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Abstract 

Biological materials can be characterized by electric impedance and its variation within a range of 

frequencies. Specifically, the electrical behaviour of biological materials is described by the β-

dispersion. This methodology has been deeply developed in different sectors including 

biomedicine, biotechnology and food industry.  

In this work it is studied its application in environmental engineering for wastewater treatment 

purposes. It is an ‘On line’, ‘In situ’ and ‘Label free’ system that could overcome the main 

drawbacks that conventional analytics present. To achieve that, activated sludge samples have 

been measured through an impedance analyser (Agilent 4294A) with the main objective to detect 

presence or absence of microorganisms. Since the electrical behaviour of such a heterogenic 

biomaterial was unknown, the experimental design has been defined along the work, describing 

all the followed steps from equipment configuration till the own measurement methodology. 

Through the obtained results, a simpler interpretation of bioimpedance readings is being 

suggested, rather than β-dispersion. It has been observed that there is a variation of the 

impedance modulus along a determined range of frequencies for biomass measurements, while it 

remains almost constant in absence of biomass. This simpler explanation of the method could 

take interest in all those Biosystems which knowing the biomass concentration in a determined 

point and moment would increase the efficiency of the biological process.  

Results show that bioimpedance correlates very well with VSS (volatile suspended solids), the 

usual unit expressing biomass concentration in biological wastewater treatment plants. 
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Resum 

Els materials biològics poden ser caracteritzats per la impedància elèctrica i la seva variació al llarg 

d’un marge de freqüències. Concretament, el comportament elèctric dels materials biològics ve 

descrit per la dispersió-β. Aquesta metodologia s’ha desenvolupat en diferents sectors com són la 

biomedicina, la biotecnologia i la indústria alimentària. 

En aquest treball s’estudia la seva possible aplicació en enginyeria ambiental, en el tractament 

d’aigües i residus, ja que és una tècnica ‘On line’, ‘In situ’ i ‘label free’, que podria resultar més 

avantatjosa que els sistemes de mesura de biomassa habituals. Per això, s’han mesurat fangs de 

depuradora amb un analitzador d’impedàncies (Agilent 4294A) amb el principal objectiu de 

detectar presència o absència de microorganismes.  Com es desconeixia el comportament elèctric 

d’un material biològic tan heterogeni, el disseny experimental s’ha anat definint al llarg del treball, 

descrivint els passos seguits des de la configuració de l’aparell al propi mètode de mesura. 

A través dels resultats obtinguts, es suggereix una interpretació de les lectures de bioimpedància 

més simple que no pas la β-dispersió. S’ha observat que hi ha una variació del mòdul de la 

impedància en mesurar biomassa, mentre que roman quasi constant per a absència de biomassa.  

Aquesta simple explicació del mètode pot tenir interès en tots aquells biosistemes en els quals 

conèixer la concentració de biomassa en un determinat punt i moment incrementaria la eficiència 

del procés biològic. 

Els resultats mostren que la bioimpedància es correlaciona molt bé am bels SSV (Sòlids Suspesos 

Volàtils), que és la unitat de mesura de concentració de biomassa habitual en plantes de 

tractament d’aigües residuals. 

 



Online bioimpedance measurement: characterisation and Applications in environmental engineering   3 

Escola Superior d’Agricultura de Barcelona 
UPC - BarcelonaTech 

Resumen 

Los materiales biológicos pueden caracterizarse por impedancia eléctrica y la variación de ésta a 

lo largo de un margen de frecuencias. El comportamiento eléctrico  de los materiales biológicos 

concretamente, viene descrito por la dispersión –β. Esta metodología de análisis biológico está 

siendo utilizada y desarrollada en diferentes sectores como la biomedicina, biotecnología e 

industria alimentaria. 

En el presente trabajo se pretende estudiar la posible aplicación de dicha metodología en la 

ingeniería ambiental, en éste caso, para el análisis en el tratamiento de aguas residuales. Puesto 

que es una técnica ‘on line’, ‘in situ’ i ‘label free’, podría resultar ser una tipo de medida ventajosa 

respecto a las técnicas actuales de medida de biomasa. Con el fin de estudiar esta posibilidad se 

han analizado lodos de depuradora con un analizador de impedancias (Agilent 4294A) con el 

objetivo de detectar presencia o ausencia de microorganismos. Debido al desconocimiento ante 

el comportamiento eléctrico de un material tan heterogéneo, el diseño experimental se ha ido 

definiendo a medida que se han ido obteniendo resultados, des de los pasos seguidos para el 

diseño del aparato de medida al propio método y al análisis de estas medidas.  

