

AUTOMATIC CONTROL

LABORATORY (LA)

Station 11

CH-1015 LAUSANNE

Spring Semester 2015-2016, MT Master Project

Model Based Control of Quadcopters

Author: Martí POMÉS ARNAU

Professor: Colin JONES

Assistants: Altug BITLISLIOGLU and Tomasz GORECKI

Jully 25, 2016

Acknowledgments

I would like to express my gratitude to Professor Colin Jones for giving me the

opportunity to do my master thesis in his laboratory and allowing me to

participate in the project. I will also like express my gratitude to my assistants

Altug Bitlislioglu and Tomasz Gorecki for their support during the whole project

both in technical and theoretical matters. No doubt their help regarding the

improvement of my knowledge in automatic control has been key in the

development of this project, as I hope it will be in my future.

Abstract

This project sets its objectives in the construction of a quadopter, in obtaining its

mathematical model and the development of a linear MPC with the intention of a

future implementation of this controller inside the onboard computer for a real

time control of the position of the drone. First a general look is taken into the

parts that form the drone and its software with practical observations directed

to ease the introduction to future students that may continue with the project.

Then the drone and its attitude controller are modeled and a linear MPC is

implemented in simulation in order to test its feasibility for a future

implementation. Both, setpoint tracking and trajectory tracking are tested.

Possible improvements to the linear MPC, like the usage of sequential

linearization, are presented in order to solve some of the constraints that a linear

MPC may have when dealing with a non linear system.

Contents

Chapter 1: Introduction ... 1

Chapter 2: Hardware and Software of the drone .. 3

2.1. - Hardware and basic electronics ... 4

2.2. – Software ... 11

2.3. – The Motion Capture System ... 13

Chapter 3: Modeling of the system ... 17

3.1. - Reference frame ... 17

3.2. - Attitude representation .. 18

3.3. - Dynamics .. 19

3.4. – Incorporation of the inner controller to the model .. 21

3.5. - Modeling the Attitude controller .. 23

Chapter 4: Formulation of the optimization problem .. 26

4.1. - Formulation of the optimization problem ... 26

4.1.1 Soft constraints.. 28

4.2. - Simulation Results .. 29

4.3. – About the choosing of weight matrices ... 34

4.4. - Improvements .. 35

4.4.1. - Constrains on the commands ... 36

4.4.2. - Sequential linearization ... 38

4.5. – Alternative configurations .. 40

4.6. - Trajectory tracking ... 41

Chapter 5: Experimental work .. 48

5.1. – First attempt on System Identification .. 48

5.1. – First Tests in the tracking room ... 49

Chapter 6: Conclusion ... 52

References ... 53

1

Chapter 1: Introduction

The usage of drones in the industry, research and hobby has increased during

the last years. In the world of academia (that includes this project) drones

present a perfect test bench due its dynamics and many fields inside robotics and

automatics use them in order to implement new control techniques, collision

avoidance, machine learning algorithms and other.

The Automatic Control Laboratory (LA) at the EPFL has been working with them

in a series of projects carried by students. Its main goal is the usage of Model

Predictive Control (MPC) to control autonomous vehicles, not only drones (as it

is the case of this project) but also motorcycles, cars or boats.

The current report corresponds to the last installment of this long term project.

In precedent repots the CrazyFlie drone, a small and cheap quadcopter, was

used. For this drone several features where developed in the laboratory like a

PID for attitude control, an extended kalmann filter (EKF) and finally a non-

linear MPC (NMPC) for position control. But the CrazyFlie had its limitations

most importantly on the capacity of its onboard computer, which made

impossible to run the non-linear MPC in real-time on board. The controller made

its calculation on a land computer and transmitted the results to the CrazyFlie.

This presented several problems like delays between the drone and the land

computer plus it meant that the drone wasn’t really autonomous. This is why for

this report it was decided to start again with a new platform that could sustain

onboard resolution of the optimal problem in real time.

The solution that was proposed was the usage on the computer Raspberry Pi

(RPi) combined with the board Navio2, produced by the company Emlid, that

creates an autopilot board (similar to more common boards like Pixhawk or

APM) with all its features (IMU, pressure sensors, pwm input and output ports,

etc.) but with the flexibility of a computer with Linux OS. Those two elements

allows the usage of the, already developed, APM’s autopilot software (referred in

this project as ardupilot). This software includes some of the features developed

for the old project such as an attitude controller and an EKF, allowing us to

advance a few steps further instead of starting from scratch. That also presented

a new challenge, that is, how to implement the position controller in

coordination with the ardupilot software. Also, the new onboard computer

(RPi+Navio2) required a new platform that could carry their weight. This new

drone would be bigger and more powerful than the CrazyFlie but at the same

time should remain in a reasonably small size so that it could easily fly, if

2

necessary, in confined spaces and its pieces are to be bought separately so that if

anything fails it is easily replaceable and also would allow to repeat the structure

of the drone so that we build more than one drone, since a long term objective of

the project is to use several drones at the same time.

Although the RPi offers more computational power than the CrazyFlie computer,

it is still limited and far from the one of a ground computer like the one who used

to run the NMPC. That is the reason why this report makes a step backwards and

tries to implement a linear MPC which solve a much easier optimal problem and

could be more easily implemented and run inside the RPi.

The project has followed a similar course to the one that follows this report. The

first months were dedicated to the building and testing the drone. After that

some time was dedicated to the study of the autopilot software. Then the system

was modeled, including the dynamics and the autopilot’s controller, and the

optimization problem was formulated and a linear MPC was obtained. Model and

optimization problem were tested in simulation and with the results some

improvements are proposed, and different configurations of the MPC are tried.

Chapter 5 includes some of the experimental work that was done in parallel with

the tests in simulation, mostly related with system identification.

It is important to remember while reading the part of the development of the

controller that the objective is always to generate result that could be

implemented in the RPi. More sophisticated methods of control (like the NMPC

that was present in previous reports) have been left aside because they will be

more difficult to run in the RPi.

3

Chapter 2: Hardware and Software of the drone

This chapter comments on the hardware configuration of the drone and the

software already implemented in the on board computer. It shall be taken more

of a practical guide and it is expressly addressed to a students or other interested

people who may continue with the project. During my work with project I

expended an important amount of time to the construction of the quadcoter and

to the understanding of APM’s code. Most of the people that work with

quadcoters do it as hobby and most of the practical information needs to be

taken from hobby forums, so the documentation is often outdate or somewhat

unreliable. The majority of the people that do research with quadcopters

normally don’t present technical issues on their reports. Since this isn’t a

standalone report but the continuation of previous projects and the probable

predecessor of many more it is interesting to give some information on technical

matters that also reflect the time expended on such issues. The rectangles in

color beige present some useful information regarding details of construction of

this specific drone or some problems or doubts faced during the construction.

This section also includes the explanation of the Motion Capture System and how

it works. It is a tool that, although barely being used during this project, it will be

useful for the future development of this project.

2.1. – The drone specifications

At the beginning of the project no clear specifications where given regarding the
building of the drone, other than: it should be able to carry the onboard
computer, it should have an average size and it should have a reasonable flying
time. This leave a big margin to choose the components of the drone. The
following table shows some of the characteristics of the actual drone. It can be
used as a table of minimums, so that any changes made at least should be tried to
maintain or improve some of these characteristics:

Computational Power 1.2GHz quad-core
Flight autonomy (*) 13-15min
Weight 550g
Thrust per Motor (**) 521g
Size of the frame 260mm (205X160)
Propeller’s size 6X4.5 inches
Method communicating commands PPM
Number of PWM outputs/minimum 14/4
(*) Result calculated for a normal usage of the drone
(**) Value given by the manufacturer for a 6X2 propeller

These are some basic values. They are explained in more detail in the following
subsection.

