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Abstract 

 

Tasks in architectural and interior design range from defining the building floor plans and 

ensuring desired functionality, to deciding furnishing styles and arrangement choices; all to 

best fit certain pre-established purposes. The process of design, as a whole, has remained 

hard to master for computer-based optimization in general and for computational 

intelligence approaches in particular. Some attempts to tackle different subfields of this 

problem in a machine learning fashion have emerged over the last few years, aiming to 

offer partial automatization of human tasks, personalized support for specialists in the field 

and professional guidance for amateurs. In this thesis, we first present an overview of 

current advances of computational intelligence in architectural science with a focus on 

interior design. We describe various learning models applied to interior design challenges 

such as furniture type selection, style compatibility, furniture arrangement, or ornamental 

decoration. The core of the thesis is devoted to report ongoing research towards the 

development of a commercial, robust and scalable solution for automatic furniture 

arrangement, given a room plan. We propose two probabilistic models to be used in the 

complex problem of furnishing bedrooms. The first resides in a Bayesian Network based 

approach for the automatic generation of the number and types of furniture entities to 

occupy the new space, namely the occurrence model. The second one, called 

arrangement model, deals with learning different commonly met sets of items 

interconnected within the same space and estimating their relative positions with GMMs. 

Both models heavily contribute to the main goal of achieving a 3D planner for bedrooms, 

but their genericity allows other types of interiors to be modeled through the same process. 

Keywords. Architectural design, interior design, computational intelligence, probabilistic 

models 
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1 Introduction 

Over the last thirty-odd years, our societies have steadily become more and more aware of 

the importance of information and data at large as a tool for knowledge extraction and 

expert decision support. 

What started as a mostly business-related endeavor in the form of Data Mining or 

Knowledge Discovery from Data, has become an almost all-encompassing endeavor 

under the umbrella term of Big Data and, more formally, under the conceptual framework 

of Data Science. 

The increasingly common availability of large and often complex databases has changed 

many operating paradigms mostly in IT-oriented companies but, interestingly, it has also 

become the stalwart companion of many fields of science, from astronomy [1] to high-

energy particle physics [2] and neuroscience [3]. Arguably, though, no bigger effort has 

been made to tame the Big Data beast than in Biology [4]. 

Importantly, this concern for data and their uses has gone well beyond IT companies, big 

businesses and science to permeate far smaller enterprises. This thesis is an example of 

that, as it deals with data science as applied to customer-generated information gathered 

by an interior design small enterprise. 

This company, namely Interiorvista (url: http://interiorvista.com) focuses on the design and 

development of software tools to accompany their customers in a seamless process of 

designing interior spaces, facilitating the process of choosing the right elements of 

furniture and decoration and the subsequent contact with vendors. 

Architecture has been an endeavor at the heart of human societies throughout history. 

This well-established field has undergone continuous progress in different fronts, from the 

use of materials to engineering and design. Modern architecture can be said to have 

undergone a further radical change through the adoption of computer-based methods for 

both engineering and design. Interestingly, the pervasive introduction of increasingly 

sophisticated methods of computer-aided design (CAD) and engineering (CAE) 

http://interiorvista.com/
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temporarily displaced mathematics from its central role in architectural practice. This 

seems to be a trend currently in the process of reversion, paradoxically due to the formal 

complexity allowed by CAD systems, which begs for the use of parsimonious data models 

that can be used to transform the available information into actionable knowledge. 

This need of data modelling has naturally led to a more recent step forward in the use of 

computers in architecture, which is the integration and application of computational 

intelligence (CI) approaches in design processes, so as to answer an older question posed 

by MacCallum [5]: does intelligent CAD exist?  

Note that research on the use of Machine Learning (ML) in design was already quite active 

in the 1990’s [6]. In the architectural engineering field, artificial intelligence (AI) is currently 

present in subfields such as building design, interior furniture organization, ornamental 

decoration and style, aiming to offer automatization of human tasks, personalized support 

for specialists in field, professional guidance for amateurs, etc. 

This thesis concerns the use of CI probabilistic approaches in the specific field of interior 

design and within the constraints of a project that involves an agreement between the 

Interiorvista company and the Facultat d’Informàtica de Barcelona (FIB) at Universitat 

Politècnica de Catalunya (UPC). 

The specific goals of the thesis are listed next. 

Basic goals of the thesis 

1. Implementing a Bayesian Network model for the automatic generation of the 

number bedroom furniture pieces that will be aggregated within the given layout. 

2. Developing a GMM-based furniture arrangement system for three types of furniture 

categories that can be found within a bedroom: bed and nightstands, bed and TV, 

and desk and chair.  

We now summarily list the main results of the thesis. 
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Main results of the thesis 

1. Achieved a functional furniture occurrence generator through the help of Bayesian 

Networks. 

2. The occurrence system makes the task of sampling unseen solutions easy to use 

and to improve. 

3. Creating furniture arrangements with GMMs for objects that can be found within the 

context of a bedroom. 

4.  Particularizing the arrangement system for three type categories: bed and 

nightstands, bed and TV, desk and chair.  

5. Obtaining general use models that learn and sample solutions in under one second. 

6. Providing generic approaches and implementations for each model that can be 

easily improved upon. 

Structure of the thesis 

Beyond this introduction, the current thesis is structured according to the following 

chapters: 

Chapter 2: In this chapter, we review the present capabilities of AI, with a focus on CI and 

ML, in the field of architectural design and, more specifically, in interior design, including 

an examination of the underlying data models. We expose the models’ strengths and 

limitations, as well as their dependency on the specific context, their similarities and 

evolution across design main subfields and the possibilities opened by the potential 

combinations of methods. 

Chapter 3: This part offers details about the Interiorvista Company, their current 

achievements, vision and goals. It also reveals a motivation of our project’s existence 

within the company, research prospects and future employment of Artificial Intelligence 

techniques to contribute to the company’s tools to attain its goals. 

Chapter 4: description of the CRISP approach to Data Mining for the dataset included in 

this research. It includes the tools and frameworks needed, decision motivation and 
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examples relevant to the issue of usability. This chapter also provides specific information 

regarding data integration and further processing for each of the engaged models. 

Chapter 5: The overview across fields of application of CI in interior design provided in 

Chapter 2 is a first contribution of our ongoing research leading to the development of a 

real-world, commercial solution to offer automatic custom room plan-adapted furnishing 

suggestions to clients. Besides, the models behind the solution must be robust and 

scalable in order to incorporate the numerous existing furniture options and to fit various 

room layouts. Furnishing options must comply not only with user preferences, but must 

also be able to incorporate professional design expert knowledge-learned and 

incorporated by the model, resulting in suggestions as close to professional design as 

possible. This chapter includes the details of the implementation of several probabilistic CI 

methods and their use in experiments for the analysis of the available data. 

Chapter 6: This last chapter of the thesis includes, first, an overview of the project, results 

and the knowledge gained through experimental investigation. Secondly, we detail future 

development of potential interest, including future dataset requirements for advancement 

of this research and an overview of the ultimate goal we are striving for, continuing the 

difficult and untrodden path, started with our proof of concept research, towards achieving 

a fast, professional and user-friendly 3D planner software tool. 
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2 Related work  

Architecture, a science, art and craft that has been at the core of human societies 

throughout history, has always represented one of the most intriguing and continuously 

evolving field, with feeding influences and contributions from exact sciences such as 

mathematics and geometry that helped pushing its boundaries towards bigger and more, 

complex and accomplished constructions. Architecture can be traced back to ancient 

times, in cultures in India, Egypt and Greece [7]. Besides technical influence, architecture 

was heavily modeled by arts and personal taste, becoming a field at the heart of human 

communities.  

With the ever increasing complexity of architectural models, practices and knowledge, and 

with the advances on computer-based technology providing more powerful and end-to-end 

architectural solutions, the progress in the field now faces the challenge of integrating 

computational intelligence (CI) and human expert knowledge to provide integrated 

automation and personalized assistance in using these tools.  

Machine Learning (ML), in particular has been used in the sub-field of architectural design 

research since the early1990’s, [8]. Numerous artificial intelligence (AI) and ML techniques 

have emerged, in many architectural sub-fields including building design, interior furniture 

arrangement, style assessment, artifacts decorations. They aim to offer at least partial 

automatization of human-specific tasks; personalized experience based on user practices 

and interaction with the software; professional guidelines and practices integrated with the 

current stage of the projects, amongst other features. 

In order to provide an in depth understanding of the current positioning and capabilities of 

CI and ML models to address the challenges imposed by our project, which include 

automatic furniture organization provided a personalized room plan, we review in this 

chapter the noticeable advances in architectural design, which inspired and directly 

influenced the research and models present in our target subfield – interior design 

automation. In doing so, we expose in our analysis the underlying models used, their 

contextual strengths, imposed constraints, limitations and dependency on the specific 
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problem they aim to solve. 

 

2.1 Early attempts to model the human design phenomena 

Among the earliest efforts to develop intelligent systems for building design, a multi-criteria 

based model was presented in [9], building upon two ongoing efforts to algorithmically 

represent the human design process. The first, that we could place in the area of cognition 

science, tries to understand the details of the mental process performed by a human in a 

design task, while the second puts the computer first and tries to express the process only 

analytically, abstracting the human and cognition processes and translating them all in the 

form of a rigorous, algorithmic process.  

The work in [9], based on these two lines, analyzes the role of multi-criteria problem 

solving in modeling the design process as done by a human mental process. Although the 

system implementing the model proposed, namely KLDE
0, reports poor performance due to 

the inability to express requirements that are ideal for the model, often causing ambiguity, 

imprecision, incompleteness and inconsistency, this work still provides preliminary results 

of interest, in an early attempt to develop appropriate computational intelligent systems to 

achieve architectural design goals. 

 

2.2 Probabilistic approach 

As a response to the challenges regarding the solution space dimensionality, problem 

complexity, and the difficulty and rigidness of completely specifying the layout rules, 

various probabilistic models have emerged in recent times. 

 The main advantages provided by this category of approaches include: 

 a first possibility to partially model, in a probabilistic manner, a space that is 

impossible to be represented completely through a deterministic approach, due to 
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its vastly complexity, both in terms of possible solutions and space dimensionality. 

 the ability to learn meaningful relations and parameter values directly from real-

world data, followed by sampling reasonable layouts from the learned probability 

distribution model, thus avoiding, first, the need to model a tremendously complex 

and highly multi-dimensional space of possibilities, and, second, the need to search 

this vast space for optimal, plausible configurations. 

 the option of incompletely specifying the problem requirements: compared to 

previous models explored, in which a rigorous definition followed by an analytical 

representation of the desired goals and problem parameters was required. In this 

case, a probabilistic model trained on real-world data would be able to estimate, in 

a feasible manner, the other unknown parameters, resulting in a great flexibility in 

the specification of the input and consequently allowing diverse results for a more 

loosely-specified input. 

 the choice to fix arbitrary constraints and sample from the probabilistic network the 

rest of the parameters: this feature is very useful when the degree of freedom of 

certain parameters is known, forcing the model, in appropriate cases, to keep some 

parameters at desired values while sampling compatible values of the other 

parameters within their respective constraints. Besides the ability provided by this 

property to interact with the model and constraint it, thus reducing the search space 

and guiding it towards a desirable solution, the model can also be used at a more 

abstract level, to define a limited, narrow, local search space of feasible solutions, in 

which a stochastic optimization method could be feasibly applied to obtain the best 

solution according to a defined energy function. 

Because of these advantages, probabilistic models have also been applied in the design 

field, both in architectural design for the automatic generation of floor plans that would lead 

to the ability to generate 3D buildings [10]; to generate (much more) new, feasible objects 

from components, starting from few, diverse ones [11] and, more recently, in interior 

design for furniture sampling and organization [12].  
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Bayesian networks for floor plan generation  

An interesting study, which uses Bayesian Networks to model complex, underlying 

patterns and dependencies among the entities of a floor plan was presented in [10]. The 

probabilistic model is trained on a real-world dataset in order to learn meaningful 

relationships among the room sizes, aspect and adjectives. By implying a learning model, 

the authors claim to overcome previous limitations and failures to correctly capture deep, 

underlying dependencies, in a manner that would lead to feasible room generation. The 

learning process is done at a global level, thus avoiding the possibility of learning only 

local dependencies which would fail to merge once the overall floor plan is created.  

 

Figure 1. Bayesian Network trained for (a) 10 iterations; (b) 100 iterations; (c) 1000 iterations 

and (d) manual designed structure. 
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Figure 1, a visualization of a Bayesian Network trained for 10, 100 and 1,000 iterations is 

presented, the last model being handcrafted by a professional interior designer. After 

training the model, samples are drawn from the probability distribution over the space of 

solutions and an optimization phase occurs, to fine tune the previously obtained result. A 

local space exploration is possible at this stage, when starting from a feasible estimation, 

as compared to other models in which the initial sample was randomly initialized.  

The optimization is accomplished using a simple Metropolis algorithm with a set of steps 

compatible to possible floor plan changes, as would be done by an architect, and 

including: 

 sliding a wall: where wall is defined by the authors as a contiguous set of wall 

segments, which are randomly split and moved in a controlled manner, in order to 

fine-explore the neighborhood of solutions and find a lower energy point in the 

search space.  

 swapping rooms: this move, in opposition to the previous one, aiming towards 

convergence, is intended to create spikes of energy, commonly used in order to 

restart the optimization process (i.e. not get stuck in a local minimum) and faster 

explore the search space. 
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Accordingly, the cost function optimizes the following:  

 accessibility: which and how rooms have to be connected – via open space, 

doors, etc. 

 dimensions: as overall space area and aspect ratio for different types of rooms, 

specific rooms, etc. 

 floors: a feasibility measurement, imposing that a certain room, at a certain floor, 

has to be inside the space defined by any lower levels floor plans. 

 shapes: a design expert metric, rewarding “nice” room shapes – preferred by 

professional architects when designing a floor plan (e.g. usually near convex 

shapes, large enough spaces, etc.) 

Bayesian Networks for shape synthesis from components 

In [10], a Bayesian based approach for floor automatic generation was introduced, defining 

a model through training on real-world data, which was used for sampling reasonable 

layout characteristics, such as adjacency relations, number, types and sizes of rooms. 

This model represented an inspiration to our work for developing the Bayesian component, 

trained on real world data, for sampling / generating furniture pieces that would fit in a 

bedroom. 

Other similar works, which use a probabilistic approach to model the complex, underlying, 

hidden relations among components of complex 3D objects (i.e. vessels, planes, furniture 

pieces) can be found in [13] and [11].  

In [13], the authors develop a system that uses a Bayesian Network to learn patterns and 

dependencies between component styles, including overall shape, aspect, contextual 

usability and functionality, in order to support the user in the task of assembling various 

types of objects from components – the system suggesting only “compatible” ones. The 

Bayesian Network learns from data, both in terms of structure and parameters. The 

structure learning, which is known to be an exponential complex problem, is learnt using a 

heuristic that searches the local space of network structures with steps that vary the 

current configuration through adding, removing and flipping edges.  
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The pipeline of the model is presented in Figure 2. Apart from the probabilistic component, 

the system has a pre-processing stage, in which the dataset, comprising various 3D 

models gets “semi-automatically” segmented into sub-components (e.g. arms, legs, head, 

etc.) which are tagged accordingly, in a hierarchical fashion (i.e. a component may contain 

sub-components). These segmented shapes are then clustered by style, resulting in 

groupings of the same type consisting of components with similar style. The Bayesian 

model is trained on top of the obtained clusters, with the result of a system capable of 

suggesting best style ranked components according to the current design object.  

This model provides inspiration to the approach we have developed for the furniture 

occurrence model in a bedroom, where furniture pieces that fit a certain bedroom can be 

compared to the shape components assembling a complex object. In our case, a Bayesian 

Network was also learnt, both in terms of structure and parameter values, for capturing 

underlying dependencies between the furniture pieces that would fit in a plausible 

bedroom. 
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Figure 2. A Bayesian Network based system for capturing dependencies among 

components of shapes [13]. 

 

 

Another successful instance of usage of probabilistic models for shape synthesis focused 

on automatic new object creation [11], compared to a user-assisting tool [13], at a massive 

scale, generating much more plausible objects from only a few ones. As stated by the 

authors, the system addresses certain limitations of its predecessor [13], including the use 

of the Bayesian Information Criterion (BIC), the probability tables in the Bayesian network 

and the lack of encapsulation of latent causalities in the model (i.e., through latent 

variables) – which are used in the model to capture abstract, high-level concepts regarding 

the overall object, as opposed to only individual component linkage.  

Top observations in the paper include the necessity to develop a hierarchical probabilistic 

model, as opposed to a “flat” one, because the diversity and the deep, underlying 

differences among similar types of objects (e.g. working desk chair, child chair, dining 

chair) are hard to capture at a more concrete level - as in the various linking properties 
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among different components. Similarly to the previous model, the structure and all 

parameters (including the latent variables) are learnt from data, allowing the model to 

better capture the trends and dependencies imposed for the various types of objects used.  

In Figure 3, we present the results of this system in generating new, many more (870), 

plausible, furniture objects (chairs), starting only from a few (88), displayed in the image in 

green. 

Figure 3. Probabilistic model [11] results for generating new chairs (in blue) from a few 

starting ones (in green). 