Los resultados obtenidos sugieren una interpretación más simple de las lecturas de bioimpedancia 

que la habitual β-dispersión. Se ha determinado que existe una variación del módulo de la 

impedancia al haber presencia de biomasa, mientras que éste no varía cuando no hay presencia 

de biomasa. Esto puede ser de gran interés para todos aquellos biosistemas en los que conocer la 

concentración de biomasa en un determinado momento incrementaría la eficiencia del proceso 

biológico. 

Los resultados muestran que la bioimpedancia se correlaciona muy bien con los SSV (Sólidos 

Suspendidos Volátiles), que es la unidad de medida de concentración de biomasa habitual en las 

plantas de tratamiento de aguas residuales. 
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1. Introduction and objectives 

1.1. Introduction 

Bioimpedance is an electric measurement technique widely used in different industries as an 

indicator of the variation of cellular content of a particular medium. The biomass concentration is 

determined by the electrical impedance, whose value is modified by variations of conductivity 

caused by the presence or absence of microorganisms in a medium. In this way, different 

biological materials, such as tissues, organs or cellular suspensions, can characterized without 

interfering in the measured object, which means that it is not a destructive method. Another 

important advantage is that the equipment can be calibrated to obtain an ‘online’ reading, which 

means that results can be shown at the same time the measurement is performed. All this makes 

the bioimpedance analyser a promising tool in different industries and sectors. 

For several decades, electrical bioimpedance technology has played an important role in 

electrophysiology and biophysics. Currently, bioimpedance is a means of non-invasive, quick and 

relatively affordable assessment of tissue composition as well as of volumes of various body water 

compartments that are difficult to assess by other techniques (Schneditz, 2006). Bioimpedance 

applications for skin cancer detection (Aberg et al., 2005) or dry weight determination (Kuhlmann 

et al., 2005) have increased during the last decade (Buendía, 2011). Nowadays its use in nutrition 

and sports medicine is becoming more widespread. 

Although bioimpedance techniques are mainly being developed in biomedicine, they are also of 

interest to the food industry as a quality control tool, for example for meat and seafood. There, 

changes in water content or the presence of particular microorganisms can be quickly detected. 

Electrical impedance has been used as tool to investigate the dielectric properties of cells and 

organelles for over 75 years (Feldman et al., 2003). For example, impedance techniques have 

been used to investigate changes in the membranes of biological cells in suspension, to measure 

micromotion of cells on a small electrode, to monitor enzyme reactions, to detect immunological 

reactions, to detect microbial metabolism, and to detect protein adsorption to supported lipid 

bilayers (Ehret et al., 1998). 
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Its use in monitoring animal cell culture, plant cell culture and microbial fermentation has been 

reported since 1991 (Cannizzarro et al., 2003). It also has potential to be used to automatize the 

fermentation process in brewing industries. With regard to environmental issues, soil quality and 

humidity, as well as some geophysical properties, have been measured with immittance (which 

can be described as the opposite of impedance) since 1920. Moreover, volcanic activity is 

monitored by impedance in Iceland (Grimmes and Martinsen, 2008).  

As can be seen, bioimpedance is a technique used several sectors with a long history. So, why 

does it not seem to have become popular in industrial or environmental engineering? The 

complexity of its readings and all the factors involved in electromagnetic phenomena make it 

difficult to be used on an industrial scale. Temperature, the position of the electrodes, materials 

and parasite capacitances are some of the factors involved in impedance measurements. All this 

means that this technique requires state of the art technology and strict performance conditions, 

which are usually expensive to implement and difficult to automatize in non-sterile environments.  

In biosystems engineering, it is essential to know the amount of biomass in a bioreactor, either to 

control the growing biomass or to check the generated products. Generally, the most used 

sensors are those that work with chemical and physical variables related to microorganisms’ 

metabolism, which in some cases may not be reliable. Also it can be said that biologic sensors are 

far more complex because their response is dependent on many requirements that limit the 

benefits (Bragós, 1997).  