4

2.2. - Hardware and basic electronics

When referring to the hardware it means all the physical objects that form the

drone. The following is a list with the parts present in our drone:

- Frame: the skeleton of the quadcopter. All the other elements are

attached to it. In past projects, the Crazyflie Nano Quadcopter 2.0 was

used. With all the elements already incorporated into it, it was an easy to

use platform, light (27 g), small (92 mm of diameter), somewhat resilient

but without much processing power. In order to fit the new objectives, the

most important of which is being capable to hold the Raspberry Pi, a new

frame has been chosen. The LUMENIER QAV-R FPV is a 260mm diameter

carbon fiber frame (the are other models with the same name but smaller

sizes). Relatively light for its size (113g) it is an averaged sized frame (in

terms of the sizes used in the hobby), big enough to hold the onboard

computer on top and the battery inside its central structure, something

essential in order to ensure that the weight of the drone is as centered as

possible (the battery being the most massive component). The shape of

the frame must be taken into account in order to properly model the

quadcopter. Unlike the precedent frame and most of the X shaped frames,

the frame is not symmetrical, i.e. the motors (at the end of the arms) are

not forming 45° angles with the axes but they are closer to the y axe than

to the x axe (the x axe being the angle that faces what could be called the

“forward direction”) forming a rectangle with a width of 205mm and a

height of 160mm. This will cause the quadcopter to behave differently

when trying to move in one direction or the other. It will be faster when

moving in the y axe because it can roll easily (motors further from the y

axe means that they can generate higher torque on the y axis). This must

be added into the model and also in to the APM code that assumes that

the X shaped frame is perfectly symmetrical.

One practical observation to make regarding this frame is the lack of a

proper landing gear other than 4 neoprene pads that come with the

frame. They have the advantage of being extremely light (0.25g each),

cheap and deformable, so they can soften the landing. On the other hand

they are too short and that means that the propellers start and end very

close to the ground (it augments the ground effect during the takeoff and

landing) and if the landing is not straight the tips of the propeller may

touch the ground before the pads and it will cause the drone to flip and

crush into the ground and provably breaking the propellers.

5

- Motors and propellers: The brushless motor DYS BE1806 2300KV is the

one being used in combination with 6x45 propellers. The 2300KV

represent the number of revolutions per minute that the motor will turn

when 1V is supplied (without load, i.e. the propellers). That number by

itself doesn’t tell much but the manufacturer will normally provide a table

with the lift that the motor with a certain propeller and a certain battery

can provide. It is recommended by the hobby forums that every motor

should be capable to lift half of the total mass of the drone (in the case of a

quadcopter). These motors are more than capable of lifting twice this

amount with the battery and the propellers that are being used. The size

of the propeller is the one recommended by the size of the frame. 6x45

simply means 6 inches of diameter and 4.5 inches of pitch. In theory a

smaller 5’’ (referring to the diameter) propeller should be sufficient to lift

the drone (using the manufacturers table) but real test during the project

have shown that they don’t perform as well as expected. A lower pitch

could be used.

When buying new propellers is
important to know that the motor
doesn’t make any difference between
those that turn clockwise and
counterclockwise: all the propellers
go screwed in the same direction so if
you buy a propeller that includes its
own nut make sure that they aren’t
screw in different senses. Also,
remember that you will need
propellers that turn in both senses…

It would be interesting to

implement in the future a simple

landing gear that would lift the

base of the drone higher from the

ground.

6

Figure 1: Table with the specifications of the motors provided by the manufacturer. Often it doesn’t
show results for the size of your propeller (as it is the case). If the value works for you with smaller

propellers it will also works for yours.

- Speed controllers (ESC): The speed controller acts as the interface

between the power circuit (connected to the battery) and the control

circuit (signals coming from the Navio2 board). It transforms the PWM

low voltage signal from the onboard computer into a signal powered by

the battery that the brushless motor can understand and be powered by.

The ESC must be select in concordance with the motor they are going to

be powering and the battery. It is indispensable to secure that the

maximal intensity demanded by the motor can be supported by the speed

controller and it also can support the maximal voltage from the battery.

For this project 4 16A opto ESC that support 2S to 4S batteries have been

selected. The motor has a pick intensity of 8A and the battery used is a 3S.

Opto means that it’s only doing an optical isolation between the power

circuit and the control circuit. There are other types of ESC that allow you

to supply 5V through the PWM signal cables (connected to the board) that

would allow to power the Raspberry Pi from one of the ESC by just

connecting one of the PWM ports of the Navio2 with one of the ESC’s. That

is not the case so it requires another way to transform the 12V supplied

by the battery into 5V that RPi can use.

7

- Power distribution board: Dedicated to distribute the power supply

from the battery to the ESC and other elements that need to be powered.

It’s just a tool to simplify the connection of the cables to the power source.

It doesn’t have any effect.

- Battery: Choosing the correct battery is an important part because its

choice is constrained by other elements and its properties. This project

uses a 3S 2200mAh battery. 3S means the number of cells of 3.7V that the

battery contains, in this case 3, so the nominal voltage of the battery is

11.1V. When choosing a battery make sure that the elements can support

this battery. The 2200mAh represents the capacity of the of the battery so

if you know how much intensity is require by the elements that are being

powered then you can calculate how much time will it take to empty the

battery. In practical terms this value is related to the flying time

(autonomy of the drone).

The frame comes with a power

distribution board included that can

be perfectly screwed to the base of

the frame. Make sure to solder

correctly the ESC’s to the power

board (red cable positive, black

cable negative). Otherwise it will

quickly burn the ESC’s (literally)

and make them unusable.

The motors and the ESC chosen can be bought together. The ESC’s and

the motors are connected through three cables. Because two motors

need to turn in one the direction and the other two on the opposite,

you need to connect the to ESC differently. Just make sure that one of

the motor cables is connected to the same cable of the ESC’s and

switch the order of connection of the other two cables. Don’t worry to

know if the motors are going to turn in one sense or the other, you can

just rotate their position on the drone or configure the autopilot so

that it understands where are position the motors sense-wise. The only

mandatory constrain is that the motors that turn on the same sense

need to be on the opposite side diagonally.

8

More cells would mean more voltage and therefore the motors would be

able to produce more thrust. More capacity would mean more flying time.

But an increase on those two properties would also means an augment on

the size and mass of the battery. The last term is the most constraining,

being the battery the most massive piece of hardware on the drone. If the

objective is to maximize the flying time, a bigger battery (with more

capacity) may require bigger motors to be able to lift the drone, motors

that would provably consume more and therefore reduce the flying time

undermining the effect of the increase of the capacity. It’s a matter of

finding a compromise solution in order to maximize autonomy and

minimize the mass.

It is import to be aware that the battery can’t be completely discharged

because then it will be impossible to be charged again. Plus, while the

battery starts to get discharged, the voltage supplied starts decreasing and

the performance of the motors will diminish. Never allow the charge to get

under 10V. This is a safe value that will ensure a long life and a good

performance of the battery. It can get under that value without major

problems but it will diminish the life of the battery (number of cycles that

it can be recharged) and if it gets too low the charger won’t allow the

battery to get charged. When charging the battery set the charging

intensity to a value not higher than 2A because higher values will also

diminish the life of the battery. The size is also important since this type of

battery fits perfectly in the middle of the frame structure; a smaller battery

would require some way to be fix in place and a bigger wouldn’t fit.

Since actual consumption is unknown because it depends how

demanding we are with the motors (them being the most consuming

elements) and the battery can’t be fully emptied, there are several

calculators on the Internet that would give you an approximation of the

flying time. The approximate autonomy of the drone is about 15min, and

although it is still limiting, it doubles the autonomy of the Crazyflie.

9

- Radio transmitter and receiver: The final objective of the project is to

have autonomous drones. Having a way to manually command the drone

can be useful during the development phases and as a failsafe as well as

being the easiest way to send simple messages to the drone like arm or

disarm the motors or change the flying mode. During this project the

TURNIGY 9X 2.4GHz transmitter and receiver have been used. One import

characteristic of this transmitter is that can send the messages in a PPM

signal that is the only type of signal that the Navio2 can read (through the

PPM port). The problem is that the receiver can receive the signal but it

can only transmit it (to the Navio2) in form of PWM, having eight outputs,

one for every channel encoded inside the PPM signal. Therefore an

encoder PWM to PPM is required in order to translate the eight PWM

signals from the receiver back again into a single PPM signal. This

solution requires adding a new element to the system. Normally the

receiver would be powered through the Navio2 but in this case it is the

encoder that is connected to the board so the receiver requires another

source. The power will be supplied by a BEC (Battery Eliminator Circuit)

that basically acts like a 5V volt regulator and it goes connected to the

power distribution board with the ESC.