 

 

Although an indirect link between assembling shapes from components and assembling 

bedroom furnishing sets from individual pieces can be made, we highlight certain key 

differences between the two, making the latter a hard to master challenge only using a 

Bayesian Networks: 

 Infinite search space of positioning furniture: compared to components of 

objects, which have a clear positioning in the objects (i.e. chair legs for a chair, 

wings of an airplane, etc.) the furniture placement is a very challenging task to 

master, furniture pieces only being loosely coupled, with various types of 
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relationships between them in a real-world scenario, which influence positioning, 

angles, relative distance (i.e. a TV and a sofa, a table with chairs, etc.), resulting in 

infinite space possibilities, with only very few plausible ones. 

 Deeper underlying causalities for furnishing configurations: besides similar 

compatibility aspects to the 3D object modeling, such as objects style, functionality, 

coupling and room aspect, a bedroom layout is heavily influenced by patterns and 

rules far beyond this scope, such as: user personality, tastes, daily routines, 

activities, marital status, background, age, etc. 

 Numerous furniture types and variations: in a real world scenario, furniture 

objects are complex and numerous variations do exist: in style, color, functionality, 

dimensions, all contributing to a very large collection of possible entities with 

complex, multi-dimensional representation, as compared to virtual 3D shape 

modeling.  

Mostly data-driven oriented, able to capture underlying, hidden properties of the entities 

and their relation to each other and the context, Bayesian models have successfully been 

used in architectural design related research for representing learnable relations between 

complex objects components [11, 13], learning plausible room sizes and arrangement 

dependencies [10]. One key advantage they offer in this field is the process of discretely 

sampling from the probabilistic model, which overcomes, in a heuristic manner, the 

performance impact caused by searching or exploring the large, complex potential solution 

space. 

Probabilistic models in interior design 

Focusing now specifically in interior design, we must bear in mind that this subfield is, first 

and foremost, characterized by complexity. This complexity is often characterized by a 

very large solution space, which can be efficiently explored or estimated, as previously 

mentioned, through learning probabilistic models [11, 13] (at well-known costs, such as 

ambiguity, crude estimations of parameters for complex scenarios, or failure to capture the 

problem in all its dimensions).  

In particular, when dealing with furnishing a room, including both objects selection and 
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arrangement, most data-driven approaches include a probabilistic learning model such as 

Bayesian Networks [12], or a mixture of models; for instance, using a Bayesian Network 

for furniture occurrence task and Gaussian Mixture Models (GMM) for the arrangement 

task, as in [12] – in every case aiming to capture certain aspects of the data, hard to 

express in an analytical manner. This approach is similar to the one for exterior 

architecture building, in which the solutions’ space of construction shapes can efficiently 

be captured in a probabilistic manner, as shown in [10] and previously detailed. 

In [12], Fisher et al. proposed a system for generating new, plausible scenes (i.e. 

“environments composed of arrangements of 3D objects”) by starting from a few user-

provided ones. The system deals the problem that is also a challenge in this thesis, 

namely furniture selection and arrangement, by using a Bayesian model for learning the 

furniture occurrence in different types of rooms and a GMM for capturing arrangement 

patterns.  

In [12], the probabilistic generation of new scenes starts from only few examples, which 

represents a potential limitation given the usual complexity of a classic furnishing scenario, 

in which realistic, plausible layouts are governed by numerous types of objects and many 

placement possibilities. To address this issue, the system uses an “external” large 

database of scenes, which is used for both introducing diversity in the new scenes created 

(by inter-changing objects) and automatically enlarging the dataset (by incorporating 

similar scenes to the examples given by the user).  

The second component of the model proposes a clustering algorithm to obtain the object 

categories that can be swapped with each other; it aims at identifying objects surrounded 

by similar types of entities (i.e. present in a comparable context). Creating these 

“contextual categories” of objects, which can contain a variety of types of objects (e.g., 

objects that have a desk as support could be TV, lamp, computer, book, etc.), the model is 

able to introduce much variety in the synthesized scenes, not only in terms of similar 

objects but also in terms of objects of different type, due to these groupings.  

The third component addresses the limitation of training the furniture synthesis model on 

only the limited set of examples provided, by proposing a model to crawl the vast content 
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of the dataset for similar scenes to the one provided, resulting in an automatically 

expanded and representative training set to the initial input. Moreover, the degree of 

freedom of the synthesized scenes can be adjusted by the user, who is able to decide 

between more diversity and consequently less similarity of solutions to the initial context, 

or vice versa, this always representing a tradeoff. 

 

Figure 4. Results (right hand side) of scenes generated for given input examples (left hand 

side) in [12]. 
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The furniture selection and arrangement model (representing the first part of the model) 

uses, as briefly mentioned before, a Bayesian Network for learning the furniture 

occurrence and a GMM for capturing arrangement patterns in various scenarios.  

The probabilistic model in this thesis is inspired on this work, dividing it accordingly: in a 

mixture of a Bayesian Network addressing the generation of plausible furniture sets and a 

GMM for arranging such furniture. However, as presented in Figure 4, showing the 

obtained scenes for different values of the occurrence parameter, given an input example 

(left), the synthesized solutions rather emphasize complex ornamentals and decorations 

rather that full room space furniture synthesis, as addressed in our case – where the goal 

is rather deciding the main furniture pieces towards a complete, fully functional bedroom, 

than plausibly decorating a certain portion of it, or a functional group of few furniture pieces 

(e.g. a desk with a chair, with various decorations and artifacts). Moreover, the 

performance of the GMM arrangement model is limited to the scenario context addressed 

– modeling only direct, usually binary relations among few furniture pieces (i.e. a table and 

a desk) and adding variations in terms of interchanging objects – which are usually rather 

“scene accessories” compared to the most relevant furniture. These artifacts, being inter-

changed with others that are present in similar contexts, rather have a fixed, low-variation 

position, determined from the context itself (for instance, an apple on a plate, or a TV on a 

desk can be placed in a limited, deterministic, known set of positions, mostly maintaining 

the arrangement integrity). In contrast, furniture pieces, which are rather loosely coupled, 

allowing a variety of possible positions in an initial unfurnished room, permit only few 

plausible final configurations, making the placement crucial for the overall sense of reality 

of the scene (a chair facing a wall is unlikely, and so are a bed blocking the door or the 

access to a wardrobe, a TV placed correctly but rotated away from a possible 

corresponding sofa or bed).  

A key aspect regarding arrangements in furnishing of realistic bedrooms, is related to 

complexity: furniture positions, angles, direct dependencies can be highly influenced by 

“soft constraints” such as human supported activities, daily routines, user preferences, 

rather than “hard ones”, which are more rigorous and thus easier to model in a more 

deterministic, algorithmic approach, such as: available space, specifics of placement (e.g., 
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a glass should always be on a table or on a desk). 

Another novel data-driven approach to capture furniture grouping functionality can be 

found in [14] and is based on the concept of “Wall Grid Structure” (WGS), which addresses 

a similar problem to the one in this thesis, namely furnishing an empty room, represented 

through type, shape, dimensions, doors and windows positions.  

The system was used to furnish three types of interior spaces, namely: conference rooms, 

living rooms and bedrooms. The goal of the research was to advice potential clients in 

ways of designing their interior property, showing how their method could be used to 

furnish apartments interiors, and also help professionals in the field by enlarging their 

vision and easing the interior design process. The system was developed based on 

scenes taken from Google Warehouse dataset, consisting of 52 scenes and 1,111 

furniture pieces for conference rooms; 45 scenes and 741 objects for bedrooms, and 48 

scenes and 875 models for living rooms. The algorithm consists of two main stages: the 

“learning stage” – in the initial phase of the algorithm, using a database of same-type 

rooms - and the “synthesize stage”, which consists of furnishing the desired room. 

The learning stage occurs only once, at the onset, and involves creating the basic 

structures (patterns of furniture structures) to be used in the second phase. This stage 

does not consider the room details, focusing on extracting the information from the 

dataset. It has the following main steps: 

 objects’ front direction computation: which influences the orientation and 

positioning of the object in the room (e.g., a TV or screen would usually be with the 

back near a wall and therefore facing the room interior, compared to a big desk in a 

conference room occupying a center position). A novel approach to tackle the 

detection of forward direction of the furniture pieces in an automatic manner is 

presented; it is based on a series of general observations around the relation 

between object positioning and deducted functionality, such as: front direction of 

models near a wall usually have their forward direction towards room, perpendicular 

to the wall (wardrobe, bed); functional groups of furniture usually face the center of 

the group, (chairs around a table); objects usually face wider open areas, containing 
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more details in the room than the other faces (probabilistically, a person would 

usually use the object from that side of the room). Accuracy reported by the authors 

for this step is encouragingly high (85% to 90%), reporting poor detection of forward 

vectors mostly for objects hard to figure out, even for human expertise, such as 

bottles, bonsai, or a “cube style cabinet”. Also, for some objects like a symmetric 

table, the surrounding objects and walls represent a decisive factor in determining 

the front direction. 

 Functional Groups (FGs): A new concept, the functional object grouping is 

introduced. It is necessary to obtain unique, compatible, artistic style of the object 

collections rather than putting objects together only by functionality. As an example: 

a table should have all the chairs of the same model, and the overall look and feel 

should be pleasant. An FG is represented in the system as a graph: nodes are the 

objects and edges the relationships between then. Two types of relations are 

defined, namely: “center element” – in which an object points towards the center 

object of the FG it belongs to (i.e. each chair is linked to the corresponding table) - 

and “supporting relationship” – in which an object represents the supporting surface 

for another one (e.g., a table and a PC). The FGs are extracted automatically from 

the scenes in the dataset, based on manually-added relations between furniture 

components. In the following steps, these abstract grouping in functional units will 

represent furnishing options, given the functionality and user’s desires. One 

important aspect is that FGs only contain information about the functional relations 

between furniture pieces (i.e. groping in favor of supporting certain human activities, 

such as: conference table with chair is a communication / socializing FG, a desk 

with a chair is a working FG, etc.) and not spatial and positioning information 

(relative to the room). These FGs, treated as single entities in the next steps, will be 

used to generate the room layouts (in contrast to the individual furniture pieces) 

preserving in this way hard-to-learn anomalies such as different types of chairs for 

the same table, asymmetric decorative objects, or different type nightstands, 

therefore preserving the overall style and professional aspect of the resulting 

layouts. 

 Wall Grid Structures (WGS): The main novel concept introduced in this paper is 
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represented by WGS which are the “template” for learning the room overall 

appearance, at a very abstract level. The WGSs are used for learning the scene 

arrangement information using a set of grid cells along the walls and symmetry 

axes. In the first phase, these are used for a detailed analysis of the arrangements 

of objects at an abstract level, including symmetry, probabilities of models to be 

placed at certain positions in the grid and vice versa: for models, the best positions 

can be determined. The WGS will model a probabilistic placement of the types of 

previously computed FGs in various types of room, for different space ratios. 

The second part, the “synthesizing stage” is the one in which a furnishing option is 

suggested for a given room. This is done by automatically determining the WGS of the 

given room, followed by suggesting appropriate FGs. The system will start with a main FG, 

called “seed” that is selected among the most frequent items in that type of room (80% and 

more), e.g. a table with chairs in a room conference, a bed in a bedroom, etc. Following 

the placement of the main seed, secondary “supplementing” FGs are added (e.g. a visual 

FG – that might contain a TV or a projector, accordingly, etc.). On the first row of Figure 8, 

the room occupancy information of an initially empty room and after adding few FGs is 

presented, while the second row presents an empty room to which the main FGs are 

added followed by secondary ones towards a fully furnishing layout. 

The system presented in [14] is thus a novel approach for generating valid, unique, artistic 

furniture configurations based on probabilistic learning of furniture placement, using WGS, 

and a library of models, grouped in FGs in order to conserve style and general 

appearance, as well as to reduce overall scenario complexity by removing certain degrees 

of freedom, hard to capture in all their completeness in the learning phase. However, 

moving the focus to the context considered in our case – a real-world, customer-oriented 

scenario, the model shows a number of limitations, such as: feasibility of furniture grouping 

in FGs – resulting in exponential feasible combinations when a large dataset of many 

compatible furniture pieces is present, common case in a furniture selling company 

comprising a vast library of objects; restriction of the room plan to general cubical form – 

which is enough for most conference rooms but not always the case for personal 

bedrooms and living rooms. 



26 

 

Figure 5. First row: Occupancy information of an empty room to which main FGs are added. 

Second row: Steps in the process of adding main and secondary FGs towards a fully 

furnished room.  

 

 

 

Although probabilistic models have been successfully used in capturing abstract patterns 

in data driven approaches, synthesizing real-world-ready scenes, with application to 

commercial scenarios such as furniture sales, or automatic furnishing of houses, remains 

an open problem. Moreover, a pure data-oriented model is still far from capable of 

capturing rigorous and stylish furnishing subtleties towards achieving homely, artistic, 

construction-ready solutions. 
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2.3 Generative models 

The problem of generating diverse building models, from floor plan generation and building 

façade to interior design furnishings and including realistic decorations in a scalable 

fashion, has to some extent been addressed through methods that aim at learning from 

existing, real-world entities to generate new feasible ones.  

Briefly presented as a probabilistic model in section 2.2, the study reported in [11], for 

instance, focused on generating various new plausible object models from a few, real ones 

by evolving new compatible components. This is accomplished through a probabilistic 

model linking properties of the components’ shapes and learning the plausible variations 

within a context. In [15], the authors created a model able to, first, determine the space of 

plausible, local variations of building layout and, second, merge such local derivations 

through a linked transitions graph with valid pathways at a global level, enabling easy 

transition in the building space neighborhood.  

Compared to the other explored trends, in which the focus was place on iterative 

optimization of certain goals towards a desired solution (or a few similar options narrowed 

manually to one), the models described in this chapter aim at obtaining new valid models 

which are “inspired” from real ones and are built from compatible components. The goal 

here is generating considerably more models while preserving overall consistency and 

diversity, starting from only a few ones. The realistic generation capabilities and cross-

components similarity learning of these models also have application to interior design for 

ornamental decoration of rooms [16], where new artifacts need to be generated and well-

placed in the room, preserving user preferences and the overall style [17], as well as the 

functionality of the space, while maintaining diversity.  

Another area related to interior design and room layout generation is that of automatic 

ornamental decoration. Although it may be seen as more of an option, this feature is 

particularly important for transforming an empty room into a livable one. Specifically, the 

aim of this process is to populate the empty furniture pieces (such as shelves, wardrobes, 

tables, walls, etc.) with adequate artifacts, preserving the style and overall arrangement 
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while providing overall utility and functionality. In the scenario described in this thesis: a 

commercial tool for selling furniture, offering clients the possibility to view online few, 

representative virtually furnishing layouts adjusted to personal room plan, this feature 

would be of key importance, making the client presented layouts more desirable and 

adding a “ready to be lived in” component of the mixture.  

A data-driven, ML approach in this area was presented in [16]. As argued there, the 

challenges imposed by generating furniture decorations are slightly different from the ones 

of furniture arrangement optimization in the following aspects: 

 Existence of a much more diverse set of artifacts compared to the furniture types 

that can be present in a certain room. 

 The model for generating artifacts arrangements has to be more scalable, ensuring 

diversity and variability according to the magnitude of the decorative space, style 

and functionality. In comparison, furniture variance is more restricted due to the 

room space / objects dimensionality ratio. 

 The arrangement of artifacts is a more subjective matter than design itself. For 

instance, two different persons might both agree on the same professional designed 

kitchen furniture, but might as well have different opinion on how artifacts should 

populate the furniture. Decoration is, thus, a rather more sensitive, personal matter. 

In more detail, and as stated by the authors, personal preferences affect: overall 

artifacts symmetry inside a shelf or vertically aligned, density of objects, grouping 

style -  similarity based versus functionally / activity oriented, overall aspect and 

organization (e.g. tidy, messy, strict). 

Another challenge addressed by the research presented in [16] was obtaining diversity in 

artifacts types and forms, something that was unfeasible through a stochastic optimization 

procedure, resulting in a unique solution or in few ones with very similar decoration results. 

Therefore, compared to furniture synthesis models, a valid space of solutions is defined 

here, using a set of inequality constraints, and the optimization process aims at bringing 

the solution within this valid space, as opposed to a point in the search space. 

Optimization steps such as object addition, deletion and inter-change are defined and 
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applied in random order sequences in order to drive the solution towards the goal and 

assure diversity. 

The work in [16] proposes a solution for the challenge of considering the personal 

arrangement style of artifacts in generating personalized decorative solutions based on an 

image or a 3D model provided by the user with an already decorated “cabinet”. Some 

examples of decorations generated based on user input (“Input Exemplar”, shown in the 

left side) are displayed in Figure 6. In this prototype, the image is manually annotated with 

the user’s help. The model then analyzes the personal style properties at two levels: an 

object level, consisting of: distributions on shelfs, adjacent relationships and placement in 

furniture; and a global/general level, consisting of: object density, grouping of similar 

objects (e.g. plates, glasses), variability, and overall symmetry. After understanding the 

user style and ordering preferences, the model is able to automatically fulfill furniture in a 

scalable fashion, preserving the style properties described above. 
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Figure 6. Decorating results according to personal style preferences, as reported in [16]. 
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3 The Interiorvista Company and the research 

project description 

 

3.1 Motivation 

For a non-expert, properly furnishing its personal room is usually a difficult task. Some 

common factors contributing to it include:  

1. a high variety of options for furniture pieces available, plus the ability to highly 

customize each of them (including coloring, type of wood, handles, doors, etc.) 

2. the difficulty of doing proper measurements and choosing appropriate size pieces of 

furniture to fit their personal room. Often, clients buy furniture that looks great in the 

shop galleries but does not necessarily fit well in their rooms. 