Bioimpedance could be developed as a very useful tool in biosystems engineering but, to 

encourage its use, a simpler yet clear method needs to be developed so that it can be used in an 

easy and reliable way. Similarly, it is vital to give another point of view and propose a simpler 

methodology, one that is demonstrably less accurate but that meets all the requirements. 
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1.2. Objectives 

The main objective of this work is to probe that bioimpedance technique can be used to measure 

biomass and its application in the automatization of a bioreactor is possible. For that, it is required 

to determine if bioimpedance is sensitive to biomass concentration. 

By describing the observed electrical behaviour of such a heterogenic biomaterial like wastewater 

products, this work is intended to be a first contact between bioimpedance technique and 

bioreactors for wastewater treatment in biosystems engineering. 

Since bioimpedance is sensitive to environmental conditions, necessarily external and internal 

factors affecting the readings are studied in order to detect possible error sources, considering 

this as secondary objective. Moreover, a measurement cell and a measurement protocol is 

developed, taking into account the most relevant factors which affects the readings. 

 

1.3. Thesis outline 

This thesis has been structured in the standard form for scientific documents, – introduction, 

objectives, materials and methods, results and conclusions – but other points have been included 

that are not so conventional: 

• The first chapter introduces the use of the bioimpedance technique, some relevant 

moments in its history and its main applications, as well as some concerning factors about its 

development in Biosystems engineering. 

 

• The second chapter “Theoretical basis of bioimpedance” is focused on the fundamentals 

of bioimpedance. Since it is a complex term that can be explained from a wide perspective, some 

aspects that help explain the conclusions of this work are given here. It has been developed 

through bibliographic research. There, electrical impedance is defined as is its particular use in the 

study of biological materials. To end with, in “state of the art” the importance of biomass 
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detection, as well as other techniques used, is detailed. Also the main uses of bioimpedance for 

biomass detection and its possible application into a SBR reactor are examined.  

 

• The third chapter concerns materials and methods. Since different methodologies have 

been used, they are described in different sections (bioimpedance measurements, analytical 

methods and statistic methods). Before this, the nature of the samples is briefly described, as are 

the steps followed to develop the measurement cell and to configure the impedance analyser. 

 

• In “Results and discussion” different assays have been performed during the work to test 

the kind of information that can be obtained through bioimpedance measurements, starting with 

the first biomass measurement and the chosen measurement protocol. They are all detailed here 

in the same chronological order as they were performed, so new experiments were required at 

the moment that a common pattern in the results was observed. 

 

• Finally, the fifth chapter contains the conclusions of this work. But also, as a conclusion 

itself, clear suggestions for further research needed to be made, as this thesis is the first-contact 

for the bioimpedance technique in the wastewater treatment sector. 
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2. Theoretical basis of bioimpedance 

2.1. Definition of impedance 

In a case study, measurements of impedance can be understood as measuring a “black box”, 

where a reading is obtained but without any term to be referred to. So, for its electrical 

measurement, the content must be characterized, where data is used to describe the electrical 

behaviour and perhaps even to explain the real nature of the inside of the box. The description 

must necessarily be based on some form of model, for example in the form of an equivalent 

electric circuit, mimicking the measured electric behaviour (Grimnes and Martinsen, 2008). But, to 

understand it, some previous definitions must be given, considering a simple electric 

measurement as shown in Figure 1. 

  

 

 

 

 

 

 

 

 

 

 

IW 

σr 

Figure 1 Scheme of an electrical measurement: An altering voltage VOSC is injected through a medium 

with specific conductivity (σr), permittivity ( εr) and volume (b·h·w ,m3). Voltage VHL is 

measured with a voltmeter (V) from the higher potential point (H+) to the lower potential 

point (L-) and current (Iw) is measured with an ampere metre (A) (Aliau, 2013). 

w 
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When an electrical current (IW) flows between two electrodes (H and L points) through a material 

with a determined resistance, a voltage gradient VHL is generated between them. A directly 

proportional relationship is established in which the voltage increases with resistance. This 

concerns the well-known Ohm’s Law: 