- Onboard computer: As it has been mentioned the Raspberry Pi 3 (RPi2

also works) is being used as the onboard computer in combination with

the Navio2 board. The RPi has a 1.2GHz quad-core CPU and runs real-time

linux and the ardupilot software. The Navio2 includes some sensors and

ports necessaries to transform the RPi into an autopilot unit. Some of this

elements that the Navio2 provides are:

- Dual IMU (accelerometer plus gyroscope)

- Pressure sensor (measures altitude with a 10cm resolution)

- PPM input port (for the commands of the manual controller)

- 14 PWM output ports (for the motors)

The receiver needs to be bound to

the transmitter (information on

how can be found on the Internet)

and the encoder require to be

configured to PWM to PPM mode

(there are other modes and how to

do it can be found in the

commentaries for this product in

HobbyKing).

10

- ADC, I2C and UART ports (for extra sensors, you can use the

UART to connect the Xbee radio receiver)

 Details on how they operate are given in the following Software chapter.

In terms of hardware: the board goes attached on the top of the frame’s

structure fitting inside the bottom half of a Raspberry Pi case that is

screwed to the frame. This is an improvised solution and it doesn’t ensure

that the RPi is perfectly positioned on the middle of the frame.

Here is a simple schematic to represent how the different electronics and signals

are connected:

When trying to implement an MPC (or any other real-time application)

the time it takes to run each new iteration (the sampling time) is

essential. This time is related to the computational power of the

computer. The computational power of the RPi is 12GHz quad-core.

Although it may not give you the actual number of milliseconds it takes

to solve the OCP, you can compare it with other computers. If the

computer in which you are developing your code is a 3.3GHz 6-core (that

is more than 3 times faster than the RPi) and it takes nearly 0.1s (10 Hz

is the minimum rate to run our MPC) to solve the OCP, then you can be

sure that the RPi won’t be fast enough. Also take on account that the RPi

would be running the MPC and the ardupilot at the same time so you

need to make sure that it can run the optimization far below the

sampling rate.

It might be recommendable to design a proper support. The half case

allows access to the Navio2 board and also allows to connect the

peripherals to the RPi. Take off the SD Card in order to insert or extract

the RPi. The front of the drone is defined by the computer’s orientation,

being the front on the opposite side to the PWM ports. During the flight

the board is powered by the battery through a power module

manufactured by EMLID that is connected between the battery and the

power distribution board with cables that supply 5V directly connected

to the Navio2. During test on the ground it is important to power the RPi

with its own power supply in order to save battery and it is also

important to use only one power source (either the battery or RPi’s

power supply).

11

2.3. – Software

The program run by the RPi is called ardupilot and even though its code is

commented and fully accessible to any developer it is badly documented

specially if we consider that it contains more than 700000 lines of code, most of

them written in C++. This sub-section doesn’t pretend to be a full documentation

of the code but a commentary that, I hope, will help those who follow this project

to better understand and interact with the ardupilot code. Take in mind that the

ardupilot code is a project in progress and constant change so some of the things

mentioned in this section may have changed.

The whole program works around a scheduler that calls all the necessary

functions periodically. We can find a more specific description of how it works in

the documentation. The scheduler is found in the file ArduCopter.cpp. Here you

can find all the functions that are going to be call periodically while the program

runs, like the actualization of the pwm values for the motors or the generation of

logs for the different sensors or parameters. A function can be called

independently by the scheduler or can be added inside one of the loops that

exists at several different frequencies. There are slow loops at 1Hz to fast loops

at 100Hz. You can also change exiting functions from one loop to another but you

need to take on account that then this loop may take more time to be completed

(the maximum time that a function or loop can take to finish is defined in the

scheduler in microseconds).

12

Inside the folder ArduCopter you will find all the functions related to the class

Copter defined at the header Copter.h. The functions are the most basic to run

the ardupilot code. The most important to know are the ones that define the

flying modes (called by control_nameofthemode.cpp), the parameters function,

the attitude function (Attitude.cpp) and the radio function (radio.cpp). At least

those are the ones that have been used or studied in order to model the behavior

of the drone. To understand how the flying modes work is important since it

could be that in order to implement the MPC you need to create a new mode.

All the modeling that have been done in the following chapters is based on the

behavior of the stabilize mode. It is the easiest to understand. The parameters

function contains all the parameters of the ardupilot, their definition and the

range of values that they can take. The attitude and the radio functions are

important because they show you some of the transformations that the values of

the inputs of the system (normally this would be the manual command) follow

before being send to the attitude controller. If you want to substitute the manual

controller by the MPC you need to add this transformations so that the attitude

controller understands the signal that you are sending.

The radio control send pwm values between 1100 and 1900. Then the ardupilot
transforms them into a value between 0 and 1000 for the throttle and a value
between 45 and -45 degrees for the angles.
Ultimately the attitude controller takes angle values between 45 and -45
degrees and a throttle command with values between 0 and 1.

One interesting change to make is to change the functions that creates the log
for the pwm values send to the motors and the pwm values received from the
manual control from the 10 Hz log loop to 25 Hz log loop. This is a minor
change but a valuable one if you are interested in using the log that the
ardupilot generates. For example, in the case of system identification, 10Hz may
not give enough points to properly identify the system. You can add them to a
faster loop but that could cause timing problems if the logging takes to much
time. If the scheduler is not capable to run at the proper frequency it will
generate an error and the ardupilot program will stop.

How to create a new mode is explained in the documentation although it is not
updated. The easiest way is to create a new mode following the example of
another that already exists and that may have a similar behavior to the new
mode that is being created.

13

Inside the libraries folder you will find all the classes related to sensors or

specific functionalities (like the PID attitude controller). Normally the flying

mode will call a function of the attitude controller (depending on the type of PID

used). There are several functions that can be used depending on the

configuration of your inner controller (whether we are controlling angles or

angular rates; from the body frame or the world frame). The configuration

depends on the flight mode. You can see what function from the attitude

controller is being called inside the control_flight_mode.cpp file mentioned

earlier. After applying all the calculations the attitude controller will send its

results to the motor functions. These functions will transform the results of the

PID into a pwm values than the motors can understand. The attitude controller

and the motors functions run separetly. They are called periodically by the

scheduler. The method of sending values between them (and other functions

from other libraries) is by updating the values of global variables that they both

can read and/or write. When you see a variable that starts with “_” (e.g.

_motor_roll) it means that it is a global variable. This system could be compare to

the publishing/subscribing topics that ROS uses. When you see a variable that

starts with “_” and it is written in capital letters that means that it is a parameter

(global or local). Sometimes tracking down where those parameters or global

variables are declared or what is their default value can complicated. The

declaration of the parameters normally includes a small explanation, its default

value, and the range of values it can take.

This is a very basic explanation of how the system works. On the libraries you

will find commentaries. The documentation tries to explain how it works but it is

outdated (but you should take a look on it anyway).

Inside the libraries there are other functions that the ardupilot uses but they are

not indispensable in order to understand the basic functionalities of the

ardupilot code.

2.4. – The Motion Capture System

The implementation of the MPC for the position control requires a measurement

of the actual position of the drone and its speed (attitude and angular speed are

given by the Extended Kalmann Filter embedded inside the ardupilot code).

One minor change that has to be made in the code is the one referring to the
geometrical configuration of the drone. As it has been said the frame is not
symmetrical but the ardupilot doesn’t have an option to change it so you need to
go to the AP_motors_Quad.cpp and change the angles of the frame configuration
that you are using so it matches the reality (the default value is 45 degrees).

14

When controlling the drone manually these measurements are done by the

human eyes of the user. Obviously an autonomous drone requires a different

method. The method chosen is the usage of a motion tracking room. The room

consists of 16 high precision cameras connected to a central computer that runs

the Motion Capture System (MCS) software. Several indicators, in the form of

retroreflective balls, are put over the drone. The tracking system requires that, at

any given time, four or more indicators are visible to the ensemble of the

cameras. The cameras have been calibrated so that only retroreflective objects

are detected.

Once the object is prepared with the indicators and is place inside the scope of

the cameras you can visualize the indicators on the screen of the central

computer. Then you will need to declare to the Motion Capture System that those

indicators form a rigid solid, and you will need to define its center of inertia so

that the program can give you the position and attitude of the rigid body. Then

you can start the live recording and the MCS will keep track of the drone.