3. large, very detailed shopping lists: especially when buying furniture pieces that are 

custom-made (i.e., from parts), or highly customized. 

4. the lack of professional expertise and guidance for matching personal preferences, 

furniture style and available room space with the best available furnishing options. 

 

3.2 The Interiorvista Company and its products 

Interiorvista [18] is an interior design company that aims to empower furniture selling 

companies, such as Roca [19], to sell “more, better, fast”, their main products. Through its 

products, Interiorvista’s target is reducing the burden and complexity involved in furnishing 

an empty room, while inspiring and guiding the customer with a high-quality images 

catalogue of available products, captured in various, expert designed scenes. For that, the 

company provides: 

1. a software tool, named planner, meant to assist users online in virtually furnishing 

different types of rooms (i.e. kitchen, bathroom, bedroom), given their specific room 
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plan. We will present more details in the following section, where we correlate the 

real world challenges imposed with the main objectives of this research project. 

2. a furniture piece configuration tool – meant to help the client ease the process of 

building a customized furniture piece, by choosing each component type out of a 

variety of shapes and colors. The tool is meant to be integrated in the existing 

selling software of the furniture provider, in such a way that a final price and a 

complete shopping list is generated once the customization is accomplished. A 

snapshot of the tool is presented in Figure 7, showing the construction of a custom 

wardrobe, adapted to the desired room space and shape and with personalized 

interior partitioning. The tool also provides a total price for the wardrobe and can be 

purchased directly at the final step, by sending to the furniture provider the list of all 

pieces. The interface is simple enough to allow the user focus only on the personal 

important aspects, such as shape, choice of components according to their features 

(i.e. sliding door or glass door, coloring, internal shelving), etc., leaving the burden 

of computing the total price and the detailed list of components to the tool. 

Figure 7. Snapshot of a custom wardrobe built in the tool 
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virtual galleries and paper catalogues with professional scenes - meant to expose, in an 

artistic style, numerous possible combinations of available furniture options in a variety of 

styles and scenarios. Figure 8 emphasizes a gallery comprising various styles of chicken 

furnishing layouts and in Figure 9 we present a single, zoomed one. 

Figure 8. A gallery comprising various styles of chicken furnishing layouts  
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Figure 9. An example of furnished kitchen 

 

 

3.3 The software tool (planner) for virtual interior furnishing  

Representing one of the main software tools at Interiorvista, the planner main goal is 

helping the clients to virtually furnish their rooms with the desired, chosen furniture style. 

This gives the potential customers a free, easy, and online way of viewing their personal 

room (i.e. kitchen or bedroom) decorated in a certain style or with certain furniture pieces 

desired. In this way, the customer can have a better understanding and 3D visualization of 

their room and furniture that goes inside before making the purchase, thus helping with a 

faster decision and less unpleasant surprises after buying, such as incompatible sizes, or 

shapes, unusable free space, inaccessibility or improper usability of the room, etc.  

The planner also comprises a library of furniture pieces available to buy from a certain 

provider, as 3D graphical models, together with metadata including: price, available 

customization (shape, dimension, positioning, color, material) and usage constraints (i.e. 
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suitable type of rooms, space needed for proper operating the object, safety constraints 

and handling, etc.) 

We present, in the following, a scenario case for a potential customer furnishing a kitchen, 

outlining the stages and interactions with the Interiorvista planner: 

1. Starting point: gallery vs. style. In order to simplify the process as much as possible 

and guide the user towards professional furnishing solutions, the customer is presented 

with two options in the first step of the planner wizard: the “start by gallery” and “start 

with kitchen sets/styles”. This allows the user, in the first case, to select a preferred 

option among various kitchens that were designed by experts, using only furniture 

provided by the company (e.g. Roca). The furniture IDs in each image are known to the 

planner, resulting in an automatic furnishing of the kitchen with that furniture set, 

completed in a later stage. The second option allows the user for directly selecting a 

pre-made furniture set, with a certain style and functionality, that will be adjusted by the 

planner to fit their personal kitchen. The screen seen by user at this step is displayed in 

Figure 10.  

2. Room plan insertion. In this step, shown in Figure 11, the user has to input the room 

plan (i.e., the kitchen), through simple drag & drop actions, and resize and positioning 

commands. In the planner, this is defined through: 

1. the floor plan: namely the walls, windows and doors, including dimensions and 

positioning. 

2. the “gas point”: marked with a gas icon, which is needed in order to know the 

positioning of the gas-dependent furniture pieces (e.g. oven).  

3. the “water point”: marked with a water icon, is used to position the water dependent 

pieces (e.g., sink, dish washer). 

In Figure 11, we show different user interactions with the planner at this step, such as: 

resize / reposition walls and windows; positioning the heat and the water points. In the 

case collisions appear, the planner will highlight the items in red and the kitchen 

creation process cannot be completed (as shown in the last snapshot of Figure 11). 
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Figure 10. Interiorvista planner: starting with gallery vs. style. 

 

 Figure 11. Interiorvista planner: kitchen plan drawing. 
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3. Furniture generation. After the floor plan is complete, the customer can advance to 

the next step in the planner wizard, namely, visualization of the furnished room, which 

is available in both 2D – front and top and 3D. This step is the most important and also 

the hardest, because furniture generation is a complex task. The current process, in 

the case of kitchens, is formally described according to the following outline (details of 

the algorithms used being private): 

a. Input: this consists of the following: 

o  furniture set to use for furnishing - synthesized in the first step when the user 

selected a picture of their preferred furnished kitchen or a style. 

o the user’s kitchen floor plan – drawn in the second step. 

o the kitchen furnishing shape; current options include: along a single wall, L 

shape, U shape – with customizations on the furniture occupation 

dimensions. 

b. Possibilities generation: using these and static, predefined templates and rules, the 

engine generates the maximum plausible furniture combinations. These patterns, 

manually created, aim at massively reducing the number of total possibilities (e.g., 

putting furniture only along the walls, certain alignments and order of different types 

of furniture pieces, etc.).  

c. Filtering: invalid combinations, according to extra, static defined rules are tested. 

Some examples of rules are: 

o distance from the door to the closest furniture has to be X. 

o fire point-to-water point minimum distance is Y. 

o an object cannot be placed in front of a window (to allow the light to enter the 

room). 

d. Scoring: Other manual, empirical designed rules and functions are applied in order 

to score each remaining furniture configuration. These are highly related to common 

sense (i.e., what a person would value and would avoid). Therefore, they penalize 

bad aspects (e.g., unusable free space, small distance between similar furniture 

pieces, natural light blocking, fridge is between two lower, equal-size furniture 

pieces), and rewarding positive ones (e.g., a larger area of working space, 

alignment, compatible functionality grouping, etc.).  
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e. Output best result: Based on scoring, the best furnishing option gets selected and, 

according to customer selection, the 2D or 3D view is rendered. A few examples 

are presented in Figure 12. As seen, the user also has the option of viewing the 

inside of the furniture, including internal space partitioning in drawers, fridge, oven, 

dish washer, etc.  

Figure 12. Interiorvista planner: kitchen furniture generation. 

 

  

4. Save and print. The final step of the planner allows the user to save the project online, 

giving a recovery code to allow her or him to return to the website and resume the work 
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(i.e. restore the project), as shown in Figure 13. Besides, the tool generates the 

shopping list to be submitted to the furniture provider, containing all the furniture 

pieces, together with all the customization and components details needed and 

including prices. The list can represent a potential burden for a customer when 

manually built, having to contain in-depth details about the furniture pieces, customized 

components, etc., written in a compatible terminology with the furniture provider. The 

planner removes this burden by automatizing the overall process, providing the 

shopping list and the final price once the planner riches this step.  

Figure 13. Interiorvista planner: Project save and shopping list 

 

 

3.4 Algorithms limitations and challenges 

Automatic furniture arrangement is an open-ended research topic, being too complex to 

yet have intelligent software to achieve results compared to a professional interior 

designer. The Interiorvista planner represents a first step into automatizing furniture 



40 

 

arrangement in order to ease and enrich the customer shopping experience in this area. 

The software, currently able to furnish kitchens and bathrooms, provided with a specific 

floor plan, uses static patterns and manual scoring measurements in order to generate a 

complete furnished room.  

Specific for the kitchen and bathroom, the diversity and complexity of the scenarios are not 

as challenging as in more complex types of rooms, such as the living room and bedrooms: 

the furniture is usually placed along the walls or in certain positions for specific furniture 

pieces that depend on wall pluming (for instance, the sink near the water point, the oven 

near the gas point, the toilet near the drain, etc.).  

Another reason for a classical, hand-crafted algorithm to work (as compared to a 

computational intelligence model) is that, besides usually lacking much complexity and 

variations, the kitchen and bathroom furniture is also constrained by many safety 

regulations and best practices, both being rather rare in the case of other types of rooms, 

such as bedrooms and living rooms, which, in contrast, allow more freedom, personal style 

reflection, various ways of placing and grouping furniture according to specific desires, 

functionality and daily routines. Moreover, for the latter case, almost each furniture piece 

can be present in a room in almost any position, in various and complex surrounding 

scenes, strongly related to the human personality, including daily activities, job, marital 

status, culture, background, preferences. All these contribute to deep, underlying causes 

for a furniture layout to be chosen by a customer and are key selling points for any player 

in interior furniture selling business.  

Another drawback of the current planner is the lack of an option to easily allow for diversity 

and variation: after the user selects the preferred furniture set, either by choosing a picture 

or a kitchen predefined set, the algorithm populates the room according to some static 

templates – which results in very similar styles of furnishing, with small variations of object 

positioning. This aspect is not acceptable for the more complex room types, such as 

bedrooms, where there is a great variation in arrangement.  

Therefore, as briefly outlined in the previous sections, our project aims to define a CI 

model that would address the limitations of furniture arrangements by combining a data-
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driven learning approach, aiming to generate furniture arrangement that emulates 

customer preferences, with rigorous professional interior design guidelines, incorporated 

analytically towards achieving more complex, diverse, human oriented room layouts, with 

a professional outlook.  
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4 CRISP approach for data mining 

4.1 Problem understanding 

Being a complex, human expert dependent field, automatization of room interior furnishing 

is better tackled from a computational intelligence modeling perspective, because of the 

numerous factors interacting in complex ways towards the generation of an output. This 

approach can in turn be addressed as part of the conceptual umbrella of Data Mining, 

which goes beyond data analysis to cover a wider range of issues such as  the 

understanding of requirements in order to successful tackle the challenges imposed by 

interior design automation. We dedicate this section for analyzing the dependency, 

requirements and expected impact of data in developing an intelligent system for 

automatic room furnishing. 

4.1.1 Motivations for a data based, learning model 

In this project we deal with a problem of learning interior design practices to provide 

complete furnishing options to potential customers. As in any ML-based approach, data 

plays a crucial role in the possible success of the modeling process. In the following, we 

present the most important criteria for deciding upon an intelligent system, in contrast to a 

classic, strictly algorithmic approach, and the data role and requirements for providing an 

answer to this challenge: 

 The lack of a clear choice of a deterministic algorithm to solve the challenge 

of interior design automation. Although numerous attempts to tackle the problem 

from a non-learning perspective can be found in the existing literature, none can 

stand as the definitive choice, given the impossibility to formally benchmark it 

against human experts in field.  

These algorithms often drastically reduce the complexity of the problem with 

unfeasible constraints for a customer-ready, real world appliance software, often 

involving: very limited library of furniture pieces that can be present in a room; grid 

representation of the room floor with few options for furniture positioning – usually 
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determined a priori and only analytical; oversimplification of the furniture style, 

functionality and representation; limited room shapes (i.e., often only rectangular, 

within some dimension constraints). All of these result in oversimplified, improbable 

room layouts, with unrealistic furniture that cannot be used in our complex scenario, 

where the software tool is bound to use real-world furniture (i.e., properly modeled 

as 3D objects, with consistent metadata including detailed specification and safety 

guidance, various customization possibilities, available sizes, functionality available, 

price, etc.), which should be used to design client specific room plans with various 

shapes and sizes. 

 The complexity of the problem being modeled: because of a potentially infinite, 

highly multidimensional search space of possible bedroom interior layouts, 

deterministic algorithms, which would generate, combine, filter or search this vast 

space are not feasible. Alternatively, intelligent, data-oriented models that can learn 

and capture significant patterns and trends, resulting in a probabilistically 

representation of the problem, would be advisable. 

 From a user perspective, the final interior layout is highly influenced by its 

personality and life style, which depend on numerous personal factors such 

as: age, marital status, gender, social position, background, daily routines. 

These key factors, contributing to an appealing interior design for the potential 

customer, can be modeled only through a data-driven learning model and are 

paramount in the development of a successful, customer-oriented commercial tool 

for the design company. 

 The native capacity of a learning-based model to adapt, evolve and increase 

the captured complexity through training. Another characteristic, adding to the 

overall complexity of the field, is what we could call “trendiness”, which is perceived 

in numerous aspects, such as: continuous changes in design and style, furniture 

evolution (i.e. in style, design and capabilities), daily routines and global life style 

adaptation, overall room’s shape and dimensions variation.  

Interior design is a field that is continuous evolving in all its components and 

perspectives. A purely analytical representation of the current “rules” that govern 

interior design might not be the best choice for the near future because of the 
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volatile, ever-evolving nature of the problem. Addressing such a sensitive, real 

world scenario – a commercial tool for selling furniture, by presenting the customer 

various options for furnishing their real bedrooms, being in line with change and 

recent trends is a must.  

Therefore, a purely analytical representation of the current “rules” that govern 

interior design might not be as accurate to represent the near future trends. In 

contrast, a data-oriented model, designed to combine an analytical approach (i.e., 

one that captures strong interior design analysis and regulations) with learned 

underlying patters and templates would natively remain up-to-date when trained 

regularly with recent data. 

4.1.2 Data challenges in the interior design field 

As in any Data Mining stage-based approach, the data modeling stage plays a crucial role 

in the overall performance of the system, representing a main component of the general 

architecture. Moreover, interior design automation is still an open-ended research area, 

still in its very early stages, at least as compared to other real-world application fields. 

Models that can make sense of data through learning can only be applied after detailed 

pre-processing of the 3D models involved. Because of the complexity of such 

representations, numerous options may emerge, usually resulting in features that are 

highly dependent on the model applied and often only modeled in a semi-automatic 

manner.  

Currently, no dedicated model or paradigm can be successfully applied to solve true 

design challenges (i.e. as tackled by a professional designer) and intelligent models 

performance heavily depends on thorough data structuring and representation. As the 

results of so many constraints, well-defined, complex, representative and research-

oriented datasets are extremely hard to come by. Moreover, in our case, many 

professionally designed rooms are not made public by interior design companies, for 

obvious commercial reasons, making the process of data modeling including data 

acquisition, enriching, and preprocessing even harder than usual.  
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4.2 Data understanding 

4.2.1 Main characteristics of initial data 

Given the complexity and nature of the problem we tackle, automatic furniture 

arrangement for a personalized room plan, an ideal dataset would have to contain a 

variety of professionally-designed furniture arrangements that clients agreed / purchased 

to furnish their personal bedrooms. This would assure that the bedroom’s interior designs 

were professional (i.e. would agree with style consistency, ergonomics, desired 

functionality but also were preferred, feasible to normal persons furnishing their rooms (i.e. 

had a “fair” price, meet their expectations, obey their routines, life style, etc.).  

Moreover, each entity in the dataset should contain enough metadata in order to extract 

numerous details, which will represent the features for our learning model, about various 

aspects such as: the furniture type, functionality, positioning - both global (i.e. relative to 

the room coordinates) and local (i.e. relative placement in its neighborhood, distance to 

surrounding objects, coupling for different functionalities, etc.).  

4.2.2 Data description 

Because of the required complexity and details needed, we considered only entities 

represented in 3D model files, which had to be designed by humans. Taking a look to the 

existent state of the art, no definite choice for a publicly available dataset that would meet 

these requirements was found. Moreover, Interiorvista did not have any kind of database 

comprising already furnished bedrooms (neither by professionals nor amateurs) that would 

have been validated (i.e. purchased by clients or designed by professionals).  

Therefore, in the described context, we considered a subset of 12 representatives, manual 

designed bedrooms from Google 3D Warehouse [20], which were created in Google 

SketchUp [21], by amateur designers. Some example screenshots of these rooms are 

presented in Figure 14. These were selected manually by us, based on the online 

comments, purpose of the designed bedrooms and room “popularity” (i.e. agreed / liked by 

others). Such room aspects we considered, which aimed towards a real world scenario, 
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included: personal bedroom (or of a friend, etc.), desired bedrooms, guest rooms. 

Figure 14. Example snapshots of the bedrooms in the dataset described in the main text. 

  

 

 

 

Plenty of diversity can be seen in the rooms on display in Figure 14, and different 

underlying purposes for each choice of furnishing can be easily depicted from the title of 

the file (added by the owner / designer) but also from the general outline. For instance, the 

5th bedroom in Figure 14 addresses a guest scenario in which there is no need of working 

or activity related activities – most focus being on short term stay and sleep. In contrast, 
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the 2nd bedroom depicts a very large bedroom, furnished with three wardrobes and two 

chest of drawers which is oriented on long term leaving, for a person disposing of plenty of 

depositing space. There are also bedrooms that combine default furniture (i.e. dedicated 

for a bedroom) with furniture for leisure and working activities, for day routines, as seen in 

1st and 3rd bedroom, which have a desk / table and chair.  