𝑉𝐻𝐿(𝑡) = 𝐼𝑊(𝑡) · 𝑅  .    (1) 

 

Since resistance can be defined as a material’s opposition to current, it must be dependent on the 

intrinsic properties of the measured material, such as its ionic concentration, type of ions and 

temperature, as well as the geometry of the measured area. From that, it can also be said (Aliau, 

2013): 

𝑅 =
1

𝜎𝑟
·

𝑤

𝑏·ℎ
=

1

𝜎𝑟
· 𝑘𝑐𝑒𝑙𝑙   ,   (2) 

 

where kcell is a geometric factor (w/b·h) and σr is the electrical conductivity of the medium, which 

can be defined as its aptitude to let current flow or as the relationship between current density 

and the power of the electric field.  

Another material property that is shown in Figure 1 is the electrical permittivity (εr), which is the 

ability to permit storage of electric energy by charge polarization from an electric field. In other 

words, the permittivity of a material defines its susceptibility to polarization by an electric field. 

The relationship between these quantities are based on the equations of Maxwell (1873) and they 

establish a direct link between charge density and induced current with the electric field applied 

(Grimnes and Martinsen, 2008). 

The term “Bio” is used since the electrical behaviour of a biological material is studied. To connect 

both concepts, the biological material is described in the form of an equivalent electric circuit. In 

this case, the biological material consists of microorganisms suspended in a liquid medium and it 

can be analysed as a circuital model of cellular suspensions (Bragós, 1997).  
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To design an electric circuit there are used three main components which are described in figure 

2: resistors, capacitors and inductors. A capacitor consists of two parallel conductive plates 

separated by a dielectric, whose response to an electric current causes the plates to become 

electrically charged. That means it has the ability to store electrical energy. Because of their 

nature, inductances present the opposite effect, but they are not used in this case study because 

resistor and capacitor behaviour are dominant. 

In figure 2 it can be seen that electrical responses for capacitances and inductances produce a 

defacement between voltage and current. Hence, going back to equation 1, it must be said that 

Ohm’s Law cannot be applied in these terms. To be able to work with these complex elements, 

there are used sinusoidal signals, which are mathematical easier forms to describe them. Hence, 

intensity and voltage are now described by: 

 

𝐼(𝑡) = 𝐼𝑀𝐴𝑋 𝑠𝑖𝑛(𝜔0𝑡 + 𝜑)    ,   (3) 

𝑉(𝑡) = 𝑉𝑀𝐴𝑋 sin(𝜔0𝑡 + 𝜑′′) ,   (4) 

 

where IMAX and VMAX are current and voltage maximum values of I and V (see figure 2), ω0 is the 

angular frequency of the signal (equal to 2𝜋𝑓 ) and ϕ and ϕ’’ their defacements. This terms can be 

seen in figure2. 

Now that all these concepts have been introduced, impedance can be defined as a complex 

number formed by a modulus and a defacement or phase shift that connects both sinusoidal 

voltage and current. 

𝑍 = |𝑍| + 𝑒𝑗 𝜃  ,    (5) 

where, 

|𝑍| =
𝑉𝑀𝐴𝑋

𝐼𝑀𝐴𝑋
  and    (6) 

 𝜃 = [𝜑′′ − 𝜑′]  .         (7) 
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It can also be described in the Cartesian coordinates as a complex number of two components, 

the real and the imaginary part: 

 

𝑍 = 𝑅 + 𝑗 𝑋 ,    (8) 

 

where R is the real part of impedance or the resistance value, and X is the imaginary part or 

reactance. Then, impedance modulus will also be described by: 

 

|𝑍| = √𝑅2 + 𝑋2  ,            (9)   

and its phase by: 

𝜃 = tan−1 𝑋

𝑅
             .          (10) 

 

In figure 2 there are represented all the described terms. Note that red and green circles 

corresponds to maximum values for voltage (VMAX) and intensity (IMAX), respectively. Hence, A) 

describes the voltage (V) and intensity (I) response for a resistor and shows that there is no 

defacement (φ) between them, so there is no real part and impedance (ZR) is the resistance value 

(R) in itself; B) represents the V/I response for a capacitor, which presents a phase defacement of 

φ=-90ᵒ between them; there, imaginary part (XC) is inversely affected by the angular frequency 

(ω) and the capacitance value (C); lastly, C) defines the electronic response for an inductor, which 

produces a defacement of φ=+90ᵒ between voltage and intensity, but here imaginary part (XL) is 

directly proportional to ω and the inductance value (L). For this reason, the impedance modulus 

of a capacity tends to decrease while its inductance increases, as can be seen in Figure 3. 