The data of the recording is store in a log file once the recording is finished. This

file can be open with MATLAB and it is useful when doing offline calculations

(e.g. during System Identification). If you need that data in real time (the case of

the implantation of the MPC) the MCS allows you to stream that data through its

Ethernet connection. Using a Python code developed by other students of the

EPFL you can received that data on your own laptop and then send it to the

drone. The method of transferring that data from your laptop to the drone is still

a matter of discussion but during the last weeks we have been trying to

implement a radio link using the Xbee radio transmitter; and although there is

still work to be done in order to make it operative, early results seem promising.

Adding the serial communication with Xbee to the Python code that reads the

data streamed is fairly easy and only requires a few lines of code and the

installation of a serial communication library. The complicated part is reading

the data with the drone and communicating the information to the

autopilot/MPC.

Use more than 4 indicators as a safety measure and make sure that they are not
position symmetrically so that the cameras don’t have problems to identify the
object. Make sure that sure that the indicator doesn’t move from their position

15

The data generated by the MCS presents a 8 column matrix. The columns

represent time, the 3D position and the attitude in quaternion. The time is set to

zero when a new session is started. The frequency of sampling is higher enough

for our usage (it’s set at 250Hz). The position is given from the origin of the room

(set approximately in the middle of the room at ground level). The axes are not

the same as the ones that are normally used (being y the vertical axe). The axes

can be change before starting the recording but the recommendation is to leave

them as they are and post-process the results. The Python code integrates the

transformation to a more common frame (with the Z axe vertical). The

transformation from quaternions to euler angles needs to be added to the python

code. Remember to start the flight with the drone facing the X axe.

The ensemble of the tracking room system and the drone should look like the

following scheme (once implemented the transmission of data to the ardupilot):

Initially the attitude used by the ardupilot and the MPC would come from the
EKF inside the ardupilot but we could also use the values calculate by the
Motion Capture System if they seem more reliable or accessible.

You can run a simple python code in the RPi to see that it is more than capable
to read the data broadcast by the Xbee on the laptop. The Xbee on the RPi can
be connect either through the UART port or one of the USB ports. The real issue
is to do that in real time, while running the autopilot and the MCS and be able to
transmit the data to both. Using a python function inside the RPi is easy but
python tends to be slower than C++ (time is always one of the biggest
constraints) and all the code in the ardupilot is written using this language

16

Figure 2: Scheme of all of the elements connected to the Motion Capture System. Includes the type of

information transmitted and the type of communication

17

Chapter 3: Modeling of the system

This chapter follows the same path of precedent reports in terms of the modeling

of the quadcopter, which at the same time follows the example of most of the

literature, starting by defining the reference frames used in the modeling,

followed by the representation of the attitude of the drone in those frames and

the dynamics of the system. This first part of the chapter ends with the

identification closed-loop model that includes the behavior of the PID-attitude

control since this projects starts with the already programmed attitude

controller of Ardupilot software and all the work of this project is made from

outside the close-loop system.

3.1. - Reference frame

Two different references are used in this project. First, the fixed inertial frame

called the World frame (W). The position of the origin of this frame depends on

the method used to locate the drone. If the Motion Capture System is used then

the origin will be found in the middle of the test room (depending on

calibration). If GPS is used the origin will be in global origin of coordinates. A

part from this fixed frame a rotating frame with origin on the center of mass of

the quad will be used and called Body frame (B).

Figure 3: Graphical representation of the two reference frames used

18

The choice of the sense of the axes of the body frame and the numeration of the

motor is made so that it coincides with the ones that the Ardupilot software uses.

The two coordinate systems will be denoted as follows: [xW yW zW] for the world

frame and [xB yB zB] for the body frame.

3.2. - Attitude representation

In order to orientate the body frame from the world frame the Euler angles

representation will be used. Through a sequence of the following 3 right-hand

rotations a vector can expressed in world frame can be expressed on the body

frame:

- yaw angle (ψ) rotation around the zw axis.

- pitch angle (θ) rotation around the yw axis.

- roll angle (φ) rotation around the xw axis.

For every rotation a rotation matrix can be defined:

Appling the sequence of rotations the rotation matrix from the world frame to

the body frame can be obtained:

Where c and s are diminutive for cos and sin respectively.

The rotation matrix from the body frame to the world frame (WRB) can be found

by transposing the precedent matrix since is an orthonormal base.

19

In order to obtain the rotation matrix that relates the Euler rates vector

 to the body fixed angular rates ωB=[p q r]T a same sequence of

rotations can be applied:

If the matrix is inversed the inverse transformation is obtain (from body fixed

angular rates to Euler rates):

3.3. - Dynamics

The movement of the drone and its control is achieved by varying the angular

speed of the four motors. The propellers attached to the motors will induce a

force Fi and a moment Mi. Since the neither the motors nor the onboard

computer have any way to measure the speed of the motors their speeds will be

represented by the PWM value send to each motor and they will be considered

proportional. The following figure represents the set of forces and moments that

affect the drone:

Figure 4: Scheme with the forces and moments that affect the drone

Again, the numeration of the motors and specially the sense of the moments have

been chosen to coincide with the drone and ardupilot configuration. Following

20

the example of the precedent reports of the project, a quadratic relation can be

established between the PWM and the forces and moments generated:

Where is the lift coefficient and is the drag coefficient, mostly depending

on the motor properties and the propeller shape and size. Then the total values

of the forces and moments applying to the quadcopter body can be calculated as

follows:

Where u1 is the total thrust, u2 is the total roll moment, u3 is the total pitch

moment and u4 is the total yaw moment. 0.8 and 0.6 represent the sine and the

cosine of the angle between the arm and the xB axe. Normally an X type drone

like the one used would be symmetrical (in that case the 0.8 and the 0.6 values

would be substituted by

) but this is not the case of our drone and the

different distances between the axes and the arms need to be taken on account. L

represents the arm length.

Once defined the inputs of the system (forces and moments) the movement

equations can be defined. But first the states of the model need to be identified.

In this case, using the Euler-based representation of the orientation the following

12-dimenstional state vector is chosen:

- Position vector in the world frame r=[x y z]T.

- Speed vector in the world frame v= T.

- Euler attitude vector .

- Angular velocity vector in the body frame ωB [p q r]T.

Now the dynamic model can be calculated using the rigid body mechanics

defined by the Newton-Euler equations. The translational dynamics can be

described in the following equation:

21

Where m is the mass of the drone and g is the gravitational acceleration in the

Earth surface.

The rotational dynamics can be described on the following equation:

I represents the inertia matrix on the body frame. This matrix has been taken as

diagonal. This is an approximation that has been taken before under the

assumption of the symmetry of the drone used previously on this project (the

Crazyflie). The actual drone is not perfectly symmetric but we will consider it to

be an acceptable approximation, also for the sake of simplicity.

Taking on account 3.7 and 3.8 the open-loop model of the system will have the

following form:

3.4. – Incorporation of the inner controller to the model

The project uses the existing inner-controller of the Ardupilot code. This allows

saving time that can be expended on the development of the MPC. The controller

is the same as used by the stabilizing mode of Ardupilot, that is, a combination of

22

proportional and PID controllers for the angular position and the angular rates of

the drone, respectively. The actual structure can be visualized in the following

figure:

Figure 5: Representation of Ardupilot’s attitude controller

Where T-1 is the rotation matrix that transform the euler angular rates to body

angular rates. ui represents the different inputs of the system as the Ardupilot

code understand them. Normally those inputs would be provided by a manual

command. In this project they’ll be provided by the MPC, so that in terms of the

inner controller there will be no difference between one form of command and

the other. Ardupilot incorporates other types of attitude controller (normally

used by other flying modes) e.g. the possibility of sending directly the desired

rates for the roll and pitch as inputs. This project uses the one above and the

general structure of the stabilizing mode because of their simplicity and

similitude with the attitude controller used in precedent reports of this project

and the literature.

The model also includes the motor mixer (using the same nomenclature as

precedent reports). The motor mixer is the algorithm that transforms the result

of the attitude controller into PWM signal for the motors and it does so by

redistributing the signal into each motor (for example if rolling is required, the

signal produce by the PID of the roll rate, shall be distribute so that the motors

on the same side should receive the same PWM but this shall be different from

the one received by the motors on the other side). The algorithm as it is

implemented in Ardupilot is complex (difficult to transform into mathematical

equations) because it tries to rebalance the signal and establish a priority

between commands and incorporates several saturation functions to ensure that

the result is inside the boundaries. The whole algorithm has been substituted by

the following matrix, in an attempt to simplify the model:

23

Where is the resulting signal of the PID’s. It has been proved on simulation

that the result of applying this matrix is identical to the application of the

Ardupilot’s algorithm in most case scenarios especially if the system is not being

required to do extremely demanding maneuvers (e.g. fast takeoff sequence or

pirouettes).