Although a lot of variation in style, functionality, personal taste can be depicted from the 

data, we excluded from this set extreme cases, such as: too complex bedrooms in terms 

of the shape of the room or the furniture involved and too simple ones that would not 

include a representation of the walls and windows or would rather model in detail a certain 

piece of furniture rather than a bedroom scene.  

One example of each are presented in Figure 15, where the first image depicts a room 

without walls and windows which outlines a certain style of bed rather than a plausible, 

complete bedroom and the second illustrates a complex bedroom, in an attic, with 

dedicated, complex furniture to maximize the usability of the limited space available. 

Figure 15. Example snapshots of bad bedrooms, not included in the dataset described in 

the main text. 
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4.3 Data preparation 

4.3.1 Feature selection 

As seen in the related literature, machine learning models dealing with furniture sampling 

and arrangement usually need training data with numerous features, which are meant to 

deal with the high complexity of the problem. Being still a research field in its early stages, 

there not exists a preferred, widely used set for features to be extracted, nor some 

compulsory, ever-present one. Moreover, most related work models rely on heavy dataset 

preprocessing and annotations / tagging, which can be automated only to some degree. 

These pre-processing of the training data is usually highly correlated to the model 

designed and to the specific subset of the problem to be solved (i.e. adding furniture 

decoration to a limited subset of furniture pieces; synthesizing room layouts from a limited 

set of furniture, arranging furniture based on a genetic model, with continuous user 

feedback).  

Therefore, choosing a set of features to be both necessary and sufficient for the addressed 

problem and the models designed was a challenging task. We considered the following set 

of initial features: 

 ID – the (unique) id of each furniture piece. 

 (obj_x, obj_y, obj_z) – 3D coordinates of a furniture piece, relative to the room (i.e. 

global world coordinates). 

 (alpha_x, alpha_y, alpha_z) – rotation of the object relative to the room (i.e. on 

each ax of the 3D space). 

 (fwd_x, fwd_y, fwd_z) – the forward vector of each object, which will first get 

extracted analytically from the 3D scenes and then approximated / represented 

from a human-like perspective (e.g. a bed will have its origin in the left-top corner 

and the fwd vector will point from head to toes on its longitude). 

 (length, width, height) – of the object bounding box. 

 min_dist – the minimum distance between every 2 furniture pieces, computed on 

the floor plan space (i.e. 2D space). Only main furniture pieces are of interest for 
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this initial model, which focuses on main furniture pieces composing a bedroom, 

disregarding decorative or artifact objects such as: nightstand lamps, paintings, 

pictures, books, bed pillows, etc. 

4.3.2 Data cleaning, correction and reconstruction 

As previously presented, in the lack of a best-choice dataset comprising of professional 

designed bedrooms (i.e. by a company or experts in field), or bedroom furniture layouts 

which would have been approved (i.e. purchased or liked by customers), the dataset 

agreed with Interiorvista to be used in the project was collected from Google Warehouse 

[20], and comprises a selected subset of 12 good bedrooms, available as 3D design files, 

some examples of which are shown in Figure 14.  

Being highly related to interior design, and therefore implying the use of dedicated 

architectural software tools and knowledge, the processing of the dataset was carried out 

with professional help from Interiorvista experts, which contributed and adviced with model 

correction and with the extraction of the features chosen by us. 

3D models manual cleaning and correction  

The use of a dataset of models entirely designed by amateurs, who lacked any prior 

knowledge about best practices and correct architectural modeling, containing bedroom 

scenes, entailed the problem that, even though looking correct and coherent, some of the 

scenes had in fact to be corrected manually for each scene and for each object in order to 

be able to extract the correct features. 

Most common problems, some of which are visually presented in Figure 16, included: 

 wrong segmentation of the furniture pieces, subcomponents, and other bedroom 

entities. Some of them, entirely missing structure and model hierarchy (i.e. coupling 

the low level details, as edges, surfaces, into entity subcomponents which would 

then be grouped and named into the respective furniture piece). Such example, to 

which an exhaustive manual correction was required, is presented in the first image 
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in Figure 16.  

FIX: manual correction: involving segmentation, tagging and rebuilding 

hierarchy (i.e. regrouping of subcomponent into whole objects). Besides, local 

coordinates have been attached to each object, independently of the scene and 

other models in it, which emulates the object orientation as viewed by a human. 

Therefore, the forward vector, represented with green in Figure 17 will always 

have the direction “back of the object” to “front of the object”, in a natural, human 

agreed, functional manner. For instance, a wardrobe would have the forward 

vector oriented from back to the door, on horizontal; likewise, a bed from a 

person head to toes (e.g. on its longitude) etc. 

Figure 16. Mistakes in building the 3D models of bedrooms 

 

 

 incorrect positioning of the global world / room coordinates, not being aligned with 

the room orientation. 

FIX: reposition the global coordinates, to align the scene 3D axes with a 

room corner, floor and walls. Although a definite choice does not exist, 

because the forward direction of a bedroom can be ambiguous, even for a 

human (i.e. because of the variety and nature of the bedrooms), the axes 

should be at least aligned with a chosen corner of the room, floor and walls. 

 scale (i.e. dimensions): in some cases, the furniture pieces did not have real 

dimensions. The author only focused on the overall aspect and furniture design, not 

on the scale of the project. Therefore, when extracting the features, we were 



51 

 

confronted with anomalies such as: a double bed of 83 cm long and 58 cm width. 

FIX: no fix for the features extraction part, (i.e. from the 3D design files), but 

taken into account in the latter stages of data preprocessing, which involve, 

scaling and normalization of data. 

 the overall design process was not analytically validated by the authors (i.e. 

probably because of the lack of background), resulting in small errors and non-

correlations in positioning, both for the furniture in the room and the entities’ 

components, as shown in the second image of Figure 16. Some examples of these 

human-made errors would be: slight rotations of the furniture pieces, such as: bed 

is not aligned with the corresponding wall, but rotated at an insignificant small 

angle, often being few cms. from the wall, or colliding with it; some furniture pieces 

going through the floor or walls, as opposed to being positioned exactly on the floor; 

non-coherent positioning of the walls and windows and doors, which should be 

aligned accordingly, etc. In consequence, the features extracted have small 

variations in terms of angles (i.e. close to instead of exact 0°, 90° or 180°), floor 

relative position close to 0, sometimes negative distances, etc. 

FIX: no fix for the features extraction part, (i.e. from the 3D design files), but 

taken into account in the latter stages of data preprocessing, through 

according approximations. 

4.3.3 Feature extraction 

After the manual correction and adequate tagging of the objects in scenes, the chosen 

features, described in 4.3.1, were extracted from the updated bedroom files. The feature 

extraction process, to which Interiorvista also contributed, was realized in 3DS MAX [22], 

and Unity [23], using scripts that were ran for each scene. The resulted output was 

converted into features and exported to MS Excel format. 

The scripts outputs required measurements for each object, which were used to create the 

features directly. A visual representation of such details is presented in Figure 17. The 

screenshot is taken in Unity [23], after the manually fixing stage (i.e. with correct 

segmentation and object hierarchy, which can be seen in the left side of  
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Figure 17). We can observe that each model in the scene is now represented as a unit, in 

contrast to the initial scenes without hierarchy - Figure 16, moreover, attaches a correct 

local coordinate system to each entity, independently. This object’s coordinates reflect the 

orientation of the object, as seen by a person, always having the forward vector (i.e. the 

green ax, corresponding to OX) oriented from the back of the object to the front, on 

horizontal, as briefly described in 4.3.2. This manual correction of each model in each 

scene was needed in order to ensure a correct, automatized process of extraction of the 

required measurements, which was needed to build the dataset features.  

Two main types of design software and corresponding scripts were used, depending on 

the team which helped us in extracting the relevant data for the features creation. Using 

3ds MAX [22] we obtained most of the data required (i.e. all besides the minimum 

distances between any objects), outlined in the following: 

 object bounding box and its dimensions: represented in Figure 17 as a rectangular, 

green box. 

 the positioning of each object in scene. For this, the scrip measures the distances 

between the global coordinates (i.e. room ones) and the object’s bounding box 

coordinates (i.e. manually placed for each object in part, to reflect functionality and 

common sense from a human perspective). 

 the rotation of each object (on the three axes) relative to the room. As in the 

previous case, this is done also using the two coordinates systems: the global and 

each object local one.  

 the forward vector and upward vector details. This data is embedded in the local 

coordinates, as described before and seen in Figure 17: the forward vector is the 

green arrow and the upward vector is always the blue one. 
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Figure 17. Visualization in Unity of the features extracted. 

 

 

An example of extracted features for a room, using the 3ds MAX scripts without the 

minimum distances between any two furniture pieces is presented in Table 1. For the 

purpose of display, the values were rounded to 2 digits. Although the values reproduce 

with accuracy the measurements in the 3D model, manual changes had to be done for 

increased accuracy and consistency, such as to decide appropriate approximations to 

achieve coherence (i.e. all objects do not collide with walls, furniture pieces are at 0 

distance from the floor, etc.). These changes have been carried out in the case presented 

in Table 1. 
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Table 1. Extracted features for a given room. 

Furniture name x y z rot   FW   width length height 

Desk 86.4 15.72 0 0 0 0 0 1 0 46 28.25 88 

Light_02 25.18 202.39 26.81 0 0 -90 1 0 0 11.41 11.41 16.48 

Window_02 265.43 120.99 39.43 0 0 90 -1 0 0 109.95 9.25 76.28 

Window_01 181.5 -0.12 0 0 0 0 0 1 0 91.04 8 103.24 

TV Desk 257.07 211.22 0 0 0 90 -1 0 0 74.44 24.92 29.72 

Wardrobe 256.98 279.55 0 0 0 90 -1 0 0 48 25.49 84 

DVD 248.86 166.65 19.92 0 0 90 -1 0 0 16.87 12.37 2.14 

Phone 250.98 106 38.62 0 0 90 -1 0 0 5.23 3.9 7.33 

Frame 245.2 123.8 39 0 0 90 -1 0 0 10 7 0.25 

TV 248.53 215.01 26.96 0 0 90 -1 0 0 76.65 2.78 47.27 

Bed 15.28 113.77 0 0 0 -90 1 0 0 82.45 102.28 50.75 

Nightstand_01 16.13 89.59 12.5 0 0 -90 1 0 0 23.33 24.63 29 

Dresser 253.84 127.62 0 0 0 90 -1 0 0 31.25 19 39 

Nightstand_02 19.14 197.29 0 0 0 -90 1 0 0 22 23.87 29 

HDD MultiMedia 253.59 182.29 20.05 0 0 90 -1 0 0 13.31 16.39 3.41 

Light_01 24.54 96.29 27 0 0 -90 1 0 0 11.41 11.41 16.48 

TDT 244.94 198.14 19.93 0 0 90 -1 0 0 11.61 9.29 1.61 

Floor 11.06 345.12 0 0 0 180 0 -
1 

0 251.12 344 0 

Walls 1.31 345.12 142.32 0 0 180 0 -
1 

0 260.87 344 142.32 

Door 1.31 298.19 0 0 0 -90 1 0 0 41.25 11.32 75.25 

 

Minimum distance between any 2 objects 

In order to compute the minimum distance between any two objects, Unity [23] was used 

with a C# script, run for each scene. The algorithm applied was a simple approach, 

building on the following two main observations: 

 each object was represented as a rectangle (i.e. through its bounding box), which is 

a convex shape 

  all furniture types used in this initial model are positioned on the floor, simplifying 

the problem to a 2D plan minimum distance computation (i.e. minimum distance 

measured on the floor) 
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Therefore, the algorithm computes, for each of the two objects, the minimum distance 

between any vertex with any edge of the opposite object (more precisely, its bounding 

box). The geometric formula applied is the well-known minimum distance between a point 

and a segment defined by two points, calculated as: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃1, 𝑃2, (𝑥0, 𝑦0)) =  
|(𝑦2 − 𝑦1) ∗ 𝑥0 − (𝑥2 − 𝑥1) ∗ 𝑦0 + 𝑥2 ∗ 𝑦1 − 𝑦2 ∗ 𝑥1|

√(𝑦2 − 𝑦1)2 + (𝑥2 − 𝑥1)2 
 

 

4.3.4 Further data integration for probabilistic models 

Applying both models (Bayesian Network and GMMs) required further processing of data, 

on top of the ones being computed out of the graphical 3D models. The considerations 

were the inability to accurately predict every measurement, coordinate, angle or dimension 

that is going to be useful when applying the models, due to the lack of sufficient 

information in state-of-the-art literature; the ability to augment the model by engaging 

further-processed data and sometimes the ease of computing the additional information, 

instead of trying to extract it from the 3D arrangements.  

Moreover, the existence of corner-cases and particularities of the objects and layouts, the 

mistakes made by inexperienced graphical designers, uncaptured in the early stages of 

pre-processing, or purely misalignment among the rooms in the example set (e.g. walls of 

different thickness) demanded auxiliary stages of data preparation. 

The first (furniture occurrence) model required manual extraction of the number of targeted 

objects within each room from their corresponding file and correlation with the graphical 

view, in order to make sure that the objects having similar/identical names also had the 

same functional properties. For example, there are three rooms containing one chair each, 

but one of the chairs is meant for relax and leisure activities, while the others are strongly 

linked to a desk and are meant for working activities. This extraction contributed forwards 

to highlight the sets of objects that tend to be linked together and the number of said 

examples in order to obtain a rough estimate of their relevance, if it were decided to apply 



56 

 

Gaussian mixtures for those sets. 

As for the second model (furniture arrangement), it implied heavy processing, starting from 

furniture alignment with respect to a certain point, and also including rotation and 

translation, to manually evaluate and adjust, when necessary, corner cases that were 

present in the examples (e.g. a nightstand was rotated with a 90 degrees angle to 

correspond the room’s needs, while the other one was straight, facing the same direction 

as the bed). 

The data transformations that GMM [12] demands target the overlaying of all the examples 

such that the objects of the same chosen category would (naturally) group together. 

Investigating this matter at a closer range, adapting the objects’ coordinates from inside 

the rooms to fit a global positioning is not a trivial undertaking. Although exact description 

of the modeling part can be found in the corresponding chapter, in order to better clarify 

the exploration part, we will define specific cases. 

In order to be able to apply GMM, the same set of objects needs to obey the same 

coordinate system. Considering the coordinates for the bed items, for instance, with all the 

different sizes, translations and rotations, would make it impossible for the model to yield a 

proper estimation, since data would be strongly inconsistent. Having the furniture’s 

coordinates relative to the origin of the coordinate system, which is situated ideally in one 

of the corners of the room, as derived from the initial processing, the main pieces of 

furniture can be found in all four possible rotations (0, 90, -90 or 180/-180 degrees), 

needing particular treatment for each of the cases.  

Bed and nightstands processing 

For furniture arrangement, GMM operates on sets of items from two categories: the item(s) 

that tend to appear within the context of existence of other item(s). For instance, the bed 

would usually have around it one or two nightstands; in this case, the sets consisting of the 

bed and nightstand(s) for every room will be gathered to model their concurrent 

appearance inside a bedroom. The first major operation required would be to translate the 

objects from their world coordinate system (of each room) to the current (working) 
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coordinate system. We found at least one nightstand present in 11 out of 12 possible 

rooms, imprinting a strong interest of modelling this type of causal link of furnishings with 

GMMs.  

In the case of the bed and nightstand(s), it is crucial that the order is kept: if we look at the 

2D blueprint with all the items in the room, the nightstand on the right-hand side of the bed 

has to remain always on its right after moving it to the new system, as well as the left-hand 

side nightstand. In order to meaningfully overlay all the desired objects in the set, we 

decided to align the left-top corner of the bed (the origin of object’s coordinate system) to 

the origin of the new system, computing, therefore, the corresponding coordinates for the 

nightstand(s) according to the new system. The main cases to be analyzed occur when 

the bed and (usually) implicitly the nightstands are rotated with a certain angle, with 

respect to their upward (normal) vector. The dataset considers the forward direction of 

each object as being rotated with 0° when this vector points in the positive direction of the 

0y axis of the room’s coordinate system. Given that the rotation of the needed objects 

present in the examples always leads to making their forward vectors parallel with the 

room’s 0x and 0y axes, we can distinguish among the following four cases: 

 0° - In this case, we only have to translate the nightstands to match our system in 

which the bed has its origin in the (0, 0) origin of co-ordinates. 