To plot impedance, different models have been developed to represent this complex number 

along a range of frequencies and time. In this work, a type of plot that consists of an axial 

representation with log frequency on the X-axis and both the absolute values of the impedance 

(|Z|) and the phase-shift on the Y-axis is used. Here only the impedance modulus is represented. 
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Figure 3 Two plots of Impedance modulus vs. frequency obtained from the Agilent 429A Manual, both 

represent the resistor frequency response. It can be observed the impedance tendency of 

the effect capacitor (a) and the inductor (b) (Agilent, 2013) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Explanation of the different electrical responses for resistor, capacitor and inductor through Ohm’s Law (Gamry 

instruments, Inc., 2010): 

R 

C 

L 

𝒁 = 𝑹  

XC =
1

jωC
 ; 𝐙 = 𝐑 +

𝟏

𝐣𝛚𝐂
 

𝐙 = 𝐑 + 𝐣𝛚𝐋 XL = jωL ; 

A) 

B) 

C) 

𝑋R = 0 ; 
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2.2. Impedance of biological materials or bioimpedance 

As has already been mentioned, characterization of impedance measurements must be based on 

the form of an electrical model. In this case study, the biological material is described as cellular 

suspensions. They are composed of cells surrounded by a cellular membrane which isolates their 

inner ionic medium from the extracellular fluid. Despite the high permittivity of water, electrolytes 

behave like ohmic resistors and membranes form capacitive elements due to their high 

resistance, where the typical time constant for charging cell membranes is of the order of a 

microsecond (El Khaled et al., 2015). Evidently, this explanation describes a very simple structure 

for these biological materials and its frequential behaviour depends on other many factors 

(Bragós, 1997). 

As can be observed in Figure 4, if a low frequency current is injected through the material, it will 

circulate via extracellular because there is a high capacitive effect from the membranes produced 

by cell polarization (Cannizzarro et al., 2003). Moving to higher frequencies, the capacity will 

decrease because of incomplete cell polarization (Cannizzarro et al., 2003), showing a short circuit 

effect from the capacities which enables the current to flow through the intra cellular space. 

 

 

 

 

 

 

 

 

 

 

Figure 4 Simplistic representation of the high frequency (HF) and low frequency (LF) currents 

through a biological material composed of cells, with cellular membrane and 

intracellular fluid, immersed in an extracellular fluid (Bragós, 1997). 

Intracellular 

Celular 

Extracellular 

HF         LF          HF           LF        
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Figure 5 The three relaxations of σ and ε along a range of frequencies defined to understand the 

dielectric properties of biological cells (Bragós, 1997). There are three regions: α, β and γ-

dispersions. 

 

 

 As a simple analysis of the system: electrical current is unable to cross the cell membrane at low 

frequencies, and is confined to an extracellular pathway, whereas the current will flow 

intracellularly at high frequencies due to the shortcut from the capacitive effect of the cell 

membrane. This produces an impedance variation along a range of frequencies, which in the 

study of biological materials is known to produce specific curves or relaxations. Of great interest 

for cellular suspension monitoring is the β-relaxation (Spiller et al., 2006), which is produced by 

the shortcut of the cellular membrane. There are two other main relaxations involved with other 

phenomenon, shown in figure 5. The lowest frequency range contains the α-relaxation, which is 

produced mainly by the ionic environment that involves each cell as well as the ionic surface of 

the membrane (E. Spiller et al., 2006). On the other side, up to 10 GHz, there is γ-relaxation, 

produced by the effect of the free water molecules in the medium (Bragós, 1997).  
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Continuing with the analysis of the cellular suspensions system, an electrical model can be 

applied, like the one shown in Figure 6. It considers both internal and external medium resistances 

(Ri and Re), the membrane capacity (Cm) and its resistance (Rm). 