Finally the signal passes through a function called Thrust scaling. Its objective is

to rectify the curve that relates the angular speed/PWM of the motor and the

thrust it produces. How this function behaves can be set by changing some of the

parameters of the Ardupilot (through the control ground station) and its full

explanation can be found on the official web page for Ardupilot. Since in the

theoretical model of the drone the relation between thrust and PWM is

considered to be quadratic, the parameters can be chosen so that the Thrust

scaling acts like a square root function therefore transforming the quadratic

relation into a proportional one. The importance of this function has been

proven through simulation specially because the usage of the linearize model for

the MPC. Without the Thrust scaling big disparities appear between the predicted

behavior by the linear MPC and the one that can be observed by the non-linear

system.

3.5. - Modeling the Attitude controller

The proportional angle controller can be expressed in the following way:

Where is the desired rate in the body frame. is included in the

formulation but is not affected by the proportional controller in order to simplify

and reduce the number of equation of the model.

24

The modeling of the PID for the rate control is far more complex and it requires

the introduction of 6 new states in order to be able to compute the integral and

derivative parts of the controller. First of all a new set of 3 states (called ni,

following the same nomenclature as precedent reports) are created that

represent the integrated rate error:

The equation of the controller can be, then, expressed in terms of these states in

a Laplace transformation of the PID:

Where Ki, Kp and Kd represent the integral, proportional and derivative gains

respectively; N is the gain of the filter for the derivative part. In order to

implement this equation into the model it requires a reformulation and the

introduction of 3 new states (mi):

Expressed out of the Laplace transformation:

Therefore the close-loop system can be represented mathematically as follows:

25

* The function Thrust Scaling has been applied so in reality what we would have is something like

 . The square root represents Thrust scaling applied to the output of the motor

mixer.

This system has a total of 18 states. When computing the model for the

optimization problem a new state needs to be considered: gravity. Even though it

is treated as constant, when calculating the jacobian to obtain a linear

approximation of the non-linear system (as it’ll be explained in the following

section) it is interesting to have gravity as an state in order to end up the

canonical affine form for the state space: (otherwise

 . This is not a must. It was done in order to easily introduce the linear

system in Matlab and, also, in case that some OCP solver requires you to

introduce the linear system in a canonical form. The introduction of gravity as

state can also be uses to estimate its value. At the end the system has a total of

19 states with the following state vector:

26

Chapter 4: Formulation of the optimization problem

4.1. - Formulation of the optimization problem

For the control of the position of the drone an optimal controller is going to be

used. More precisely a linear MPC is going to be implemented both in the

simulation in Matlab and on the raspberry pi. First of all the optimization

problem needs to be defined through a cost function to minimize. The cost

function J can be written mathematically as follows:

As it is shown the cost function is divided into two terms Je and Ju the first

representing the precision cost and the second representing the energetic cost.

They can be expressed in as the weighted module of the error and the command

respectively, where Q and R are the weight matrixes and C is the state matrix

that relates the output of the system y with the states of the system. The

objective of the optimization problem will be to find the sequence of inputs that

minimize the previous cost function taking into account the constraints imposed

by the system dynamics and physical limitations of the controller:

Where is the initial state, is the lower boundary and is the upper

boundary for the control signal. For now no limitations on the states have been

included inside the optimization problem in order to reduce the complexity of

the problem (some constraints will be introduced in the next subsections). This

optimization problem will need to be discretized in order to be computable by

and its results useful for the RPi, plus the system needs to be linearized to obtain

a linear MPC. The linearization as it has been mentioned briefly earlier in the

27

report will be done by the computation of the jacobian of the non-linear system

(first order approximation):

Where and are the values for the state and command for whom the system

is linearize. Since it’s common to use an equilibrium point as linearizing point

(that will be initially our case) the first term of the equation is equal to 0. If the

following change of variables is made the system can be then express in the

canonical space state form:

Once the system is linearized it can be discretized given a sampling time. We use

a Zero-order hold in Matlab to obtain the state matrices. The sampling time has

been chosen to be 0.1 s (MPC running at 10Hz), being slow enough to give time

to the RPi to run the optimization and fast enough to ensure stability.

Now the optimization problem can be redefined as follows:

Where N is the prediction horizon. Choosing this value is important for the

correct tuning of the MPC. For this configuration a prediction horizon of 20 has

been chosen (i.e. 2 seconds). A bigger prediction horizon would ensure a better

stability and the security that the optimizer can find optimal solution inside the

constraints. At the same time it would increase the computational time. N=20

seems a good compromise solution by proving to be (though simulation) a big

enough time horizon but at the same time it seems small enough to help the RPi

28

to run the optimization at the desired frequency since this is most certainly one

of the challenging parts of the practical implementation.

4.1.1 Soft constraints

As can be seen in the previous definition of the optimization problem there

aren’t any constraints impose on the states (apart from the initial conditions).

That is made in order to ensure that the MPC can always find a solution and

doesn’t generate an error that may cause the crush of the drone. At the same

time it has been observed that as it gets far from the linearization state (hovering

position) less reliable is the linear system and less reliable are the MPC and its

predictions, so, it is of our interest to ensure that the drone doesn’t get out of a

“controlling” zone without imposing too restrictive constraints. We introduce

soft constraints as an intermediate solution between having or not having

restrictive constraints. In order to simplify as much as possible the optimization

problem they are only going to be applied onto the roll and pitch states that

seem the most relevant. For that a new set of variables (si) are introduced they

are used to evaluate how much the drone trespasses the limits we’ve imposed:

Then those variables are add to the cost function with a weight matrix T with

values several orders higher than the ones of Q and R, so that it really punishes

any solution that gets out of boundaries but that this solution can always be

found. Therefore the new formulation of the problem is the following:

This optimization problem is a Quadratic program with 22 variables (16 if the

system is simplified without the integral states of the inner controller). It has N

equality constraints (N being the predictive horizon) plus 7N inequality

constraints (3 soft constraints and 4 constraints for the values of u for every

step). The required minimum sampling rate is of 5Hz.

With the addition of all the elements defined until now, including the MPC and

the Motion Capture System, we can represent the whole close-loop system in the

following diagram:

29

Figure 6: Representation of the close loop system

4.2. - Simulation Results

The simulation has been done through Simulink and Matlab. The Yalmip libraries

have been used in order to solve the optimization problem. In a single Simulink

model has been represented the different parts that intervene in the system: the

MPC controller, the inner (attitude) controller and drone dynamics:

Figure 7: MATLAB Scheme of the drone with the MPC controller. (*) Both the EKF and the motion

capture system are not represented on simulation. In the simulation the attitude controller and the

MPC can read directly the states of the drone.

 In these simple tests the drone is given a certain ending position (disregarding

trajectories) and its performance is observe and evaluated in terms of time

needed to reach the objective (with a 5% margin), potential overshooting,

behavior of the controller and comparison between an angle command (when

given) and the angle response of the drone.

30

For the first test the system is asked to take off (reach altitude of 1 m). This is the

simplest operation the drone can be ask for and the where the linearized system

is the most reliable since the drone doesn’t change of attitude.

Figure 8

Figure 9

Observations: As it can be seen the system is extremely fast reaching the

reference position in less than 0.5 seconds. System presents a slight

31

overshooting that doesn’t exceed the 5% of the reference. Although it is not

shown in the figures the simulation gives a peak velocity of 3m/s with peak

acceleration during the first 0.1 seconds of 27.5m/s2. These values are extreme

and they correspond to the demands of the MPC which, as it can be seen, starts a

nearly full throttle (max throttle being at 1900) and quickly passes to close to no

throttle at 0.3 seconds from the start (min throttle being at 1100). This is

undesirable, because it’s not only demanding an aggressive behavior to the

drone but at the same time it’s demanding it close to ground. The Ground effects

i.e. aerodynamical effects due to the proximity of propellers to the ground that

prevent the proper flux of air through the propellers have not been modeled so

the simulation doesn’t take them on account and it’s difficult to predicted the

behavior of the quadcopter close to the ground especially when demanding full

throttle. This can be solved (although the ground effects will always appear) by

adding some constraints, which will be shown in the next section, the will force

the MPC to take a more conservative approach.

