzzy consequence operator if and only
if R is a fuzzy ∗-preorder.

It is worth recalling that not all FCO can be ob-
tained from fuzzy ∗-preorders by means of Zadeh’s
compositional rule.

When the starting relation is a fuzzy indistin-
guishability operator, the induced operator is not
only a FCO but satisfies the following properties [5]
[18].

Proposition 3.4. [5] Let E be a fuzzy ∗-indistin-
guishability operator and let cE be the fuzzy operator
induced through Zadeh’s compositional rule. Then,

• cE is a fuzzy consequence operator.
• cE(

∨
i∈I µi) =

∨
i∈I cE(µi) for any index set I

and all µi ∈ [0, 1]X .
• cE({x})(y) = cE({y})(x) for all x, y ∈ X where
{x} denotes the singleton of x.

• cE(α∗µ) = α∗cE(µ) for any constant α ∈ [0, 1]
and µ ∈ [0, 1]X .

Proposition 3.5. [5] There is a bijection between
the set of ∗-indistinguishability operators and the set
of fuzzy operators satisfying the conditions of Propo-
sition 3.4.

We generalize the operator induced by a fuzzy re-
lation through Zadeh’s compositional rule to a fuzzy
operator induced by a fuzzy relation and another
fuzzy operator.
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Definition 3.6. Let g be a fuzzy operator and let
R be a fuzzy relation on X. We define the operator
cg
R induced by g and R as

cg
R(µ)(x) = sup

y∈X
{g(µ)(y) ∗R(y, x)} (2)

R and g are called the generators of cg
R.

The operator g used as generator performs a se-
lection in order to apply Zadeh’s usual operator only
to the fuzzy subsets of its image. Notice that taking
g = id, where id denotes the identity operator on
[0, 1]X , we obtain cid

R = cR.

Proposition 3.7. For every fuzzy operator g on
X, the mapping σg that sends every fuzzy relation
R to the operator cg

R induced by R and g by means
of equation (2) is increasing. That is, if R ≤ S then
cg
R ≤ cg

S.

Proof. It directly follows from the monotonicity of
∗.
Corollary 3.8. The mapping σ that sends ev-
ery fuzzy relation R to the operator cR induced by
Zadeh’s compositional rule (equation (1)) is increas-
ing.

Our interest lies in the obtention of fuzzy conse-
quence operators. For this, we need certain indi-
vidual properties of the generators and also some
conditions involving both generators, operators and
relations. More precisely, let us define the concor-
dance between a fuzzy operator and a fuzzy relation.

Definition 3.9. [4] Let g be a fuzzy operator and R
a fuzzy relation. We will say that g is ∗-concordant
with R if and only if all the subsets from the image
of g are ∗-compatible with R. That is,

g(µ)(x) ∗R(x, y) ≤ g(µ)(y)

for all x, y ∈ X and all µ ∈ [0, 1]X .

Theorem 3.10. Let R be a reflexive fuzzy relation
and let g be a FCO on X. Suppose that g is ∗-
concordant with R. Then, the operator cg

R induced
by g and R is also a FCO.

Proof. Let us start proving the inclusion and mono-
tonicity properties. From the reflexivity of R, it
follows that

cg
R(µ)(x) = sup

y∈X
{g(µ)(y) ∗R(y, x)}

≥ g(µ)(x) ∗R(x, x) = g(µ)(x).

Since g is a FCO and therefore inclusive, we get

cg
R(µ)(x) ≥ g(µ)(x) ≥ µ(x)

Let µ1, µ2 be fuzzy subsets of X such that µ1 ⊆
µ2. From the monotonicity of g it follows that
g(µ1)(x) ≤ g(µ2)(x) for all x ∈ X. Therefore,

cg
R(µ1)(x) = sup

y∈X
{g(µ1)(y) ∗R(y, x)}

≤ sup
y∈X

{g(µ2)(y) ∗R(y, x)} = cg
R(µ2)(x).