There can be used other circuital models, depending on the studied biomaterial and the studied 

electrical behaviour. This case contemplates an ideal homogeneous cellular suspension, and 

although it does not correspond to activated sludge case, it can be accepted. For this reason, 

there might be observed other electrical behaviours that are not explained through this model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Circuital model for cellular suspensions (Bragós, 1997) 

Rm = Membrane Resistances  

Cm = Membrane Capacity  

Ri = Internal medium Resistance 

Re = External medium Resistance 
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2.3. About impedance measurements 

There are three main components in impedance measurements which can introduce uncertainty: 

the circuital model chosen, the parasitic or stray impedances of the connections and the 

instrumental error (Pallàs, 2008). 

All real-world devices have parasitic or unwanted inductance in resistors, unwanted resistance in 

capacitors, unwanted capacitance in inductors, etc. The principal attributes of L, C, and R 

components are generally represented by the nominal values of capacitance, inductance or 

resistance at specified or standardized conditions. However, all circuit components are neither 

purely resistive nor purely reactive. They involve both of these impedance elements (Kølvoy et al., 

2009).  

There is a parasitic capacitance between the material under test and earth ground, and its effects 

are different depend on the measuring system. This parasitic capacitance is produced at high 

frequencies whereas electrodes have influence at the lower frequencies (Aliau, 2015). In the 

middle range, there is a flat frequency band where impedance of the medium can be measured. 

There are different electrode configurations that allow the user to reduce uncertainty in the 

measurement, but these usually require more complex systems. Measurements with the 

impedance analyser can be performed with 2, 3 or 4 electrodes. The 2-electrode configuration is 

the simplest method, but contains many sources of error (Agilent, 2013). By moving to 3 and 4-

electrode configurations, measurement error can be reduced, but more complex systems and 

specific electrical components (front end) are required.  

The impedance analyzer can also be configured to measure the impedance modulus (|Z|) or the 

real part of impedance (R). Although impedance variations are better percieved in the real part, it 

is easier to measure |Z| and it enables to design a simpler impedance analyser specific for this 

purpose. 

As has already been said, there may be polarization potentials at the interfaces between 

electrodes and the material that could affect the true potential across the material. Moreover, 

current is distributed along the medium following equipotential lines, flowing from one electrode 

to the other. Equipotential lines stay close near the zone of the electrodes and become more 
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extended moving far from the electrodes. In Figures 8 and 9 there are represented the two 

possible electrodes distributions for this case study, in whose the distribution of the equipotential 

lines can be observed.  

By this way, different positioning and dimensions of the electrodes will affect the current density 

distribution (Baker, 1989), as will the non-homogeneity of the measured material.  

In Figure 7 it can be observed the distribution of the current flow if electrodes were located at one 

side of the cell. Equipotential lines are concentred at that side of the cell, and they distance 

themselves at the other side. This allows a general characterization of the medium but presents 

more measurement error due to parasitic capacities. On the other hand, in Figure 8 electrodes are 

located at both sides of the cell, producing that equipotential lines remain horizontally uniform 

along the cell, having a more precise reading around the zone between the two electrodes.  

 

 

 

 

 

 

 

 
 

 

 

 

Figure 8 Current and potential distribution if the 

current is introduced into the 

measurement cell using small electrodes 

on one side of the cell (Baker, 1989). 

Figure 7 Current and potential distribution if the 

current is introduced into the cell 

using small electrodes on both sides 

of the cell (Baker, 1989). 
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2.4. State of the art 

In the last 30 years, biotechnology and biotechnological processes have exploded from a 

traditional craft into a dynamic cutting edge technology (Vojinović et al., 2006). The number of 

bio-products and applications is increasing constantly and the ability to control the desired 

bioprocess results in increased efficiency and productivity. In this regard, biomass concentration is 

one of the most important parameters in bioprocesses monitoring. Several new techniques for 

biomass determination based on diverse principles have recently been applied to online 

monitoring (Ferreira et al., 2005). The most frequently used methods included optical based 

methods, such as optical density, UV-Vis spectrophotometry, IR spectroscopy, fluorescence 

resonance energy transfer (FRET) and Raman spectroscopy; heat exchange methods, and 

electrical methods, which include bioimpedance, capacitance and electrical conductivity. Their 

operating principles and main uses are adequately described elsewhere (Vojinović et al., 2006; 

Ferreira et al., 2005; Kell, et al., 1990;). In industrial applications, viscosity is known to be the most 

acceptable method for biomass estimation in mycelial systems when more accurate techniques 

are not available (Ferreira et al., 2005). 