 90° - The bed has its length along the 0x axis, which we need to process 

accordingly 

𝑥𝑛𝑠𝑡𝑑_𝑟𝑖𝑔ℎ𝑡 = 𝑥_𝑜𝑙𝑑𝑏𝑒𝑑 − 𝑥_𝑜𝑙𝑑𝑛𝑠𝑡𝑑_𝑟𝑖𝑔ℎ𝑡 

𝑦𝑛𝑠𝑡𝑑_𝑟𝑖𝑔ℎ𝑡 = 𝑦_𝑜𝑙𝑑𝑏𝑒𝑑 − 𝑦_𝑜𝑙𝑑𝑛𝑠𝑡𝑑_𝑟𝑖𝑔ℎ𝑡 

𝑥𝑛𝑠𝑡𝑑_𝑙𝑒𝑓𝑡 = 𝑥_𝑜𝑙𝑑𝑏𝑒𝑑 − 𝑥_𝑜𝑙𝑑𝑛𝑠𝑡𝑑_𝑙𝑒𝑓𝑡 

𝑦𝑛𝑠𝑡𝑑_𝑙𝑒𝑓𝑡 = 𝑦_𝑜𝑙𝑑𝑏𝑒𝑑 − 𝑦_𝑜𝑙𝑑𝑛𝑠𝑡𝑑_𝑙𝑒𝑓𝑡 

 

𝑥𝑛𝑠𝑡𝑑_𝑟𝑖𝑔ℎ𝑡 = 𝑦_𝑜𝑙𝑑𝑏𝑒𝑑 − 𝑦_𝑜𝑙𝑑𝑛𝑠𝑡𝑑_𝑟𝑖𝑔ℎ𝑡 

𝑦𝑛𝑠𝑡𝑑_𝑟𝑖𝑔ℎ𝑡 = 𝑥_𝑜𝑙𝑑𝑛𝑠𝑡𝑑_𝑟𝑖𝑔ℎ𝑡 − 𝑥_𝑜𝑙𝑑𝑏𝑒𝑑 

𝑥𝑛𝑠𝑡𝑑_𝑙𝑒𝑓𝑡 = 𝑦_𝑜𝑙𝑑𝑏𝑒𝑑 − 𝑦_𝑜𝑙𝑑𝑛𝑠𝑡𝑑_𝑙𝑒𝑓𝑡 

𝑦𝑛𝑠𝑡𝑑_𝑙𝑒𝑓𝑡 = 𝑥_𝑜𝑙𝑑𝑛𝑠𝑡𝑑_𝑙𝑒𝑓𝑡 − 𝑥_𝑜𝑙𝑑𝑏𝑒𝑑 
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 -90° - Not only they are rotated, but we need to pay special attention to the order of 
the elements, so that we correctly align them with the others 

 

 -180°/180° - Both values are present in the dataset, since they were extracted 
automatically; the forward vectors of the objects are pointing in the negative 
direction of 0y axis. 

 

The evolution of the model imposed some variations of these formulas, at first considering 

the center of the top segment of the bed being the origin of co-ordinates. The nightstands’ 

positions will then move with half of the bed’s width to the right (positive 0x). In order to be 

consistent with the points chosen to represent each object, we then marked the center of 

the top segments of the nightstands, instead of the left-top corner, to match the bed’s, 

adding, therefore, to each nightstand’s representation half of its width along the 0x axis. 

Despite the rooms being scaled to comparable sizes, before extracting the measurements, 

the various sizes of the beds available in the dataset had an impact on the GMM process, 

leading to lower accuracy. Additional improvements consist of considering a universal size 

of bed (the highest found within data), given that the relation that is emphasized through 

Gaussian mixtures refers to the distances and positioning between nightstands and bed, 

desirably being independent from the size of the furniture pieces, which, in these cases, 

may vary widely even for the same style.  

A solution found to be effective in this particular situation, was to keep the center of the top 

segment of the bed, moving the right and left nightstand according to the new, global, 

width of the bed. The operation involved subtracting the original width of the bed, adding 

the new width and center the objects in the current system. Furthermore, in order to 

𝑥𝑛𝑠𝑡𝑑_𝑟𝑖𝑔ℎ𝑡 = 𝑦_𝑜𝑙𝑑𝑛𝑠𝑡𝑑_𝑟𝑖𝑔ℎ𝑡 −  𝑦_𝑜𝑙𝑑𝑏𝑒𝑑 

𝑦𝑛𝑠𝑡𝑑_𝑟𝑖𝑔ℎ𝑡 = 𝑥_𝑜𝑙𝑑𝑏𝑒𝑑 − 𝑥_𝑜𝑙𝑑𝑛𝑠𝑡𝑑_𝑟𝑖𝑔ℎ𝑡 

𝑥𝑛𝑠𝑡𝑑_𝑙𝑒𝑓𝑡 = 𝑦_𝑜𝑙𝑑𝑛𝑠𝑡𝑑_𝑙𝑒𝑓𝑡 − 𝑦_𝑜𝑙𝑑𝑏𝑒𝑑 

𝑦𝑛𝑠𝑡𝑑_𝑙𝑒𝑓𝑡 = 𝑥_𝑜𝑙𝑑𝑏𝑒𝑑 − 𝑥_𝑜𝑙𝑑𝑛𝑠𝑡𝑑_𝑙𝑒𝑓𝑡 

 

𝑥𝑛𝑠𝑡𝑑_𝑟𝑖𝑔ℎ𝑡 = 𝑥_𝑜𝑙𝑑𝑛𝑠𝑡𝑑_𝑟𝑖𝑔ℎ𝑡 − 𝑥_𝑜𝑙𝑑𝑏𝑒𝑑 

𝑦𝑛𝑠𝑡𝑑_𝑟𝑖𝑔ℎ𝑡 = 𝑦_𝑜𝑙𝑑𝑛𝑠𝑡𝑑_𝑟𝑖𝑔ℎ𝑡 − 𝑦_𝑜𝑙𝑑𝑏𝑒𝑑 

𝑥𝑛𝑠𝑡𝑑_𝑙𝑒𝑓𝑡 = 𝑥_𝑜𝑙𝑑𝑛𝑠𝑡𝑑_𝑙𝑒𝑓𝑡 − 𝑥_𝑜𝑙𝑑𝑏𝑒𝑑 

𝑦𝑛𝑠𝑡𝑑_𝑙𝑒𝑓𝑡 = 𝑦_𝑜𝑙𝑑𝑛𝑠𝑡𝑑_𝑙𝑒𝑓𝑡− 𝑦_𝑜𝑙𝑑𝑏𝑒𝑑 
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preserve in a more accurate manner the distances between each nightstand and the bed, 

for the left nightstand to consider its top-right corner and for the right one, the top-left 

corner, both having the quality of being the closest to the bed, but preserving their 

alignment against the wall, as seen in Figure 18. 

 

Figure 18. Outlining the representative Cartesian points for bed and nightstands for GMM. 

 

 

Bed and TV  

The occurrence table from Bayesian model is enlarged to contain the TV counting as well, 

since the bed-TV co-occurrence is typically present in modern bedrooms. This link is 

present in 6 rooms, half of the rooms existing in the initial set, leading to investing efforts 

towards adapting a mixture of Gaussian to express likely positioning for this type of 

relation’s objects. 

In all of the examples, no matter the rotation of the bed inside the scene, the orientation of 

the forward vector of the TV points towards the opposite direction (180°). Using common 

sense from a functionality perspective, we can state that this arrangement should be 

obvious, since a person would establish the TV’s position so that he/she would be able to 
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watch TV programs from the comfort of their own bed. We point out that the TV’s position 

is dependent on the bed’s position and not the other way around, since the bed is a much 

larger item with additional constraints and the TV does not necessarily require a standing 

surface whereas it can be fixed to the wall, making it a very manageable object, no matter 

how small or crowded the room can be. 

Based on the learnings of the previous case, we consider the center of the top segment of 

the bed to be homologized with the origin of the Cartesian system engaged in running the 

GMM, and the TV representative point to be as well the center of its top segment (or the 

one at the bottom of the image, as we look at the system). The rest of the distances and/or 

ratios will remain faithful to their initial disposition, being translated and rotated to fit our 

needs. The particular computations are disseminated in conformity with the bed’s rotation 

about the normal of its surface, as explained below: 

 0° - The coordinates of the center of the upper segment (in 2D) of the TV are 

computed such that they remain relative to the center of the upper segment of the 

bed, which now overlays the origin of the axes. 

𝑥𝑇𝑉 = (𝑥𝑜𝑙𝑑𝑏𝑒𝑑
−

𝑤𝑖𝑑𝑡ℎ𝑏𝑒𝑑

2
) − (𝑥𝑜𝑙𝑑 𝑇𝑉

+
𝑤𝑖𝑑𝑡ℎ𝑇𝑉

2
) 

𝑦𝑇𝑉 =  𝑦𝑜𝑙𝑑𝑏𝑒𝑑
− 𝑦𝑜𝑙𝑑 𝑇𝑉

 

 90° - The initial axes interchange 

𝑥𝑇𝑉 = (𝑦𝑜𝑙𝑑𝑏𝑒𝑑
−

𝑤𝑖𝑑𝑡ℎ𝑏𝑒𝑑

2
) − (𝑦𝑜𝑙𝑑 𝑇𝑉

+
𝑤𝑖𝑑𝑡ℎ𝑇𝑉

2
) 

𝑦𝑇𝑉 =  𝑥𝑜𝑙𝑑 𝑇𝑉
− 𝑥𝑜𝑙𝑑𝑏𝑒𝑑

 

 -90° 

𝑥𝑇𝑉 = (𝑦𝑜𝑙𝑑 𝑇𝑉
+

𝑤𝑖𝑑𝑡ℎ𝑇𝑉

2
) − (𝑦𝑜𝑙𝑑𝑏𝑒𝑑

−
𝑤𝑖𝑑𝑡ℎ𝑏𝑒𝑑

2
) 
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𝑦𝑇𝑉 =  𝑥𝑜𝑙𝑑𝑏𝑒𝑑
− 𝑥𝑜𝑙𝑑 𝑇𝑉

 

 -180°/180° 

𝑥𝑇𝑉 = (𝑥𝑜𝑙𝑑 𝑇𝑉
+

𝑤𝑖𝑑𝑡ℎ𝑇𝑉

2
) − (𝑥𝑜𝑙𝑑𝑏𝑒𝑑

−
𝑤𝑖𝑑𝑡ℎ𝑏𝑒𝑑

2
) 

𝑦𝑇𝑉 =  𝑦𝑜𝑙𝑑 𝑇𝑉
− 𝑦𝑜𝑙𝑑𝑏𝑒𝑑

 

An attempt to consider a universal size of bed, precisely its length, would not perform 

better in this case, since the placing of the TV at a certain distance from the bed involves 

harder constraints than the bed’s dimensions, such as the distance to the wall that in front 

of the bed, the nearest supporting surface or possibility of wall attachment etc. The angle 

of the two forward vectors of the fittings is highly important in this case and is computed as 

an absolute value of the difference between the two rotation angles: 

𝜃𝑏𝑒𝑑,𝑇𝑉 = 𝑎𝑏𝑠(𝑟𝑜𝑡𝑏𝑒𝑑 − 𝑟𝑜𝑡𝑇𝑉) 

 

Desk and chair  

Many bedrooms have often been designed with a desk and a chair meant to serve working 

purposes, thus being a requisite especially met for, but not limited to, people who lack 

other areas in the house that they can use for that purpose. From a functional perspective, 

as detailed in previous work in the field [24, 25], a chair obeys the setting of the desk in an 

almost strict relation, making the collocation of the two items highly feasible using GMM. 

However, the size of our examples set comes as a shortcoming yet again, since we can 

find only two examples containing both chair and desk objects. In addition, the examples 

cannot even be considered to address the same situation, since one of the desks is 

pushed against the wall, having a rectangular shape, while the other is placed in one of the 

corners of the room, having an ‘L’ shape, with the chair pointing towards that corner, as 

presented in Figure 19. 
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Figure 19. The two examples of rooms having chair and desk. 

  

 

If this set of items is needed to be integrated within a bedroom, our suggested approach is 

to use one of the examples (depending on the layout so far) to generate other similar 

positioning of the chair in the context of having the desk already in place. The extraction of 

the objects’ relative coordinates and translation to a new Cartesian system is kindred to 

the previously detailed relation between bed and TV, because both sets have the same 

relative orientation among the items they contain. In the particular case of the corner desk, 

instead of considering the medium of one segment as the salient point, we will consider its 

corner, leaving the chair’s representation to be the middle of the top segment, as before. 

Corner cases and shortages 

Unfortunately, the variety of the room layouts space and the dataset being made up from 

3D models of common and many times unexperienced users often leads to come across 

situations of unique cases which stray from the regular processing and require special 

attention in order to depict and treat them individually. Such cases may be processed 

thereupon, enhanced or even removed from subsequent considerations, if they represent 

an isolate, hence marginally important event; they fail to fully represent a particular class 

or solution; or there is not enough information to adequately transform them for future use. 
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These cases will be mentioned separately in the consequent paragraphs and/or in the 

chapter dedicated to GMMs, depending on where their impact will be more significant. 

While processing furniture pieces for the GMM evolution, it is critical to make sure that 

every item and piece of data matches the pattern and does not introduce false variations 

into the system. Considering that, in most cases, the nightstand(s) are positioned 

sideways from the bed, keeping the same orientation of the forward vector as the bed, the 

event of one of the nightstands being rotated with a 90° angle from the bed’s orientation is 

considered isolated and does not increase learning possibilities towards our goal. 

Moreover, it affects accuracy due to the different type of coordinates, induced by the fact 

that it obeys different convenience rules and also by the particular layout of the room. 

Figure 20 depicts the bedroom which contains the differently-arranged left-hand side 

nightstand, which is highlighted in blue, as a 3D graphic object. The window overlaid on 

top of the image represents the coordinate system comprising all the representative points 

for every bed and nightstand found in the set of examples, after the suitable calculations 

considering the first approach, as described above. Each of the beds is centered in (0, 0), 

having the nightstands properly placed on its sideways. It is evident to the human eye that 

the circled point, symbolizing the left nightstand in the picture, represents an outlier 

instance, making it difficult for the algorithm to properly estimate the variance of the data. 

The attitude taken with respect to similar occurrences may differ, depending on the size of 

the dataset, the frequency of such examples within the dataset and the target aimed by the 

scientists involved in the project, leading to removing the sample(s), modify it to fit the 

other pieces of data or analyze the case individually. In our case, given that we aimed for 

obtaining a proof-of-concept for rather un-complex or particular arrangements and that this 

particular state of the object appear only once in the entire set of examples, we chose to 

discard it, since it would not bring significant improvements in accordance with our goals. 
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Figure 20 Corner case: left nightstand is rotated with 90° angle as against the bed. 
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5 Probabilistic models for furniture synthesis 

By putting into practice some of the best approaches for furnishing interior spaces in the 

state-of-the-art in the field (while bearing in mind that this field is still in its very early 

stages of development), we aimed in this thesis to achieve at least a proof of concept that 

laid the grounds for the future development of an operational software tool for Interiorvista 

company.  

It is meant to offer, both to the company and to ourselves, some insight regarding: the 

world-wide accomplishments in the field attained so far; the difficulties associated to the 

gathering, understanding and processing of datasets of use to accomplished our goals; the 

feasibility of implementing analytical methods that are reasonably successful on real-world 

examples; and the potential directions for further mining research perspectives for of these 

data. 

After thorough investigation, I decided to implement two probabilistic methods that solve 

crucial parts in the endeavor that, in the future, will help us to put together a complete tool 

for automatic production of furnishing layouts within a given perimeter. The first method, 

described in section 5.1, implements a furniture occurrence generator which learns from 

the examples in the database, but manages to output novel, unseen sets of items for a 

bedroom, based on Bayesian Networks. The second part of the development, available in 

section 5.2, handles fittings arrangements for items sets in which a causal relation 

exists, via GMMs, striving for human-approved placements of objects within the set that 

are easily translatable to the new space to be furnished. 

 

5.1 A Bayesian Network for furniture occurrence 

An initial step towards obtaining new furnishing arrangements consists on generating sets 

of furniture pieces to be present in the room. This stage focuses only on selecting what 

types of furniture would be suitable for a certain room type in our initial model (that being 
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the bedroom). This task is similar to selecting compatible components for a model in order 

to generate new shapes from existing ones, while preserving the “realistic factor” and 

plausibility of the model. In [13, 11], probabilistic models were used for synthesizing new 

objects from components, and were applied for various types of objects such as planes, 

boats, or chairs. These methods fully learn compatibility aspects and placement 

possibilities from training the available data and are used to generate new objects by 

sampling the obtained model. 

Furniture pieces’ selection for automatic room decoration can be viewed as a similar 

problem, in which the components of the shapes represent the furniture pieces and the 

new shape, based on these parts, is the set of furniture pieces in that room. However, 

important differences have to be taken in account, such as the loose coupling of objects in 

a room, the fact that various valid arrangements for the same set of furniture pieces maybe 

possible, or the high diversity of each type of furniture. 

Our initial model for generating the set of furniture that would be suited to a given room (a 

bedroom, in our case) consists of a Bayesian model in which each node represents the 

number of one certain type of furniture such as: table, bed, or nightstand.  

5.1.1 Training data 

For the initial model, we consider a representative subset of possible furniture types, 

containing pieces that are common in various bedrooms and which would, in certain 

subsets combinations, favor various types of activities in the designed bedroom. This 

ensures the predisposition of the model to learn, besides naïve independent furniture 

frequencies, the underlying structure and functional dependencies/grouping of different 

types of objects. For instance, the presence of a desk-and-chairs group would add 

features such as: study, writing, or social activities; a sofa and a TV would suggest leisure 

activities such as watching movies or playing video games, whereas the presence of a 

table without chairs should, in principle be uncommon.  

Therefore, the types of furniture pieces considered in the initial model are: bed, chair, table 

or desk, nightstand, wardrobe, and chest of drawers. The nodes in the Bayesian network 
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represent the counts of these objects. For the purpose of our model, and in order to be 

able to learn from the initial, small, dataset, we also limit the range of values each node 

can take to the discrete set: {0, 1, 2, 3+}, where 3+ represents 3 or more pieces of 

furniture. The selected furniture pieces, together with the pieces counts in the bedroom 

dataset are presented in Table 2. 