It only remains to prove the idempotence.

a) cg
R ◦ cg

R ≤ cg
R:

Since g(µ) belongs to Im(g), it is ∗-compatible
with R. That is,

g(µ)(y) ∗R(y, x) ≤ g(µ)(x)

for all y, x ∈ X. Hence,

sup
y∈X

{g(µ)(y) ∗R(y, x)} ≤ g(µ)(x)

for all x ∈ X. Using this fact, the monotonicity
and idempotence of g and the monotonicity of
∗ we get

cg
R(cg

R(µ))(x)
= sup

y∈X
{g(Cg

R(µ))(y) ∗R(y, x)}

= sup
y∈X

{g(sup
z∈X

{g(µ)(z)∗R(z, y)})∗R(y, x)}

≤ sup
y∈X

{g(g(µ)(y)) ∗R(y, x)}

= sup
y∈X

{g(µ)(y) ∗R(y, x)} = cg
R(µ)(x)

b) cg
R ◦ cg

R ≥ cg
R:

This inclusion follows immediately from the in-
clusion property.

4. Representation Theorem for Fuzzy
Consequence Operators

The fact that every fuzzy subset µ of a universe X
generates a FCO in a natural way will allow us to
establish a representation theorem for such opera-
tors.

Definition 4.1. Given a fuzzy subset µ of X, we
define the fuzzy operator cµ : [0, 1]X → [0, 1]X on X
by

cµ(ν) =

{
µ if ν ≤ µ

1 otherwise

where 1(x) = 1 for all x ∈ X.

Proposition 4.2. cµ is a fuzzy consequence opera-
tor on X.

Proof. Straightforward.

Definition 4.3. Given a family M = (µi)i∈I of
fuzzy subsets of X, cM is the fuzzy operator on X
defined by

cM = inf
i∈I

cµi .

Proposition 4.4. cM is a fuzzy consequence oper-
ator on X.

Proof. The infimum of FCOs is a FCO.
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Theorem 4.5. Representation Theorem of
Fuzzy Consequence Operators. Let c :
[0, 1]X → [0, 1]X be a fuzzy operator on X. Then c
is a fuzzy consequence operator if and only if there
exists a family M of fuzzy subsets of X such that
c = cM .

Proof.

⇒) Let M be the family of all fuzzy subsets that are
in the image of c, i.e.: M = {c(µ) | µ ∈ [0, 1]X}.
We will prove that cM = c. Indeed,

cM ≤ c:
cM (µ) ≤ cc(µ)(µ) = c(µ).

c ≤ cM : For a fixed fuzzy subset µ,
if µ � c(ν), then cc(ν)(µ) = 1 and
if µ ≤ c(ν), then c(µ) ≤ c(c(ν)) = c(ν).
Hence in any case,

c(µ) ≤ cc(ν)(µ)

and

c(µ) ≤ inf
ρ∈M

cρ(µ) = cM (µ).

⇐) Proposition 4.4.

Theorem 4.5 suggests the following definition.

Definition 4.6. The infimum of the cardinalities
of families M generating c is called its dimension.
Such a family is called a basis of c.

Example 4.7. Given a fuzzy subset µ of X, cµ is
a one-dimensional fuzzy consequence operator.

Note that in general cµ ∧ cν 6= cµ∧ν .

Proposition 4.8. cµ∧cν is one-dimensional if and
only if µ ≤ ν or ν ≤ µ.

Proof.

⇒)
If µ � ν and ν � µ, then there exist x0, x1 ∈ X
such that µ(x0) < ν(x0) and ν(x1) < µ(x1).
Consider the fuzzy subsets τi, i = 0, 1 defined
by

τi(z) =

{
0 if z 6= xi
µ(z)+ν(z)

2 if z = xi.

cµ(τ0) = 1 and cν(τ0) = ν and (cµ∧cν)(τ0) = ν.
cµ(τ1) = µ and cν(τ1) = 1 and (cµ∧cν)(τ1) = µ.
Hence cµ ∧ cν is not one-dimensional.

⇐)
If µ ≤ ν, then cµ ≤ cν and cµ ∧ cν = cµ.
Similarly, if ν ≤ µ, then cµ ∧ cν = cν .