For a second test, the drone is ask to reach the position (1, 1, 1) m, in order to

observe how well it performs with a more complex command that involves a

change in the attitude of the drone and therefore a distance from the

linearization point:

Figure 10: Orange, red and blue lines represent movement in the Z-axis, Y-axis and X-axis

respectively

32

Figure 11: Result of the test

Figure 12: Result of the test

33

Observations: As can be observed the movement of the system in the Z-axis is

much faster than the movement of the system in the horizontal plane, as it is to

be expected since horizontal movement requires the turning of the drone. While

this time the drone takes a little less than 1 second to stabilize in the Z-axis, it

takes around 1.5 seconds to stabilize to its horizontal position. The movement on

the Y-axis is slightly faster than the one in the X-axis and that is due to the

asymmetry of the drone’s configuration (not being a perfect X, with the motors

closer to the Y-axis). In the comparison between roll command and roll

observed, it is shown how the angle manages to follow the command with a

certain (acceptable) delay due to drone’s dynamics. The behavior of the throttle

command is similar to the one shown for the precedent test. It has still an

extremely aggressive stance and in this case produces an overshoot superior to

the 10%. At the same time this aggressiveness allows for a faster movement in

the horizontal axes even if the controller (due to the linear model) doesn’t

understand that.

In the last simulation the drone will be requested to make a big movement in Y-

axis (3 m) while keeping its altitude after a theoretical takeoff. This test is made

in order to show one of the disadvantages of the linearized system:

Figure 13: Blue and red lines represent the movement in the Y-axis and the Z-axis respectively

34

Figure 14: Result of the test

Observation: The problem using a linearized system is that the approximation is

technically only valid for points close to the linearization point, in this case a

hovering stance. For only vertical movements or small horizontal movements

(that is movements that require small roll and pitch angles) the linearize system

is a good solution. Although simulation shows that the quadcopter is capable of

achieving positions out of the equilibrium with angles that surpass what would

be consider “small angles”, its behavior seems unrealistic and it poses the

question if the results on simulation are a good representation of the reality. Plus

the strategy used by the MPC controller in order to achieve distant positions

presents significant differences from what it would be expected from a human

user. A clear example would be when, after taking off, a large movement in the Y

axe (for example 3 meters) is requested. A human user would turn a certain roll

angle; apply a higher throttle to accelerate in that direction and then turn the roll

angle in the other sense and decelerate to until reaching the position. The

solution found by the optimizer is similar except for the second step. The drone

doesn’t know that if you are inclined a certain roll angle and you augment the

throttle; this would produce acceleration in the Y axe. That is due to the

linearized model. For the MPC an increase in throttle only produces acceleration

in Z axe so it tries to reach the objective by just sending rolling commands.

4.3. – About the choosing of weight matrices

35

On the equation (4.30) 3 weight matrices are defined in order to control the
behavior of the MPC controller: Q, R and T. As explained in the chapter 4.1.1 (soft
constraints) matrix T just needs to be several orders higher than Q and R so that
drone never trespasses the boundaries but if it needs to then allow the controller
to find a solution. So the actual value is not significant. For the simulation T is a
diagonal matrix with all its values equal to 106. The choosing of the values of Q
and R has a more immediate effect over the behavior of the drone. There are
several criteria for picking the values. First of all they are both diagonal. The
values of Q will be kept constant at 1 or 0, depending if we want that state to
affect into the result of the optimal problem. The only states that will be taken
into account are the 3 position states and the yaw angle. This simplifies the
resolution of the optimal problem and since the speed of the resolution is a
critical constraint of the project is to our interest to simplify the problem as
much as possible. The choice of those 4 states is simple. They are the only states
that having a difference with the reference (a stable position) won’t destabilize
the system. For example, having a pitch value different that 0, with this Q matrix,
won’t cause the controller to react but it most certainly will destabilize the
system causing it to change its position and then the MPC will act. The same will
happen with the speed and the angular speed. Plus it helps the system to
prioritize into achieving its objective position. The choice of the value 1 for those
states that are being taken in account it’s just a compromise solution that makes
the system fast but not too aggressive. Plus the value 1 is of a similar order to the
inverse of the maximum square error of the states (this is a common and simple
criteria of choosing the values of Q). The values of Q will remain constant while
the values of R will be used to tune the MPC. The final values chosen, with whom
all the tests have been made, are: R=diag([0.8 0.5 0.5 1]), the first value affecting
the throttle command, the second the roll, the third the pitch and the fourth the
yaw. Those values are not definitive and most certainly will require tuning when
they are tried with a real world. Again, they are a compromise that ensures a fast
but not excessively aggressive behavior. Lower values would mean a faster
system because the controller will use higher commands, but it will result in a
bigger overshot or even an unstable close loop system. Higher values would
mean a slower response. The values for the throttle and yaw can be set higher
but no more than one order of magnitude with respect to the values of the roll
and yaw command (observation made during simulation) since both vertical
moment and yawing are already fast and very reactive. The weights for the roll
and pitch command need to be kept low because most of the time when a certain
pitch or roll is demanded is due to our will to move on the X or Y axe,
respectably, and those movements are relatively slow (specially compared with
the vertical movement) so we are interested in a more aggressive response from
the controller.

4.4. - Improvements

This subsection treats with the improvement that have been tried in order to

obtain a better performance and, what might be more important, a more realistic

behavior of the controller. Due to the fact that this report only deals with

36

simulations it would be easy to take this results as a certainty but there a couple

of factors that could compromise the performance of the MPC controller

implemented on a real drone. The first factor is how aggressive is the controller

on the first instants when a new reference is given. The second factor is how well

the linearized system used by the controller adapts itself to reality specially

when we are trying to move sideway.

4.4.1. - Constrains on the commands

Regarding the problem observed with the aggressiveness of the MPC especially

for the case the throttle command. As it was observed after the results of the first

test, the controller starts the taking off on full throttle command and this could

have dangerous consequences for drone (already explained in the observations).

One possible solution would be to increase the restrains on the command (they

are already constrained by the maximum value that the Ardupilot software

accepts). This might not be the best solution since there might well be some

occasions where it is legitimate to demand maximum throttle or any angle

command. An alternative solution is to add constrains in the maximal variance

between the command at one given point and the command at the precedent

step. Mathematically speaking:

This shouldn’t stop the MPC from using extreme values for the command but it

will force it to be more conservative. Results:

Figure 15: Result of the takeoff test with constraints on the command variation

37

 Figure 16: Result of the takeoff test with constraints on the command variation

Figure 17: Result of the test for a objective position of (1,1,1)m with constraints on the command

variation. In orange is the altitude (m) in red is the position in Y (m) and in blue is the position in X
(m),

38

Observations: The first two figures shown above are the results for the simple
takeoff test and the third is the result when the position of reference is (1,1,1)m.
The drone is slightly slower (it takes more than 0.5 seconds to reach the position
while before it was under the 0.5 seconds time mark) but it keeps being
relatively fast. Where the big change can be appreciated is on the behavior of the
command. While the curve seems similar to the one shown before its values has
been reduced, not getting even close to maximum throttle. Also the peak speed
and acceleration has been reduced (from 3 m/s to 2.2 m/s and from 27.5 m/s2 to
11.5 m/s2).

4.4.2. - Sequential linearization

Another inconvenient found to the linear MPC is that the model given represents

a drone in a hovering position. This means that the MPC doesn’t know how to

move horizontally other than oscillating the pitch or the roll angles. A possible

solution that allows keeping the formulation of the optimization problem and at

the same time adapting the problem to a more realistic approximation of the

system is the usage of sequential linearization. This technique consists of the

following steps:

- Step 0: run the optimizer and obtain the predicted commands for the

predicted horizon.

- Step 1: Use the predicted command to integrate the non-linear system

and obtain a prediction of the states (inside the prediction horizon).

- Step 2: Re-calculate the linear system for every step in the prediction

horizon using the predicted states of the Step 1.

- Step 3: run the optimizer. But this time the matrices A and B of the model

depend on the step. Obtain the new set of predicted commands.

- Step 4: Repeat the last three steps until the predicted states (Step 2)

converge.