No ultimate choice exists in modeling this challenge in a probabilistic, data oriented 

manner, this being still an open-ended research area, with a focus towards virtual 

environments representation. Veering away from this field, our model addresses a real 

world, commercial scenario, aiming towards scalability – both in terms of furniture pieces 

and types of bedrooms, robustness and real-time performance. Because no a priori 

knowledge can be imposed about the furniture dependencies in a bedroom, existing 

numerous styles, mentalities, preferences among customers, one of the main objectives is 

the model ability to adapt to change while capturing hidden patterns, underlying trends and 

structure diversity from the data. Therefore, both learning the Bayesian model structure 

and parameters is compulsory and we apply well-known techniques to deal with this, 

which are described in the following section. 

5.1.2 Analyzing furniture dependencies 

In order to build the Bayesian Network structure by applying various learning techniques 

and reasonability judgement, we conducted a pre-analysis to gather evidence by 

discussing with people with prior experience in furnishing their bedroom and experienced, 

professional interior designers from Interiorvista company. The hierarchical dependencies 

concluded have a variety of causes and are highly linked to the context– given by available 

space in the room, general shape of the room plan, available money for furniture purchase 

and personal factors such as lifestyle, age, marital status, daily routines, background, 

gender, etc. Besides this wide context, the dimensionality of the problem is also complex, 

dependencies being highly influenced, besides by the type of furniture pieces, by their 

style, individual functionality and features (e.g. if a wardrobe has the particular possibility 

to place a TV, it can replace a desk/table and a sofa can, in this case, be dependent 

directly with the wardrobe).  



68 

 

 

Table 2. Number of objects of each furniture piece type in the dataset. 

Room ID # bed # chairs # table or 

desk 

# 

nightstand 

# 

wardrobe 

# chest of 

drawers 

 1 0 1 1 1 0 

 1 1 1 1 1 0 

 1 0 1 2 1 0 

 1 0 1 2 1 0 

 1 0 1 1 1 0 

 1 0 0 2 0 0 

 1 0 0 2 0 1 

 1 0 0 2 1 0 

 1 0 0 2 1 1 

 1 1 1 2 1 1 

 1 0 0 0 3 1 

 1 0 0 2 0 1 

  

This results, for some cases, in strange groupings and arrangements, due to the high 

variations in functionality and purpose of some types of furniture. Reducing the analysis to 

our initial scenario of the problem (i.e. count of different types of furniture pieces, initially 

without considering style and with a general usage) we depict dependencies such as: 

 bed – nightstand: the bed has a direct influence on the presence and number of 

nightstands. For example, if no bed is present, nightstands might not make sense in 

a room, being replaced by a person by a chest of drawers, if personal space is 
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needed, or a desk/table if a supporting surface is desired. Usually, and depending 

on the general arrangement of furniture and space available, a bed might have one 

or two nightstands 

 wardrobe – chest of drawers – nightstand: these three pieces of furniture, 

although very different from a human perspective, share a significant amount of 

functionality in terms of storage possibilities, accessibility and supporting surface. 

Depending on the particular style, size and positioning in the room, the chest of 

drawers and the nightstand(s) can be both used for storage and “object placement” 

and their presence and positioning is highly influenced by personal style. A chest of 

drawers might offer a wider range of storage functionality, expanding in our dataset 

from day working space for books, documents, to clothing depositing option and 

also room decorations such as artifacts, pictures, personal collections. The 

presence of the wardrobe, usually occupying much space in the room, can 

influence the presence of nightstands and chest of drawers from a space point of 

view, storage capacity of the room (if the wardrobe is large enough, it might 

compensate the need of nightstands and chest of drawers). 

 table/desk – chair: the number of chairs is directly influenced by the presence of a 

table in a bedroom, leading to the case of having chairs without a table to be rare. 

This still can happen, and is present in our manual build dataset; reasons for this 

might include the lack of space, supporting social interactions and “seated 

activities”. Also, other indirect influences can be seen between the desk size and 

the functionalities it offers and the number of chairs (this aspect not being explored 

further in this initial model). 

5.1.3 Framework used 

In our implementation, we used the Bayes Net Toolbox for Matlab (BNT) framework [26] 

for designing the Bayesian model and apply the learning techniques. Some of the most 

important features it offers, together with a brief overview of what they include, depicted 

from the BNT references [26], are:  

 Numerous types of conditional probability distributions are supported, such as: 
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multinomial, Gaussian, logistic/sigmoid, deterministic, etc, offering great flexibility in 

designing the Bayesian Network.  

 Various types of nodes, such as: decision, utility, chance. 

 Various methods for model regularization are included, offering features such as: 

parameter clamming, parameter sharing among nodes, etc.  

 Numerous algorithms for exact and approximate inference are implemented in the 

toolbox, for both static and dynamic Bayesian Networks. 

 Learning methods for parameters, such as: maximum likelihood estimation for a 

fully observed network; maximum likelihood / maximum a posteriori probability 

estimation (MAP), using the batch expected maximization for partial observations, 

for both static and dynamic models. 

 Learning methods for structure, including: the greedy search K2 algorithm – 

requiring a fixed node ordering, Hill-Climbing, and the Markov Chain Monte Carlo 

(MCMC) algorithm. 

 

This toolbox offered the ability to rapidly implement and validate the proof of concept 

against the data, while maintaining the possibility to research further - increasing model 

complexity and problem/data dimensionality. 

5.1.4 Bayesian Network Structure Learning 

It is known that structure learning is NP-hard and exact algorithms have super-exponential 

complexity – e.g. the number of Directed Acyclic Graphs (DAGs) to be searched in. 

Because no feasible possibility exists to exhaustively iterate through all possibilities and 

score each, we use two algorithms for learning the structure: the K2 greedy search 

algorithm and MCMC – a global search algorithm. 

K2 algorithm 

The K2 algorithm is an efficient, well-suited approach, if a total ordering of the nodes is 

known a priori. The initial problem of finding the best DAG then resumes to finding for each 

node the corresponding set of parents. In our case, the dependencies of the furniture 



71 

 

pieces cannot be known and can depend on various factors such as bedroom main (usual) 

activities, human preferences, or furniture functionality. Moreover, no ultimate choice for a 

model to successfully outline and correlate furniture interdependencies with personal style, 

life habits, and routine activities exists in the related literature. 

We manually designed some common sense, plausible, total ordering of furniture sets, 

presented in Table 3, over which we apply K2 algorithm, in order to form an initial idea 

about the types of dependencies that form. These will provide various insights of the 

dataset such as: potential functional groups that form - supporting specific activities in the 

room, variations of types of bedrooms that comprise the dataset, etc. The orderings that 

we fed the K2 algorithm are presented in Table 3. The first 3 arrays represent variations 

that attempt to encapsulate the possible dependencies that were concluded in 5.1.2, after 

analyzing personal opinions of people furnishing their bedroom and discussing with 

professional interior designers from Interiorvista company.  

 

Table 3. Orderings set for K2 algorithm. 

ID Order Observations 

1.  n_bed, n_wardrobe, n_table_desk, n_chair, 

n_nightstand, n_chest_drwrs 

- 

2.  n_wardrobe, n_chest_drwrs, n_bed, 

n_nightstand, n_table_desk, n_chair 

- 

3.  n_chest_drwrs, n_wardrobe, n_nightstand, 

n_bed, n_table_desk, n_chair 

- 

4.  n_chair, n_nightstand, n_chest_drwrs, 

n_table_desk, n_wardrobe, n_bed 

reverse of 1 

5.  n_chair, n_table_desk, n_nightstand, n_bed, 

n_chest_drwrs, n_wardrobe 

reverse of 2 

6.  n_chair, n_table_desk, n_bed, n_nightstand, 

n_wardrobe, n_chest_drwrs 

reverse of 3 
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The parent-child relationships resulting through a data-driven learning, on top of these 

established relationships, will represent a better insight into the complex relations between 

the furniture entities from both perspectives: an analytical one – provided by experts in 

interior design field and a data one – obtained from the greedy K2 algorithm run on the 

dataset, and using as the scoring function the maximum likelihood of the model (e.g. 

Bayesian Score in BNT [26]). The last three ordering arrays are the symmetric of the first 

3. We include these in order to permit the algorithm to build parent-child dependencies in 

both directions, given that we initially created this ordering array set from bidirectional 

dependencies. Moreover, starting from the established dependencies described in section 

5.1.2, the learned DAGs should have the chance to incorporate and extend these relations 

in both directions. 

The results of running the K2 algorithm are presented in Figure 21 and Figure 22. 

Although significant variations have been introduced in the first three cases of total 

ordering, the same structure was learned from the data. This shows a strong correlation of 

the established parent-child dependencies, the results being invariant to changes in 

hierarchy if these modifications preserve the possibility of building the resulted DAG. 

Intuitively, the set of three symmetric orderings also provided only one DAG.  

Another aspect worth mentioning is the simplistic structure obtained, with at least 50% of 

the nodes being independent, this being another possible reason of the stability of the 

results. The lack of more complex dependencies in the DAGs can also be explained by the 

algorithm itself, trying to match each child with its list of parents and by the simplifications 

in the hypothesis, reducing the furniture pieces set to main types, without style and with 

general functionality.  
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Figure 21. Bayesian Network DAG obtained by K2 model on first half of the total orders set 

 

Figure 22. Bayesian Network DAG obtained by K2 model on second half of the total orders 

set. 

 

In more detail, the relations in Figure 21 present a dependency between the number of 

wardrobes and the number of nightstands and a dependency of the number of wardrobes 

with the number of tables and desks. While the first dependency is intuitive and was also 

depicted in our furniture dependency study within Interiorvista Company, the second is a 

rather interesting, new one.  

Although no direct, intuitive relation can be depicted between the wardrobe presence and 
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the table/desk entities in a bedroom, indirect ones can be further observed in the dataset: 

usually the presence of a wardrobe implies the presence of usually one or more 

desks/tables. One reason for this is that a bedroom with a wardrobe shows that a person 

is long-term leaving in it (has her or his personal objects, clothing, etc.) as opposed to, for 

instance, a guest room, that can lack a wardrobe (i.e. just have a smaller chest of drawers) 

and consequently lack a table, because of short term usage. This is common in bedrooms 

for rent and was observed by us, for instance on the Airbnb company website [27], where 

many real private hosts provided rooms with neither a wardrobe nor desks/tables, usually 

because the lack of space and the strict purposes of the room for short-stay and limited 

activity (i.e. only sleep).  

The DAG in Figure 22 only contains one parent-child link, between the number of 

nightstands and the number of wardrobes. This DAG is also loosely coupled, but 

compared to the previous one, the link learned does not represent a significant relation. 

This is probably caused by the counter-intuitive dependencies provided in the total 

orderings in the last half of Table 3 and proves that the analytical relationships depicted in 

our case study are as intuited, in the order of the first half. 

 MCMC algorithm 

We use MCMC for learning the possible DAGs structures for the Bayesian Network. 

Compared to the K2 algorithm, the model does not rely on any a priori ordering of the 

nodes, exploring the space of all possible DAGs. The scoring used in the model is, similar 

to the previous case, model likelihood maximization (Bayesian Score). The BNT [26] 

method takes two model-related parameters, namely the number of samples to be taken 

and the number of steps to take before drawing samples.  

Given the size (in nodes) of our Bayesian network, we run the algorithm initially for a high 

number of iterations, in our case 10,000 iterations. In order to understand the model 

convergence and the accuracy of the obtained results, we used a crude measurement, 

called the “accept ratio”, which is computed, at each iteration, as the ratio between the 

number of accepted samples and the number of rejected ones, as shown in Figure 23. 

From this figure, it is clear that the value of the acceptance ratio stabilizes at around 0.75, 
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indicating model convergence and stability.  

 

Figure 23. Acceptance ratio for the MCMC algorithm. 

 

 

Because the Bayesian score and not the BIC (which would also penalize the DAGs 

complexity) was used, we also plot the number of edges for the last 1000 iterations (i.e. 

DAGs) in Figure 24 as a control of the model complexity and thus overfitting, preferring 

simpler models than complex ones. It is shown that the number of edges constantly varies, 

usually between 3 and 7 edges per DAG, thus an ultimate choice for the Bayesian 

structure cannot be concluded. 

The model fluctuation might also be caused by the fact that the dataset is relatively small 

to reproduce the problem complexity and learn best structure by applying a global search 

algorithm. Although the model is intended to only capture relations between the 

occurrences of different types of furniture, more complex underlying patterns influence the 
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data, which inevitably try to be captured by the Bayesian model. Still, insightful parent-child 

relations learnt through the MCMC approach can be observed in Figure 25, which 

presents the resulting structure variation through six randomly chosen samples, with very 

different DAG structures (i.e. dependencies, number of edges).  

Figure 24. Number of edges in DAGs for the MCMC algorithm. 

 

This analysis constitutes proof that learning exact, unique structure is hard and many valid 

configurations that would validate the dataset can be obtained. The challenge becomes 

even harder when dealing with an open-ended research problem such as interior furniture 

synthesis for a given room plan. Because no ultimate choices for a probabilistic model 

exists in the recent literature and the results obtained with learning the structure can be 

manually improved and did not provide a definite, best candidate, we will use the 

information gained and results from learning the structure and will design manually the 

Bayesian Network structure, with respect to the analysis of furniture dependencies done 

with Interiorvista interior designers and amateurs decorating their bedrooms. 
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Figure 25. Different DAGs produced by the MCMC algorithm. 

 

 

 

 

Manually designed DAG 

The manually designed Bayesian structure, presented graphically in Figure 26, will 

contribute to the overall proof of concept with an analytical, human analysis of furniture 

pieces’ dependencies, reinforced with strong correlations depicted from data, through 

structure learning. A broad palette of reasons for these correlation have been taken into 
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account, expanding from general furniture functional groupings (e.g. table with chairs, bed 

with nightstand) to more abstract, general ones such as bedroom purpose (e.g. long stay 

vs. short stay), size and shape variations (i.e. allowing certain pieces of furniture to be (or 

not) of usable support surface (i.e. total area of surfaces that can be used to put daily 

common objects such as table, nightstand, and more rare chest of drawers).  

Although the considered complexity represents a valid starting point for POC, integrating 

significant complexity in order to achieve insightful analysis, important aspects are 

currently left out, but will need to be included in further work, towards achieving 

robustness, scalable, production-ready results – as needed for this real-world, customer-

oriented company project. These aspects include: style compatibility, personality analysis 

(e.g. life style, age, marital status, gender, background, preferences), furniture set 

enlargement, detailed functionality adding, compatibility specs as of the furniture providers. 

 

Figure 26. Manual designed Bayesian Network DAG. 

 

In more detail, such direct parent-child relations are: 

 wardrobes – chest of drawers; nightstand – chest of drawers; table – chair; 

bed – nightstand: these dependencies were added as a result of the study 

analysis, detailed in 5.1.2 and partially correlating to obtained learned structures 
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 wardrobe – table/desk: as depicted from the learned structure using the K2 model, 

this indirect caused relation is a strong candidate to be included in the designed 

structure. However, this link will be removed from this initial model because of the 

bad integration with the model: resulting in strange, non-representative samples of 

furniture sets. 

 table / desk – nightstand: this correlation, outlined in some cases of the MCMC 

learning, related the number of tables / desks to the number of nightstands. Having 

main different functionalities, namely social/work activities enabling and small 

deposit space, horizontal near bed surface respectively the influence is probably 

related to the space challenge and usage of the room in daily activities.  

Analyzing further together with Interiorvista experts and amateur people who 

furnished their bedrooms, we presumed that a person, with limited space room, 

would include a table/desk in favor of a nightstand if day light and social activities 

would be done in the bedroom and opposite (i.e. a nightstand instead) if the room 

main purpose would be for sleep and activities close to sleep time (e.g. morning of 

evening routines) – the nightstands usually being used adequately: support surface 

for smartphones, books, watch/alarm, lamp that favor before sleeping activities and 

waking ones as: waking up with alarms, reading a book, watching a movie before 

sleep, hygienic routines, etc. 

5.1.5 Bayesian Network Parameter Learning 

Using the built Bayesian structure in sub-section 5.1.4, we move forward to parameter 

estimation through learning. In our case, each node is a discrete one, having one of the 

following 4 values: {0, 1, 2, 3+}, representing the number of each furniture piece (i.e. for 

each node). Also, because the furniture generation problem is currently represented only 

through furniture counting nodes, we deal with a fully observable Bayesian Network. We 

use the maximum likelihood estimation algorithm for learning the parameters and we keep 

the same learning data as previous (i.e. counts of selected furniture pieces in the bedroom 

dataset). After learning the parameters, we use the Bayesian Network for sampling new 

possible sets of furniture that would go in an unfurnished bedroom.  
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In order to better understand and compare the power of the Bayesian Network and the 

power of the model to learn and reproduce furniture interdependencies, we will compare 

the generated results (i.e. through sampling) of the last Bayesian Network (i.e. the one 

with the had crafted DAG) with other three representative structures, resulting the following 

scenarios: 

 No connections (i.e. no dependency between the nodes) 

 K2 structure 

 MCMC structure (chose randomly among the learned ones) 

 Manually built 

In Table 4, we present 10 samples from each of these cases. We start with the simplest, 

basic case with a Bayesian Network with no connections following with the appliance of 

the presented methods for learning the structure and finally the manual design one, 

integrating significant dependencies observed both analytically in the study case and data 

oriented, from the previous Bayesian Networks. 

Table 4. Furniture samples for different BN structures and learned parameters. 

 # bed # chairs # table 

or desk 

# 

nightstand 

# 

wardrobe 

# chest of 

drawers 

Obs. 