Definition 4.9. For a fuzzy consequence operator
c, Hc = {c(µ) | µ ∈ [0, 1]X}.

Remark 4.10. Hc is the set of fixed points of the
operator c.

Proposition 4.11. Hc is a basis of c.

Corollary 4.12. If Hc is finite, then the basis of a
fuzzy consequence operator is unique.

Remark 4.13. If Hc has a non-finite cardinality,
the last claim needs not to be true. The following
very simple example illustrates this fact.

Example 4.14. Consider the family (µi)i∈[ 12 ,1] of
fuzzy subsets of X = {a} defined for all i ∈ [ 12 , 1] by

µi(a) = i.

This family generates a family (ci)i∈[ 12 ,1] of FCOs
on X and is a basis of the fuzzy consequence oper-
ator c = infi∈( 1

2 ,1] ci.
But the family (µi)i∈( 1

2 ,1] (excluding the fuzzy sub-
set µ 1

2
) of X also generates c and is therefore an-

other basis of c.

5. Lower Approximation with the
Representation Theorem

Given a fuzzy inclusive and monotone operator c
on X and µ a fuzzy subset of X, we consider the
operator cc(µ):

cc(µ)(ν) =

{
c(µ) if ν ≤ c(µ)
1 if ν � c(µ).

Proposition 5.1. Given a fuzzy inclusive and
monotone operator c and µ a fuzzy subset of X, the
operator

c′ = inf
µ∈[0,1]X

cc(µ)

satisfies

1. c′ is a FCO.
2. c′ ≤ c.

Proof.

1. Each cc(µ) is a fuzzy consequence operator and
the infimum of FCOs is also another FCO.

2. Given a fuzzy subset ν of X,

c′(ν) ≤ cc(ν)(ν) = c(ν).

In this way a lower approximation of c by the
FCO c′ is obtained.

Corollary 5.2. c = c′ if and only of c is a FCO.
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6. Lower Approximation associated with a
Fuzzy ∗-preorder

Proposition 6.1. Let ∗ be a t-norm and c :
[0, 1]X → [0, 1]X a fuzzy operator on X. The fuzzy
relation Rc

c on X defined for all x, y ∈ X by

Rc
c(x, y) = inf

µ∈[0,1]X
{c(µ)(x) →∗ c(µ)(y)}

is a fuzzy ∗-preorder, where →∗ is the residuum of
∗, defined for all x, y ∈ [0, 1] by x →∗ y = sup{α ∈
[0, 1] | x ∗ α ≤ y}.

Proof. It is a consequence of the Representation
Theorem for fuzzy ∗-preorders [20].

Consider the FCO cRc
c

associated with Rc
c defined

by
cRc

c
(µ)(x) = sup

y∈X
{µ(y) ∗Rc

c(y, x)}.

This FCO is a lower approximation of c as will be
stated and proved in the next Proposition 6.3.

Lemma 6.2. [1] Given a left-continuous t-norm ∗
and a, b ∈ [0, 1], a ∗ (a →∗ b) ≤ b, where a →∗ b is
the residuum of the t-norm ∗.

Proposition 6.3. For a fuzzy inclusive operator c
on X, cRc

c
≤ c.

Proof.

cRc
c
(µ)(x)
= sup

y∈X
{µ(y) ∗Rc

c(y, x)}

= sup
y∈X

{µ(y) ∗ inf
ν∈[0,1]X

{c(ν)(y) →∗ c(ν)(x)}}

≤ sup
y∈X

{µ(y) ∗ (c(µ)(y) →∗ c(µ)(x)}

≤ sup
y∈X

{c(µ)(y) ∗ (c(µ)(y) →∗ c(µ)(x)}

≤ c(µ)(x)

where the last inequality follows from Lemma 6.2.

Example 6.4. Consider the fuzzy operator c :
[0, 1][0,1] → [0, 1][0,1] on X = [0, 1] defined for all
fuzzy subset of [0, 1] and for all x ∈ [0, 1] by

c(µ)(x) = min{1, µ(x) +
1
2
}.