Real-time bioprocess monitoring techniques can provide information during the process, but they 

are relatively scarce on an industrial scale (Vojinović et al., 2006). They need to be implemented 

for very specific purposes and adapt their working mechanisms to specific conditions. Most 

successful applications are in biomedicine, biophysics, biochemistry and microbiology, where 

sampling volumes are in microlitres. However, industrial scale prototypes have been successfully 

applied to on-line monitoring of viable biomass concentration in industrial-type fermentation for 

the production of an active pharmaceutical ingredient (Ferreira et al., 2005), using a four-terminal 

probe which is showed in Figure 9. Moreover, other prototypes have been developed using 

similar principles to bioimpedance, which include capacitance and electrical conductivity 

measurements (Ferreira et al., 2005; Vojinović et al., 2005). For example, the Biomass Monitor TM 

(Aber Instruments ©) measures biomass by correlating the capacitance of the cell suspension to 

the concentration of biomass, added to viscosity measurement. It needs to be calibrated with the 

specific growing rate of the studied microorganisms (Ferreira et al., 2005). 
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All these applications have been developed on a small scale and taking into account very specific 

variables, such as the production of a specific metabolite or the controlled production of a 

microorganism. No applications have been found to measure heterogenic microbial cultures as 

found in industrial wastewater treatment.  

There are different types of bioreactors for wastewater treatment. Of these, the Sequential Batch 

Reactor (SBR) is currently used in wastewater treatment due to its ability to tolerate charge and 

flow variations, and to control the duration of each process. As can be observed in Figure 10, it 

performs all the transformation processes through filling and emptying as the microbial cycles are 

developed. This case is of great interest for bioimpedance application, as by knowing the exact 

biomass concentration, more accurate cellular retention time could be predicted, leading to a 

better operation and efficiency. Here, biomass control is a key element for the proper functioning 

of the bioreactor due to the need to temporize different devices to complete the cycles (Montiel, 

2015). 

 

Figure 9 A four-pin electrode probe to detect biomass through capacitance (Ferreira et al., 2015). 
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Here it is suggested that bioimpedance sensors could be located at different parts of the 

bioreactor, enabling different readings and purposes. The scheme of Figure 11 indicates the 

possible electrodes location. With electrodes located in the reactor walls and radially oriented, 

bioimpedance measurements would allow the biomass concentration to be known at the same 

horizontal plane of the electrodes. Another possibility would be to insert one electrode in the 

upper part of the wall and to locate the other electrode on the bottom, in order to know the 

global state of the microorganisms (mixed or settled, dead or alive,…). 

 

Figure 10 Scheme of the 4 phases that occur in an SBR: I. Filling, II. Reaction, III. Sedimentation and IV. Emptying 

(Montiel, 2015) 

Figure 11 Working scheme of a bioreactor (Montiel, 2015). Two red dots indicate the possible location of 

radially-oriented impedance electrodes, and two blue dots, the location of vertically-oriented 

electrodes. 
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3. Materials and methods 

Experiments have been performed following two lines: on the one hand Bioimpedance 

measurements that have been performed at EETAC (Escola d’Enginyeria de Telecomunicació I 

Aeroespacial de Castelldefels) and, on the other hand, conventional laboratory analytic 

determinations, which have been done at ESAB (Escola Superior d’Agricultura de Barcelona). They 

have been performed separately following different methodologies that will be described below.  

In order to ensure the same conditions and state of the samples, both measurements were 

performed within 24 hours. 

All the pictures shown in this work were done by the author, otherwise they will be properly 

referenced. 

 

3.1. Samples 

All the samples used for experiments were kept in fridge for no more than 24 hours in order to 

ensure that the microorganisms were alive.   