Null 

DAG 

1 0 1 2 1 0 - no linkage 
between 
number of 
furniture 
pieces 
- sampled 
according to 
occurrence 
frequency 
 

1 0 1 2 1 0 

1 0 0 2 1 0 

1 0 0 2 1 1 

1 0 0 1 1 0 

1 0 0 0 1 1 

1 0 1 1 1 0 

1 0 1 2 0 0 

1 0 1 2 1 0 

1 0 1 2 0 0 

K2 1 0 0 0 3 0 - local 
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DAG 1 0 0 0 3 1 constraints 
reinforcement, 
acc. to BN 
structure 

1 0 1 1 1 0 

1 0 1 1 1 1 

1 1 0 2 1 0 

1 0 0 2 1 1 

1 0 0 2 0 0 

1 0 1 1 1 0 

1 1 1 1 1 0 

1 0 1 2 1 1 

MCM

C 

DAG 

1 1 1 1 1 0 - complex 
local 
dependencies 
enforced: 
- support 
surface 
balance:  
- deposit 
space ratio 

1 0 0 0 3 1 

1 1 0 2 1 1 

1 0 0 2 0 1 

1 0 1 1 1 0 

1 0 0 0 3 1 

1 0 0 2 1 0 

1 0 1 1 1 1 

1 1 0 2 1 0 

1 1 0 2 1 1 

Man

ual 

DAG 

1 0 0 0 0 3 - incorporates 
all the above 
relations, plus: 
- general, 
global 
abstraction, 
resulting in 
different types 
of bedrooms, 
oriented to 
human life 
style 

1 1 1 1 1 0 

1 0 0 2 1 1 

1 0 0 2 1 0 

1 0 0 2 0 1 

1 0 0 2 1 0 

1 0 1 2 1 0 

1 0 1 1 1 0 

1 0 1 2 1 1 

1 0 0 2 3 3 
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No connection DAG 

The first and also the simplest case – the DAG with no connections - produces samples 

that do not relate the number of entities with the context, given by the other existent 

entities. The generated values for each type of furniture piece emulate the frequency of 

furniture pieces in our dataset. Therefore, we can easily depict many types of anomalies 

that are not representative of our data, such as: tables usually do not have chairs, the 

values usually do not vary because the context in which these values are generated is 

represented by the furniture piece itself, no balance or correlation of furniture groups’ 

functionality can be depicted, etc. This case serves in our scenario as the baseline, to 

which we compare the performance of the other results.  

K2 model DAG 

Moving to the next case, namely the structure learned by the K2 approach, we start seeing 

some variations in the samples generated in this case, such as: number of chairs in rooms 

is not always 0, we can have more than 1 wardrobe in some cases, and some data 

correlations can be seen, given by the Bayesian Network structure learned by the model 

for this dataset. We recall that this algorithm requested an a priori known total order of the 

nodes, and therefore the results are highly correlated by the imposed order. However, a 

certain degree of model stability was demonstrated by the fact that variations in the total 

ordering of the nodes, which did not interfere with the learned, direct parent-child 

dependencies, did not introduce any kind of variations in the learned model. Moreover, by 

learning structures given all the symmetric ordering of the previous variations also resulted 

in a single, stable Bayesian Network structure.  

In more detail, the learned structure dependencies, in this case between the wardrobe and 

the table, and nightstand, over which the parameter learning was applied is presented in 

Table 5, which outlines the Conditional Probability tables (CPDs) for the table/desk and 

nightstand nodes, respectively. Interesting hypothesis can be drawn directly from them, 

and indirectly from the sampled instances, such as:  

 if no wardrobe is present, there will be no table/desk (possibly related to the lack of 
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space in the room: a person would prefer a wardrobe over a table/desk for a 

bedroom and, therefore, if no wardrobe is possible, no table will be either) 

 if one wardrobe: there is 75% chance for a table to be in the room and 25% chance 

for a table to not be in the room and 62% for 2 nightstands and 38% for one. 

 for 3+ wardrobes, no tables, nor nightstands should be present in the room 

(because of lack of space, or the practical use of the bedroom as a personal 

storage site – e.g., for clothes) 

 observation: there is 0 probability for 2 wardrobes in the “number of wardrobes” 

node, thus 0 sum probability in that case for each of the child nodes. 

 

Table 5. Conditional probabilities in K2 Bayesian Network. 

 # Wardrobe 0 1 2 3+ 

# Table / 

desk node 

0 1 0 0 0 

1 0.25 0.75 0 0 

2 0 0 0 0 

3+ 1 0 0 0 

# 

Nightstand 

node 

0 0 0 1 0 

1 0 0.38 0.62 0 

2 0 0 0 0 

3+ 1 0 0 0 

 

MCMC model DAG 

A more complex DAG structure for the Bayesian Network is learned by the MCMC 

algorithm, which also outlines some possible linkage and dependencies of the furniture 

sampling. Being a model learned only from data, first the structure and then the 

parameters, we analyze the results, as before, from the perspective of how well the 

architecture was able to capture significant, underlying patterns in the furniture 

interdependency.  
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As indirectly depicted from the samples generated, the model has a better, deeper 

understanding of the data, taking into account more abstract patters for bedrooms such as 

total support surface available for depositing common object upon – through the 

dependency between the nightstand and the table/desk and total deposit space (e.g. for 

clothes and other personal objects), through dependencies between all the furniture pieces 

that have this functionality in our dataset, namely wardrobe, chest of drawers and 

nightstand.  

We can view the results of these main relations both directly, as presented in conditional 

probability tables in  

Table 6, Table 7, Table 8, and also indirectly in the data generated, shown in Table 4. The 

presence of the nightstands influences directly the presence and number of the wardrobes 

and indirectly the number of the chest of drawers (i.e. if no nightstand is present, a chest of 

drawers is usually sampled. Also, in the wardrobe – chest of drawers dependency we can 

see that the chance of a chest of drawers existence decreases if a wardrobe is present in 

the room: 66% for the existence of a chest of drawers if no wardrobe is in the room and 

only 25% if one wardrobe is in the room.  

Because of the limited dataset available for analysis from Interiorvista, and the complete 

orientation of the model towards data learning, less plausible dependencies are also 

learned, containing the conditional probabilities for 3 significant nodes, namely wardrobe, 

table/desk and chest of drawers. Such case would be: the 100% chance for 3+ wardrobes 

if the room has 1 bed and no nightstands; the compulsory (e.g. 100% chance) of having 

one table if the room has one nightstand and the existence of exact one chest of drawers if 

the room has 3+ wardrobes.  

In general, the observed atypical cases are caused by overfitting, due to the limited 

number of entities in our training set, and the complexity of the model developed. Another 

sign that these few cases are produced by the lack of similar examples (i.e. corner cases 

for our dataset) is the probability distribution: usually 100% for one case – showing that the 

case was learned from only one example – because of missing other similar, containing 

small variations examples. These should be straight forward avoided with a larger dataset, 
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containing a greater variety of bedroom scenes.  

For the purpose of this initial model and dataset presented in the project, in the light of an 

open ended research field, we focus more on what aspects can be learned and which 

model can be used, as a proof of concept, leaving the robustness and scalability of the 

system for future development. 

 

Table 6. Conditional probabilities for # Table/Desk in MCMC Bayesian Network. 

 # Nightstands 0 1 2 3+ 

# Table / 

desk node 

0 1 0 0 0 

1 0 1 0 0 

2 0.62 0.38 0 0 

3+ 0 0 0 0 

Table 7. Conditional probabilities for # Chest of drawers in MCMC Bayesian Network 

 # Wardrobe 0 1 2 3+ 

# Chest of 

drawers 

0 0.34 0.66 0 0 

1 0.75 0.25 0 0 

2 0 0 0 0 

3+ 0 1 0 0 

Table 8. Conditional probabilities for # Wardrobe in MCMC Bayesian Network 

 # Bed #Nightstand 0 1 2 3+ 

# 

Wardrobe 

1 0 0 0 0 1 

1 1 0 1 0 0 

1 2 0.38 0.62 0 0 

Other Other 0 0 0 0 

Observation: for the other cases the probability is 0 because of apriori 0 probability. 
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Manual DAG 

Therefore, in order to combine the power of learning with the limitation of the dataset size 

and the knowledge gained through the expert case study done with Interiorvista, we 

developed a manual DAG and learned only the parameters from data.  

Ten samples of the resulting Bayesian Network are presented in Table 4. Also, examples 

of relevant conditional probabilities learned are presented in Table 9 and  

Table 10 for “number of chairs” and “number of nightstands”. Combining the strengths of 

the previous obtained models, such as the support surface balance and the deposit space 

ratio, this Bayesian Network adds also functional constraints for individual furniture pieces, 

such as: a table/desk should almost always have at least one chair and vice versa: a chair 

without a table in the room should be fairly rare.  

This human-judged fact is also inferred from data, as the conditional probability table for 

“Number of chairs”, Table 9, outlines that if no table is present neither is a chair and a 

table is usually (i.e. in 66% cases) accompanied by a chair and the rest of 34% cases, by 

two chairs – which is plausible for a bedroom. The model also takes into account subtle, 

specific furniture grouping, for the types of furniture included in the dataset, according to 

general style and overall aspect of rooms, such as the bed with usually two nightstands, 

conversing overall symmetry of the interior design.  

This is also outlined in the conditional probability table for “number of nightstands” node,  

Table 10, which shows that for one bed and no tables in the room (e.g. no other supporting 

surface in the bedroom, and possible space left – due to the absence of table and chairs 

group), there are either two nightstands (with a probability of 83%) or none. If one table / 

desk is present in the room (i.e. some support space is available in the bedroom, and no 

information about the free space remaining for furnishing purpose), there is equal chance 

for having one or two nightstands. Further, such correlations can be depicted from the 

conditional tables of other nodes, mostly around the hidden patterns of available horizontal 

surface and depositing space in the room, main features in supporting bedroom specific 
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activities and common routines. 

 

 Table 9. Conditional probabilities for # Chair in Manual Bayesian Network. 

 # Table / Desk 0 1 2 3+ 

# Chairs 0 1 0 0 0 

1 0.66 0.34 0 0 

2 0 0 0 0 

3+ 0 0 0 0 

 

Table 10. Conditional probabilities for # Nightstands in Manual Bayesian Network. 

 # Bed #Table / Desk 0 1 2 3+ 

# 

Nightstan

d 

1 0 0.16 0 0.84 0 

1 1 0 0.5 0.5 0 

Other Other 0 0 0 0 

Observation: for the other cases the probability is 0 because of a priori 0 probability. 

Besides the direct observations, these hidden structures are also nicely outlined in the 

samples generated in this case, Table 4, which enforce the qualities of this latter model.  

Such examples include: a chair has a desk/table pair, the number (or presence) of the 

wardrobe influences the chest of drawers and nightstands. Because of more abstraction is 

involved in this model, we can depict different types of bedrooms, oriented towards certain 

functionalities and supporting certain styles. For instance, the last sample shows a 

bedroom, in which the main focus is on personal belongings and not on working or daily 

activities, only having, besides the bedroom, 3+ wardrobes, 3+ chest of drawers and 2 

nightstands. This type of room could be appropriate for persons having plenty of clothing 

to store but also artifacts and decorations. In opposition to this room, the first instance 

depicts a room with only a bed and 3+ chest of drawers, the absence of the wardrobe and 

table/desk outlines the possible orientation of this room towards guests or short term 
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renting. Most bedrooms, focusing on standard furnishing (most present in our dataset, too) 

have a bed with 2 nightstands (most common cases in IKEA bedroom furniture) and a 

wardrobe, with almost half of the cases presenting a table/desk to support daily activities.  

Considering the achievements and limitations of the obtained models, it is possible to see 

that, with the increase of the model complexity and by combining expert interior design 

analysis with dependencies learned from data, we should be able to model abstract, 

hidden patterns, expanding from various local correlations such as functional, available 

deposit space, support surface to global ones resulting in different types of bedrooms, 

oriented to multiple life styles and supporting certain categories of activities.  

Moreover, for this initial proof of concept, the model demonstrates that, with the right 

amount and type of data, we can capture trends and preferences of users and types of 

bedrooms from a person point of view, as opposed to a designer one. These results will 

offer Interiorvista the advantage to address the user preferences from a client side 

perspective, being able to learn, from real data generated by people furnishing their 

bedrooms, patters deeply present in customers’ familiarities, rather than only imposed by 

nicely, well though arrangements provided by experts in field. 

 

5.2 Mixture Models for furniture arrangements 

A Gaussian Mixtures Model is meant to offer a way of arranging certain strongly-

connected groups of furnishings, learnt from previous examples, therefore reducing the 

dimensionality of the searching space for placing the specific types of furniture produced in 

earlier stages with Bayesian networks. The intention is not to output a completely 

furnished bedroom, but rather gain some insight regarding the associations that can be 

made among the objects within a room, given by their coordinates and a few other 

attributes, automatically, and creating plausible arrangements that can be placed in the 

context of a new space. 

The positioning of a complete set of furnishing layout would include, at a large scale, 
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operations applied for arranging the pieces of furniture output by the Bayesian network, 

inside a given perimeter of a room, keeping in mind their dimension and functional 

dependencies from other objects. In the latter case, GMM would be used to draw samples 

from the resulted Gaussian for each object. The hard constraints for fitting everything 

inside the walls, without overlapping, would have to be satisfied by conditional formulas or 

more advances methods in the future (e.g. a learning system using many more examples). 

5.2.1 Framework, technologies and models engaged 

The arrangement component for furnishing layouts was developed with Python 2.7, 

installation included in the Anaconda platform [28]. The open-source distribution offers pre-

installed packages which were heavily used in this project, such as NumPy, Pandas, 

SciPy, Matplotlib, and IPython. The IPython notebook offers an interface for code 

development and fast prototyping, making generating and saving modified versions of the 

same model and their results easier. 

Scikit-Learn [29] is an open-source library, developed on the basis of these previously 

mentioned packages, offering stable and efficient tools for machine learning, data mining 

and data analysis. The GMM [30] and Dirichlet Process GMM [31] are available through 

the package, being completely reliable and ready to use. 

The results were obtained using a GMM with maximum-likelihood estimation for the 

parameters, and a Dirichlet Process GMM (DPGMM), offering a prior distribution for the 

number of clusters through a Dirichlet process. The plots for GMM and DPGMM show the 

confidence ellipsoids of each of the centers, after trained with a ‘full’ covariance type. For 

evaluating the performance of the GMM Model according to the number of components 

engaged, we used the Akaike Information Criterion (AIC) [32] and Bayesian Information 

Criterion (BIC) [33]. 

5.2.2 Data: usage evolution and selection motivation 

The data engaged to model Gaussian mixtures must have a tendency to cluster around 

relevant points of interest. In our case, we look for groups of pieces of furniture which 
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appear to be present in the same environment simultaneously, but yet one category would 

be the dominant one, whilst the objects in the other category would make more sense 

usually in the context of existence of the first one. For instance, for the chairs around a 

dining table would be more reasonably for the dining table to exist prior to adding the 

chairs into the room. Normally people arrange the table keeping in mind its functionality 

and the space that has to have around it for the usability of chairs and only afterwards set 

the chairs, almost instinctively. 

Other than the causality among the set, a very important characteristic to selecting the 

type of objects that are going to be a part of the same group is the rationality of the 

spatial distribution in practice, for the objects within the room. In particular, although one 

can fairly assume that, in most cases, a wardrobe tends to occur in the same cases as the 

bed occurs within a bedroom, the placement of a wardrobe is very little influenced by its 

relation with the bed, instead having to comply with strongest, more restricting rules given 

by the dimensions of the room, for example, being itself a quite large entity. 

The groups which are worth considering for the GMM are selected based on previous work 

in the field, the company’s specialists expertize, the specifics of the rooms selected as 

examples, and the common sense any human can use in order to reject or accept a given 

layout. These groups are constituted having functionality as a common denominator: bed 

and nightstands, bed and TV, desk and chair. More about the data preparation for these 

models can be found in the dedicated section (4.3.4) and during the following chapters 

additional information will clarify both the implementation and the key decisions with 

respect to the involved data. 

Based on previous research [12], and confirmed after testing with both higher and lower 

values, we generated other 200 examples starting from each instance obtained after 

processing all rooms, drawing jittered samples from a normal distribution with the point as 

mean and the variance depending on the type of the link being highlighted. 

5.2.3 Learning arrangements of furniture sets 

In the following sub-sections we present the process of learning through GMMs and 
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DPGMMs three sets of items commonly found in typical bedrooms: bed and nightstands, 

bed and TV,  and desk and chair, where placing the objects named first, in each example, 

influence the object(s) which follow. 

5.2.3.1  Arrangements of bed and nightstands 

The tuple used to train the GMMs for this case has the form of: (𝑥, 𝑦); the z-coordinate is 

unnecessary since all the objects have the floor as their supporting surface and the θ 

angle representing the item’s rotation around the 0z axis remains the same for all the 

objects involved in the current set.   

Initially, we considered all the instances of beds and nightstands aligned and overlaid 

within the same coordinate system, the bed having its top-left corner being anchored by 

the origin and the nightstands being placed sideways from the bed without any alterations 

to their size or distance to the bed from the initial context, marked in the working 

coordinate system through their top-left corner as well. We then removed the bed 

coordinates (all of them being (0, 0)), allowing the nightstands to be represented with 

better in the mixture. Figure 27 depicts the instances after translating and rotating them 

from their initial environment to the common coordinate system, representing the top-left 

corner of all nightstands. Each of the 18 instances of nightstands, extracted from 

bedrooms, was used to generate another 200 points, the new positions being altered 

by 𝛼 ~ 𝒩(0.25 ∙ 𝕀2), as shown in Figure 28. 
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Figure 27. Initial nightstands instances, each point representing their top-left corner. 