For practical matters the number of iterations is reduced to a fixed number. The

sequential linearization can be put mathematically as follows:

Given as a result of the optimization problem formulated at (4.30) and (4.31)

While :

 = odesolver(f ,)

For k=0, 1, …, N-1:

39

End_for

End_while

The overall formulation of the problem doesn’t change much. The major

modification is in the constraints where now A and B depend on the step. The

following are the results of the test when the drone tries to move from the

position (0 0 1) to the position (0 3 1) using sequential linearization:

Figure 18: Result of test for the MPC with sequential linearization

40

Figure 19: Result of test for the MPC with sequential linearization

Observations: The results obtained are for the most part underwhelming. Only
one test has been done although it’s a significant one because it is the typical
situation when the sequential linearization should be most useful: a big
horizontal movement. Although the system seems to react more aggressively,
counting the overshoot the system reaches at the same time as the system
without sequential linearization. Plus it affects the altitude. This is to be expected
due to the fact that controller is now using the throttle command to move faster
horizontally but its effects are disproportioned, displacing the drone a 50% from
the altitude that it is supposed to hold. Several tests have been tried varying the
number of linearization but the results don’t change substantially from the ones
shown in the figure.
So from the results and the fact that it would take more time for the onboard
computer to run the optimizer and the sequence of the linearization it arrives to
the conclusion that it is not worth to implement the sequential linearization.

4.5. – Alternative configurations

So far, the results presented have been for a determined configuration of the
controller system. This configuration is the one shown at the figure 5. The
command send by the MPC to the inner controller represents the thrust
requested and the reference for the roll, pitch and yaw rate. This configuration is
intuitive because it is basically substituting the manual command with the MPC
leaving the rest intact. But this configuration is not unique. The ardupilot code
allows us to change the type of PID/attitude controller but also other

41

modifications can be added. In this sub-section are presented two configurations
for the ensemble of MPC-inner controller-Drone:

- Configuration 1: The inner controller is change so that instead of
supplying the reference values of the pitch and roll, we supply the
reference for the pitch rate and roll rate (take the figure 4 and erase the
proportional controllers).

-
- Configuration 2: The inner controller is eliminated and the MPC provides

the PWM values directly to the motors.
-

Those new configurations should provide a more aggressive style of control. The
next table provides some of the results obtained when they are tested with the
same examples shown above:

 Conf 0 (**) Conf 1 Conf 2
Minimum sampling rate 5Hz 10Hz 10Hz

Sampling rate used (*) 10Hz 20Hz 50Hz

Minimum Prediction horizon 5 20 20

Prediction horizon used (*) 20 40 80

Time taking off 0.5s 0.5s 0.4s
Overshot <5% <5% <5%

Time from pos (0 0 0)->(1 1 1) 1.5s 1.15s 1s

Overshot <5% <2% <2%

Time from pos (0 0 1)->(0 3 1) 1.6s 1.3s 1.55s

Overshot Non <5% <5%
Proportional time cost of the
computation (in Simulation)

1 2.5 - 3 8 - 10

(*) Those are considered to be optimal (between performance and time
consuming)
(**) Configuration 0 is the one that has been used for the other sections of the
report.

Observations: The two new configurations are slightly more aggressive but they
don’t improve much the performance. What does increase is the time of
simulation that might give us an idea of the computational cost to run those
programs in the RPi. Note that in terms of vertical acceleration they are all
equally fast since the inner controller doesn’t affect the throttle command. In
terms of horizontal movement they all suffer from the same problem already
mentioned in the sections above. They are only been tested with setpoint
tracking so it might be that for a more aggressive command (something more
acrobatic) the new configurations respond better. That being said, I wouldn’t
recommend trying this linear MPC with angles far from the hovering position.

4.6. - Trajectory tracking

42

All the simulations that had been shown so far have been tested by setpoint
tracking, i.e. giving one specific position in the space as constant reference for
the MPC controller. The references for the angles or the speeds are kept to 0.
This allows us to get a general idea of the behavior of the controller (and also the
modeled system) and easily compare the performance when changes are
introduced or the parameters of the controller are tuned. But this kind of
tracking may not reflect the final objective of the project. Trajectory tracking was
one feature incorporated on precedent reports and it should be a final objective
for future reports, so it has been decided to test the linear MPC controller
implemented in simulation with a couple of reference trajectories. In the case of
the trajectory tracking a series of values for the position and speeds are given at
a prescribed time while the references for the angles and the angular speeds are
kept to zero. This would require a reference generator. This generator hasn’t
been implemented for this report so simple trajectories already generated by
older reports are going to be used adapted to the characteristics of this new
drone. Also, since a very simple weight matrix Q is being used where the
diagonal values for the speed are set to zero, the reference trajectories for the
speed are set to zero, only imposing the position.

For this test the following trajectory will feed to the MPC as a reference:

In this particular case a, b and c are equal to 0.1, 1 and 0.1, respectably. The
following figures show the results of the simulation:

Figure 20: Results for the test of trajectory tracking

43

Figure 21: Results for the test of trajectory tracking

Figure 22: Results for the test of trajectory tracking

44

Observations:
The MPC controller is quite capable of following the trajectory, and it only gets
slightly out of the trajectory on the last turns, being the maximal distance
between reference and trahectory no more than 10 cm in a circumference of
more than 10 m of diameter. In simulation the drone is capable of move through
the whole trajectory in 60 seconds reaching a top absolute speed of 6 m/s
approximately. It is also important to mention that on the last turns the drone
reaches the limit of 30 degrees for the pitch and roll angle and that is another
reason why it seems to not be able to reach certain points in the trajectory.
Remember that this test is using the MPC without sequential linearization and
therefore in order to move sideways it only uses pitch and roll commands. This
would have a good side: since throttle command is dedicated to control the
altitude the drone follows the trajectory on the Z axe perfectly as it can be seen
on the second figure shown for this test.

This test has also been tried with different values for a, b and c for the equation
4. 32 and lower values for N, the prediction horizon of the MPC. Although the
results are not shown (they can be reproduced with the MATLAB simulation)
here are some observations: Increasing a means that a bigger horizontal
movement is required and the drone reaches faster its limits for pitch and roll.
Therefore it have some problems to perfectly follow the trajectory (same effect
than can be observed on the last turns of the drone for the precedent test). This
has more to do with the maximal horizontal speed and acceleration that the
drone can provide, therefore for any given trajectory either make sure that the
drone is not requested to reach those accelerations or increase the limit of the
pitch and roll in the soft constraints of the optimal problem. Increasing b means
demanding a higher frequency for the periodical horizontal movement. If we
consider that the whole system behaves like a second-order transfer function, a
classical frequency-domain analysis of a second order system tells us that the
amplitude of the response should decrease and a phase difference of 180° should
appear between input and response. During the test a similar behavior can be
observe while increasing b: decrease in amplitude and a bigger phase shift. Not
all the values of b can be tested because the MPC is sampling at 10Hz (0.1s) and,
following the Nyquist-Shannon sampling theorem, only signals with a lower than
5Hz would be acceptable. But there is no need to reach those frequencies (really
high if we think on a moving object) because, by that point, the amplitude of the
response would be less than a 10% of the input due to the second-degree
dynamics. In fact for a movement of a frequency higher than 0.25Hz the
amplitude of the response is lower than a 90% percent of that of the input.
Increasing c doesn’t have a great effect since, at it has been shown, it’s more
reactive to altitude changes. In fact a (reasonably) bigger value would generate a
better performance. This is due to the fact the over all thrust of the motors would
be higher and although the MPC doesn’t understand that a higher thrust plus an
inclination means an horizontal acceleration this doesn’t stops the real drone
from using the extra throttle to move faster without the need of extremely
pitching or rolling to achieve that horizontal acceleration/speed. In terms of
varying N, the tests show that it can be decrease to 10 (that is a horizon of 1s,
half of what we’ve been using) without any major decreases in performance:

45

Figure 23: Results for the test of trajectory tracking given a prediction horizon of N=10 (1s)

This is an important result since a lower N would mean less computational time.
The only problem is that, if we compare again the system to a second order
function, its cutoff frequency is smaller so the performance for high frequency
movements decreases.