The fuzzy operator c is inclusive and monotone but
not idempotent. In this simple example, Rc

c is inde-
pendent of the chosen t-norm.

Rc
c(x, y) = inf

µ∈[0,1][0,1]
{c(µ)(x) →∗ c(µ)(y)}

=

{
1
2 if x 6= y

1 if x = y.

cRc
c
(µ)(x) = max{sup

y 6=x
{µ(y) ∗ 1

2
}, µ(x)}

=

{
1
2 if µ(x) ≤ 1

2

µ(x) if µ(x) > 1
2 .

In Figure 1 the fuzzy subsets µ(x) = 0.5x + 0.2,
c(µ) and cRc

c
(µ) of [0, 1] are plotted in blue, black

and red respectively.

Figure 1: µ(x) = 0.5x + 0.2, c(µ) and cRc
c
(µ).

7. Lower Approximation with ∗-transitive
Openings

In this section a way to find a FCO c from a given
inclusive fuzzy operator c on X that is below c for
the crisp subsets of X (i.e.: c(A) ≤ c(A) for all
A ⊆ X) will be provided. It is based on the ∗-
transitive openings of a fuzzy relation (Definition
7.1).

The transitive closure of a reflexive fuzzy rela-
tion R gives a fuzzy ∗-preorder greater than or
equal to R. In this case it is possible to obtain
the best upper approximation since the infimum of
fuzzy ∗-preorders is also a fuzzy ∗-preorder. If we
want a lower approximation, then the situation is
more complicated since the supremum of fuzzy ∗-
preorders is not a fuzzy ∗-preorder in general. What
we can find are fuzzy ∗-preorders which are maxi-
mal among the ones that are smaller than or equal
to a given reflexive fuzzy relation. These relations
are called ∗-transitive openings and they are not
unique in general. In fact, there can be an infinite
quantity of them, even in sets of finite cardinality.

In [12], an algorithm to find maximal transitive
openings of a given fuzzy relation is given that will
be used in this section.

63



Definition 7.1. Let R be a reflexive fuzzy relation
on a set X and ∗ a t-norm. A fuzzy ∗-preorder R
on X is a ∗-transitive opening of R if and only if

• R ≤ R
• If P is another fuzzy ∗-preorder on X satisfying

P ≤ R, then P ≤ R.

Let c : [0, 1]X → [0, 1]X be an inclusive fuzzy
operator on X. Then the fuzzy relation Rc on X
defined by Rc(x, y) = c({x})(y) for all x, y ∈ X is
reflexive. For a continuous Archimedean t-norm ∗
we can calculate a ∗-transitive opening R of Rc if
X is a finite set [12]. From R we can calculate its
associated FCO cR which satisfies cR(A) ≤ c(A) for
all crisp subsets A of X.

Example 7.2. Consider an inclusive and mono-
tone fuzzy operator c on X = {x1, x2, x3, x4} gen-
erating the fuzzy relation R with matrix

R =




1 0.75 0.70 0.62
0.76 1 0.90 1
0.70 0.86 1 1
0.64 0.65 0.94 1




(This means that the entry rij, i ≤ i, j ≤ 4, of R
is c({xi})(xj)). In [12] the following ∗-transitive
opening R of R for the t-norm min is obtained.

R =




1 0.62 0.62 0.62
0.76 1 0.90 1
0.64 0.64 1 1
0.64 0.62 0.90 1




Its associated FCO cR on X is smaller than or equal
to c on the crisp sets of X.

8. Concluding Remarks

In this work the problem of approximating a fuzzy
operator c by a FCO smaller than or equal to c is
tackled. Three different ways to do so have been
provided. The first one is based on a stated Rep-
resentation Theorem for FCOs, the second one on
fuzzy ∗-preorders and the last one on ∗-transitive
openings of fuzzy relations. Also a Representation
Theorem for FCOs stating that every FCO can be
generated by a family of fuzzy subsets is proved.
The problem of finding maximal lower approxima-
tions of a fuzzy operator, though very interesting,
seems very difficult. The authors plan to continue
its study in forthcoming works.
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