 

Figure 28. Sampling nightstands instances, 200 examples for each initial point 

 𝜶 ~ 𝓝(𝟎. 𝟐𝟓 ∙ 𝕀𝟐) 

 

 

Forcing the GMM and DPGMM to have only 2 components, the results (Figure 29), does 
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not yield promising results. Although the points are correctly identified as being in the left-

hand or right-hand clusters, the ellipsoids are very elongated and overlap each other. 

 

Figure 29. GMM and DPGMM applied for 2 components, initial assessment 𝜶 ~ 𝓝(𝟎. 𝟐𝟓 ∙ 𝕀𝟐) 

 

After increasing the noise for sampling, considering 𝛼 ~ 𝒩(1 ∙ 𝕀2), we observe that the 

confidence ellipsoids tend to remain the same as before (Figure 30). Further increasing 

the variance of the normal distribution for sampling forces the ellipsoids to thicken, but 

their long radius remains the same. The conclusion which can be drawn so far is that the 

right-hand nightstand examples are too far apart from each-other to improve the model 

through the help of parameters. 

Using Akaike and Bayesian criteria in order to observe the optimal number of clusters to 

encapsulate our data (Figure 31), it is easily perceivable that the minimum scores are 

achieved for a number of clusters greater than 13, very close to the number of the points in 

the initial dataset, which could have been predicted. 
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Figure 30. GMM and DPGMM applied for 2 components 𝜶 ~ 𝓝(𝟏 ∙ 𝕀𝟐) 

 

 

Figure 31. AIC and BIC evolution for GMM; nightstands points 𝜶 ~ 𝓝(𝟏 ∙ 𝕀𝟐)   
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Trying to tackle the problem differently, we further considered the centers of the objects to 

bear more information than the top-left corners and we chose to include the bed instances 

in the set (Figure 32, a), to be modeled in the same process, given that now these 

instances are not all equal to (0, 0), becoming more relevant for the arrangement we are 

trying to learn, and also more believable. 

 

Figure 32. Analyzing GMM performance with 3 components in the mixture for bed and 

nightstands given by their center points.   

a) Nightstands and bed instances b) Clustering augmented dataset: 𝜶 ~ 𝓝(𝟑 ∙ 𝕀𝟐) 

  

 

While the left-hand nightstand and the bed seem to be approximated reasonable, the right-

hand nightstand continues to have problems for its large positioning variance, in Figure 32, 

b). AIC and BIC show that the optimal number of Gaussians for the mixture is at least 8, 

the almost-detached clusters being easily identifiable in the figure. Although it seems 

illogical at first as to why the left one has better results, since they usually are symmetrical 

with respect to the bed, the explanation comes from the fact that when doing the 

calculations for obtaining their coordinates, we considered the top-left corner of the bed to 

be the center of the axes and then obtain the nightstands’ coordinates in accordance with 

that reference.  



96 

 

To solve the problem concerning different-sized beds which evidently influences especially 

the right-hand nightstand’s final position, we consider all the beds to have the same width 

(the maximum found in the dataset), leaving all the other relative dimensions unchanged. 

Moreover, in order to balance the positions of the nightstands and convey their symmetry 

towards the bed, to the representative points in the working system, we chose as pivots: 

for the bed, the top-median point, for the left hand-side item, the top right corner, and for 

the right hand-side item, the top-left corner, respectively, as explained using Figure 18.  

A plot for the initial points used for clustering is available in Figure 33, a). Now that the bed 

size is fixed, there is not much variance among the felt and right groups of nightstands. We 

decide to keep the points for the bed, serving as a clear demarcation for the objects. 

Besides, even though they have the same coordinates now, after over-sampling and 

drawing a location of the bed to fill in the given layout of the new bedroom, this operations 

might introduce a favorable variation, conferring an even more human-approved aspect of 

the desired environment to be furnished.  

 

Figure 33. Analyzing GMM performance with 3 components in the mixture for bed and 

nightstands given by their top-right, top-median, and top-left, respective points   

a) Nightstands and bed instances b) Clustering augmented dataset: 𝜶 ~ 𝓝(𝟏 ∙ 𝕀𝟐) 
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Both GMM and DPGMM manage to approximate the data with ideally-shaped ellipsoids, 

Figure 33, b), reinforcing the ability to automatically extract an arrangement of the bed with 

one or two nightstands, depending on the needs. 

Evaluating AIC and BIC scores for the latter experiment, Figure 34 confirms the 

expectations regarding the outstanding results for this group of items, capturing their 

interrelated functional and aesthetically pleasant properties. Both information criteria 

provide a steep descend until reaching the value 3, inferring that 3 components for GMM 

are exactly the right number to safely model all points in the dataset. 

 

Figure 34. BIC and AIC scores for GMM over bed and nightstands positioning; 𝜶 ~ 𝓝(𝟏 ∙ 𝕀𝟐)  

 

The process of placing actual objects in the scene is achievable by reversing the operation 

we did for considering a universal size of bed, now we will subtract its width and add 

instead the width of the desired bed, the group being, thus, ready to be placed in the 

required room. 
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5.2.3.2 Arrangements of bed and TV 

Taking the learning from the previous group, we had more insight when facing choices 

regarding implementation decisions for bed and TV. The link is usually created when a 

bedroom is provided with a TV. Another possible example from the same category would 

be sofa/fauteuil and TV, thus the TV being dependent on the sofa, instead of the bed, but 

maintaining the same functional link. However, in our dataset all the TVs that were present 

within the room were clearly related to the bed, their position and orientation being directly 

influenced by it. 

The general rules someone complies with when positioning a TV inside their room, after 

the bed has been placed, regard the orientation and other objects interdependency 

constraints. The orientation has to provide a good angle so that watching TV from bed 

would be comfortable enough. In our dataset every TV has its forward vector pointing in 

the other direction as the bed, creating a 180° angle between the 2 forward vectors. The 

distance regards saving as much space as possible, while keeping the utility of the TV and 

the livability of the bedroom as a whole. In our examples, as in general, TV has either a 

supporting surface – usually a chest of drawers in our case – or is attached to a wall. It is 

desirable to have it as close to the wall as possible, if the room is not too big and the other 

furniture pieces allow it. 

Given that, this time, the orientation is very important, the instances that are going to be 

learned from GMM now have 3 dimensions: (𝑥, 𝑦, 𝜃). We kept (𝑥, 𝑦) representing the 

top-middle point of each object, in a canonical form, as before, while θ stands for the 

orientation of the forward vector of each object, also modified from the original room when 

translated, so that the data would be consistent. Figure 35 includes the pivot points for all 

instances of bed, centered in (0, 0), and the computed top centers for all 6 instances of 

TV. 

We initially altered only the coordinates in order to generate more samples, with 𝛼 ~ 𝒩(5 ∙

𝕀2), leaving the θ orientation identical to the one in the instance used to over-sample, 

resulting, again, 200 more examples for each of the initial instances.  
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 Figure 35. Representative coordinates for bed and TV, the bed having the top segment 

centered in (0, 0) 

 

 

Figure 36 holds the results for learning GMs and DPGMs with 2 components over the 

data. The angle is not shown in the image, the plot is made according to the coordinates, 

but it is taken into account for training the models. DPGMM does not seem to capture the 

underlying properties of the data, drawing the TV’s ellipsoid too high. On the other hand, 

GMM brings out a plausible Gaussian over the TV’s set. The elongation of the ellipsoid is 

not necessarily a problem, since in real-life usually is near the opposite wall and does not 

have to be aligned on the 0y axis with the bed. And with the bed being placed near a 

corner of the bedroom, it leaves the feasible amount of space for the TV; we just have to 

make sure that when we draw samples for new furnishings, the will be on the right side of 

the bed. 
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Figure 36. GMM and DPGMM over jittered coordinates with 𝜶 ~ 𝓝(𝟓 ∙ 𝕀𝟐), for bed and TV 

 

As we assumed, AIC and BIC achieve minimum for more than 7 components, which may 

be accounted for the beds cluster, plus one cluster for each of the generative instances of 

TV. However, Figure 37 logs a high drop for 2 components, followed by rather minor 

improvements, as the number of components increases. 
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Figure 37. BIC and AIC scores for GMM over jittered coordinates with 𝜶 ~ 𝓝(𝟓 ∙ 𝕀𝟐), for bed 

and TV. 

 

 

The length of the bed is not a problem this time because the room’s dimensions diversity is 

far wider than the bed’s length and the proximity of the TV to the bed, along the 0y axis, 

comes from its proximity to the wall, instead of the beds’ length differences. For a more 

human-approved appearance of the final arrangement, we trained the GMM after jittering 

the samples and adding noise to the orientation component as well. This procedure added 

thickness to the ellipsoid, making new potential candidates being prone to slight changes 

of position, as well as angle ( Figure 38, a). 
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Figure 38. GMM and DPGMM over jittered (𝒙, 𝒚, 𝜽) tuples with 𝜶 ~ 𝓝(𝟓 ∙ 𝕀𝟑), for bed and TV 

a) GMM and DPGMM results b) BIC and AIC scores 

 
 

  

In this example, Figure 38, b), it is more evident that a major improvement on the 

information criteria is obtained for 2 components, but for the minimum to be achieved are 

necessary 7 components, corresponding to the bed’s cluster, plus 6 clusters for each of 

the TV instances, which does not come as a surprise. 

5.2.3.3 Arrangements of desk and chair 

For bedrooms designed with a working functionality purpose, especially inhabited by 

children or young people and others requiring their own space to work, a desk and a chair 

is often mandatory. The items are usually modeled together, but only two examples were 

met within our dataset, one of which containing a particular case of desk, custom-made for 

the wall. In general, the approach consists in gathering all examples and translating them 

to a reference system, enriching the dataset with jittered examples and, afterwards, 

twitching the parameters of a GMM for an optimal solution, as we did in previous cases. 

Having only one example, we can still model a Gaussian mixture after over-sampling so 

that it can be used in future layouts. Desk is the furniture piece that influences the chair’s 

position and, therefore, we chose to center the top segment of the desk in (0, 0), while 
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repositioning the chair in the corresponding place. As well as the case of bed and TV, here 

we will model the GMM training (𝑥, 𝑦, 𝜃) tuples, as the orientation of the desk vs. chair is 

extremely important and should not be neglected.  

Figure 39, a) presents the solution obtained after training both GMM and DPGMM, after 

jittering the instance tuple with 𝛼 ~ 𝒩(0.25 ∙ 𝕀3), thus obtaining 200 more samples. We can 

observe the DPGMM does not perform according to our intentions, since the third 

dimension, the rotation angle, is preventing the model to estimate 2 clusters, instead of 

one. In the next picture, Figure 39, b), we can observe the values of AIC and BIC scores. It 

is only logical that 2 Gaussians would be perfectly fit to model 2 clusters whose data were 

generated by 2 Gaussians. 

Although it may seem artificial to model furniture arrangement from only one raw example, 

drawing samples for using them in a real-world furnishing problem may outperform rigid 

methods such as using a formula to indicate the position of the chair. This method will also 

provide a pleasant, human-approved arrangement, which comes from the mild variations 

of the rotation angles and positions. 
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Figure 39 . GMM and DPGMM over jittered (𝒙, 𝒚, 𝜽) tuples with 𝜶 ~ 𝓝(𝟎. 𝟐𝟓 ∙ 𝕀𝟑), for desk 

and chair. 

a) GMM and DPGMM results b) BIC and AIC scores 
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6 Conclusions and Future Work 

 

6.1 Conclusions 

Artificial Intelligence has been present in design matters for over 20 years now [6], and is 

currently opening research paths within architectural engineering towards 3D building 

automatic planning, organizing interior spaces, furnishing layouts, introducing ornaments 

and matching styles. Our topic of interest in this thesis, populating a given floor plan with 

appropriate furniture pieces, raises concerns regarding feasibility and ensuring 

functionality while providing results that are compatible with professional guidelines and, 

above all, results that respect humans’ common knowledge related to their environment, 

something that is very difficult to grasp and impossible to achieve via mathematical 

constraints. 

Advancement in this field is, therefore, arduous due to the almost intractable search space 

of plausible solutions and the complexity of gathering enough examples as to capture the 

essence of the purpose of a particular space, which is, quite often, inaccurately branched 

into homogeneous or heterogeneous categories, based on the inhabitant’s lifestyle, 

background, culture, and so on.  

In the context of the design of a room planner, the final objective of the ongoing research 

that includes current results reflected in this thesis, is the development of a fast solution in 

the form of a software tool, offering customers an immediate visual result for furnishing 

their “dream room”, with a given perimeter, in a form that complies with the person’s 

needs, but also obeys interior design guidelines. 

The personalized solution the user is looking for is not a matter of “dragging & dropping” 

items inside a formal layout. On the contrary, we deal with a possibility space that cannot 

be represented in a finite manner, ingraining a highly non-polynomial aspect in any method 

attempting to search throughout that space on account of finding an even simplistic 
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solution. 

In this thesis, the answer to those obstacles takes the form of a probabilistic approach, 

applied for bedroom fittings. Firstly, finding a way to approximate probabilities of objects 

occurrences within a room and sampling from that model to produce plausible and, 

sometimes, unseen types and number of components. We have achieved it through our 

Bayesian Network system, able to learn from few examples of manually designed layouts, 

probabilities for the apparition of each type of object in a bedroom, enabling us to get a 

grip on which objects will have to appear in our space. 

Secondly, we propose a ready-to-use arrangement model, based on GMMs, able to learn 

the interdependencies function in the context of different bedrooms and, without 

demanding too many examples, output ready-to-be-placed items arrangements. The 

arrangements we unfold in the current project meet two requirements: they are suitable to 

be fit inside a bedroom and are strongly inter-connected. The sets of colligated furniture 

pieces, emerged from our work, fall under one of the three following categories: bed and 

nightstand(s), bed and TV, desk and chair. Any of these groups can be directly sampled 

within milliseconds and then naturally placed in the space to be furnished. 

Evidently, the quality of both undertakings would improve enormously if a larger database 

was available, empowering specific oriented needs to be fulfilled through the gathering of 

enough examples to exhibit a particular feature evolution within distinctive contexts. The 

next section explains in a more detailed manner the future requirements and necessary 

tools to allow these improvements, thus significantly contributing to the ultimate goal of 

creating a fast, professional and user-specific 3D room planner.  

  

6.2 Future Work 

The plans for future developments can be partitioned into different-duration targets, all 

leading towards achieving the main prospect of putting at the disposal of customers a fast 

and complete tool for setting their floor plan and preferences, retrieving a custom-made, 
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professional-approved furnishing result, visualizing it with the ability to change some 

components, and lastly obtaining an evaluation of the price for implementing it into his/her 

own room.   

All the experiments is this thesis were carried out with an extremely parsimonious set of 

data, so that conclusions have to be taken not as definitive but only as a proof-of-concept 

of what the modeling can provide to the final software tool for the company. In order to 

create a full-featured planner, with seamless flow from one component to another, it is 

imperative to benefit from a wide dataset, counting thousands or more examples, as well 

as a tool for automatic extraction of object position, relative to a standard world-coordinate 

origin, rotation, orientation and dimensions.  

A crucial requisite for successfully learning different types of interdependent fitting 

arrangements would be having access to many kinds of measurements and canonical 

positions, regarding placing the items within the same coordinate system. Other 

measurements include distances from every object to every other object, to the walls and 

the center of the room. The walls need not to be subdued to different levels of thickness 

and, certainly, the objects inside the room need to accurately refer their positions towards 

world-system’s origin, placed in the usable space of the room, disregarding the walls 

thickness. 

All of the objects need to respect the same naming pattern, in order to be easily retrieved, 

as well as traceable throughout their processing including data mining, data analysis and 

models’ implementation. The number for each type of object needs to be automatically 

counted for all items within the room and added to the global counter. It would be useful to 

split the room instances into separate stacks, according to different criteria: shape of the 

room (e.g. rectangle, ‘L’ shaped), purpose of the room (e.g. working, children area) or 

other criteria a users’ feedback form would reveal. 

Bayesian Networks can be enhanced to take into account context features and user 

requirements. For instance, adding a node in the network for allowing the inhabitant to 

express the particular future use of the space, such as working bedroom or children’s 

bedroom. 
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A tool for visualizing and scoring certain furniture patterns obtained by the system will 

allow the professional interior designer to rate a certain arrangement or the entire layout, in 

a practical manner, so that the current solution’s evaluation would feed back to the system 

and, eventually, enrich the database. 

Lastly, the software tool capable of integrating all the learned knowledge would allow 

specifying main socio-economic characteristics of the user (self-employed, young person 

etc.), retrieving similar patterns from the dataset, applying the corresponding models for 

occurrence, arrangement sets and furniture placement and rendering the result, with the 

price-tag associated, enabling, at last, to ask for feedback and re-integrate it in the system, 

as a new learning process. 
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7 Publication related to the thesis 

 

Racec, E., Budulan, S. and Vellido, A. Computational Intelligence in architectural and 

interior design: a state-of-the-art and outlook on the field. 19th International Conference of 

the Catalan Association of Artificial Intelligence (CCIA 2016), accepted and to be 

published in the Artificial Intelligence Research and Development book series, IOS Press. 

2016. 
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