Tests have also been made with the sequential linearization MPC in order to see
if, in terms of following a trajectory, it improves the results. Those are the results
of the test:

Figure 24: Results for the test of trajectory tracking with sequential linearization

46

Figure 25: Results for the test of trajectory tracking with sequential linearization

Figure 26: Results for the test of trajectory tracking with sequential linearization

Observation: As it can be seen the results are not bad but they are far from the
ones obtained without the sequential linearization. Again, the system

47

compromises its precision in terms of altitude positioning in order to use the
throttle command to move faster horizontally. Off course the movement of the
drone is more realistic and, as it has been said, it is probable that a real drone
would perform better with the sequential linearization, but, as it stands right
now and using only the results of the simulations the sequential linearization
shows a worst performance with a higher computational cost.

48

Chapter 5: Experimental work

Apart from simulation, some experimental work has been made to test the drone
and the tracking room. All those tests were made with the manual controller.
The first test with the drone served to assure that the drone could fly, that it was
well calibrated and that the PID’s of the inner controller worked well with the
default values. All of those tests were satisfactory and the drone could easily be
flight manually. The next step was to try system identification, essential if we
wanted to implement the MPC.

5.1. – First attempt on System Identification

During the first stages of the project we made a first attempt on system
identification. Because the tracking room was not available at that time we have
no way to measure position of the drone so we tried the Sys ID only using data
from the IMU of the Navio2 board (mostly accelerometer and gyroscope) and
comparing the experimental values with the values obtain by the model and
PWM values send to the motors. The parameters to indentify were: the lift and
drag coefficient of the motors and diagonal values of the intertie matrix (see
chapter 3). The idea was to use simple commands (like hovering or yawing) in
order to identify the parameters separately. The data of the IMU and the PWM
send to the motors could be extracted after the flight connecting the drone to the
ground station and downloading the log files (they can be converted to MATLAB
files). These are some of the results of the system identification:

Figure 27: Comparison between Thrust calculated from the measurement of the IMU and the values

expected from the model

49

Figure 28: Comparison between Pitching Moment calculated from the measurement of the IMU and

the values expected from the model

Although it can be appreciated some similitude between experimental data and
the model, mathematically only for the identification of the lift coefficient
(related to the results shown in the first of the figures shown above) we obtain
correlation values higher than 90%. For the other coefficient the test obtained
results with correlations under 60%. These derive mostly from two factors:

- Data from the IMU log is, sometimes, too noisy and somewhat unreliable.

- The simple movements we tried in order to identify the parameters
separately are too short in time (for example pitching a certain angle
without crashing the drone) and not enough data is obtained.

In order to solve these two problems it was proposed to use the tracking room (
by the end of the project was already available), run long flying test with random
movements and use all the position and attitude data to make an overall
identification of the system.

5.1. – First Tests in the tracking room

How the tracking room works is defined in the chapter 2.3. The first attempts we
used to test the streaming of the data from the Motion Capture System and how

50

well it is capable to follow the trajectory of the drone. The next figure shows
some of the results of tracking obtained during a random flight:

Figure 29: Results of MCS during a random trajectory

The results shown in the figure have been post-processed with MATLAB. As it
can be seen the results are not as noisy as the ones obtained in the IMU. These
results can be derived to obtain the speed of the drone. As it has been said the
information of the attitude is presented in quaternions but can easily be
translated to Euler angles during the post-process.

The next step would be to use that data in combination with the logs of the
ardupilot (we need them to know the commands send to the motors) to do the
System Identification. There is only one problem that stopped us from pursuing
in that direction: The synchronization between the two sources of data. The
ardupilot code and the Motion Capture System have different methods to time
stamp the data recorded. The ardupilot starts counting the time when the drone
is armed and creates a log file every time it stops. The Motion Capture System
starts counting when a new session of the program is initialized and creates a file
every time it starts recording. As it is, there is no way to synchronize
automatically the two sets of data using the time stamps. One solution we
proposed was to use the other data from IMU and try to correlate with the

51

attitude data of the Motion Capture System (by locating characteristic
movements). This proved to be extremely laborious and inaccurate. To exemplify
this, the next two figures show data from the two sources:

Figure 30: Roll recorded by the Ardupilot

Figure 31: Roll recorded by the Motion Capture System

Technically the data from the log of the drone should be found inside the data
captured by the MCS but to find a correlation is not an easy task.

One of the first questions to be addressed in future installments of this project
should be to find a way to synchronize the two data. It could also be interesting
to find a way to read the values send in real time to the drone by the manual
controller without the need of reading the logs of the drone.

52

Chapter 6: Conclusion

This report presents the result of the implementation on simulation of a linear
MPC with a non linear system. The report could be divided into two big parts.
During the first part it is presented the building of the drone and a briefing about
the software that comes incorporated. It also represents the first months of the
project and the hours dedicated to the understanding of the drone and its setup.
This part is directed to futures students that will continue this project and it
should help them to understand the functioning of the drone so that they can
quickly start addressing some points left aside during the project like the System
Identification and the implementation on the real drone. It should also help them
in the reproduction of the drone when project gets to the point of trying to fly
several drones at the same time. The second part of the report enters more in the
domain of the automatic and optimal control with the modeling of the close loop
system and the formulation of optimal problem. Finally the MPC is tested on
simulation.

The results obtained, though limited, are, for the most part, satisfactory with a
good behavior of the drone, at least in simulation. The results are good enough to
motivate the implementation of the linear MPC on the real drone. Sequential
linearization, although in theory may seem like an improvement over the single
linearization system, presents underwhelming results and an increase in
computational power required in comparison with the standard linear MPC.
Still, and as it has been observed in the precedent chapters, the system with
sequential linearization presents a more realistic motion of the drone so it could
be interesting to test its behavior in the future with the real drone (if it can be
implemented at real time).

Three main issues have been left aside in this report that should be addressed
and focused by the incoming student that takes on this project: System
Identification, the finding of a reliable way to communicate and interact with the
drone and its software other then the manual controller, and the implementation
of an optimizer that could run the MPC at least at 10Hz inside the RPi. These
three points are interconnected and they are all necessaries to achieve the final
long term objective of the project. They pose more of a logistical problem and
they should be addressed from the beginning of the project. In the final stages of
this project some of the issues have been confronted but without too much
success due, for the most part, to time constraints and that is the reason why
they are not formally included in the report.

Lausanne, July 27, 2016

Martí POMÉS ARNAU

53

References

[1] R. Mahony, V. Kumar and P. Corke, “Multirotor Aerial Vehicles”, published in the IEEE

Robotics & Automation magazine, September 2012.

[2] V. Streit, “Control of Quadcopter – Identification”, semester project done at the Swiss

Federal Institute of Technology in Lausanne (EPFL), January 2015, Lausanne, Swiss.

[3] W. Amanhoud, “Model based control of quadcopters”, Master project done at the Swiss

Federal Institute of Technology in Lausanne (EPFL), Jully 2015, Lausanne, Swiss.

[4] L. Dubois, “Control of Crazyflies”, semester project done at the Swiss Federal Institute of

Technology in Lausanne (EPFL), January 2015, Lausanne, Swiss.

[5] Altug Bitlislioglu, “Time Optimal Cornering”, work done at the Swiss Federal Institute of

Technology in Lausanne (EPFL), June 2014, Lausanne, Swiss.

[6] “CVXPI”, http://www.cvxpy.org//, Online, accessed June 2016.

[7] “Ardupilot developer guide”, http://ardupilot.org/dev/inde3.html, Online, accessed June

2016.

[8] “Navio2 documentation”, http://emlid.com, Online, accessed June 2016.

[9] “Ardupilot developer guide”, http://ardupilot.org/dev/index.html, Online, accessed June

2016.

[10] “Lipo battery calculator”, http://multicopter.forestblue.nl/lipo_need_calculator.html,

Online, accessed June 2016.

[11] M. Zaare Mehrjerdi, B. Moshiri, G. Amoabediny, A. Ashktorab, B. Nadjar Araabi,

“Model Predictive Control with Sequential Linearization Approach for a Nonlinear Time

Varying Biological System”, published in 25th Chinese Control and Decision Conference

(CCDC), 2013.

[12] R. Cagienard, P. Grieder, E.C. Kerrigany and M. Morari, “Move Blocking Strategies in

Receding Horizon Control”, Published in Conference on Decision and Control, 2004. CDC.

43rd IEEE

[13] S. Yua, C. Böhm, H. Chen and F. Allgöwer, “Stabilizing Model Predictive Control for

LPV Systems Subject to Constraints with Parameter-Dependent Control Law”, Published by

Stuttgart Research Centre for Simulation Technology (SRC SimTech), June 2009.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9774
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9774