Samples of activated sludge and clarified water were obtained from the Water Treatment Plant of 

Rubí (E.D.A.R.-Estació Depuradora d’Aigües Residuals), which treats wastewater from the 3 

surrounding municipalities, Rubí, Valldoreix and Sant Cugat, and was designed to treat a water 

flow of 27,000m3/day (ACA, 2015). The location of the water treatment processes can be seen in 

Figure 12. 

Like many municipal wastewater treatment plants, it performs a secondary biological treatment 

with activated sludge, which involves the production of an activated mass of microorganisms 

capable of consuming organic matter under aerobic conditions. This mass consists of a 

heterogeneous microorganism population that frequently changes as a function of the 

varying composition of the wastewater and environmental conditions. These microorganisms 

are mainly bacteria, fungi, algae, protozoans and rotifers. 
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Figure 12 Satellite image of Rubí E.D.A.R. Samples of activated sludge were taken from the 

secondary pond, while clarified water samples were obtained from the outflow 

of the water treatment plant (www.arcgis.com) 

  

 

 

 

This wastewater micropopulation heterogeneity is significant when analysing through 

bioimpedance, as the measurements will surely be different each time and it will be partly 

responsible for the different results obtained. 

Samples of activated sludge were taken from the aeration tank or secondary pond, which is 

shown in Figure 12. Before measurement, the sludge was settled and clarified water was also 

used for the experiments. Finally, samples of the outflow water from the treatment plant 

were taken in order to have samples with similar conductivity as the activated sludge samples 

but with extremely low biomass concentration. 

 

Outflow of the plant 

Secondary pond 
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3.2. Experiment procedure 

As the bioimpedance behaviour of activated sludge samples was uncertain, the experimental 

design was defined during the work, since each result obtained determined the next experiment.  

Before starting to measure the bioimpedance of biomass, some prior tests were performed in 

order to determine the feasibility of the project. There are many publications about bioimpedance 

measurements, but there is a high level of uncertainty in terms of the interpretation of the results. 

So, at the beginning, the potential result was completely unknown.  

The first previous assay was carried out by measuring a sample of activated sludge and a sample 

of clarified water in order to observe the differences. Taking Bragós (1997) as the main reference 

for bioimpedance measurements of cellular suspensions, the aim was to observe the 

characteristic β-relaxation of biologic materials, supposed to be around a frequency of 1MHz. 

However, it was not observed, probably due to the capacitive effect produced after 1MHz and the 

low sensitivity of the instrument used. In his work, Bragós (1997) measured in a range of 10kHz to 

20MHz and used a more accurate system with 4 electrodes, with which a sensitivity of 0.1% can 

be achieved. 

Even though the β-relaxation was not located, it was observed that measurements of live biomass 

present a variation in the impedance modulus along a range of frequencies, while the impedance 

modulus of water remains constant. This particular behaviour was developed as the hypothesis of 

this work, for which biomass samples were analysed using bioimpedance and conventional 

wastewater analytics, in order confirm that bioimpedance is sensitive to different biomass 

concentrations. Then, samples of activated sludge in different concentrations were analysed using 

bioimpedance and compared with their Chemical Oxygen Demand (COD) and Volatile Suspended 

Solids (VSS). 

More tests were performed to decide the measurement range and the position and number of 

the cell electrodes.  

After analysing the obtained results with different biomass concentration, another objective was 

to determine whether bioimpedance measurement can distinguish active and non-active 

biomass. For this, 3 samples of activated sludge were kept in the oven at 80 ᵒC during 1 hour.  
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During these experiments it was observed that turbulences in the medium produced by 

mechanical agitation and sedimentation caused distortions in the impedance readings. This effect 

was more evident in 25% AS diluted samples, were there was a great visual difference between 

when the sample was mixed or let settled. To study this effect, other experiments were 

performed, in whose a 25% AS diluted sample was measured in mixed state and after determined 

periods of time, when biomass was settled down. A chronometer was used to stablish the periods 

of time. All the results are all detailed in the results section. 

 

3.3. Bioimpedance measurements 

Measurements of Bioimpedance have been performed using the Agilent 4296A Impedance 

Analyser, located at the EETAC (Escola d'Enginyeria de Telecomunicació i Aeroespacial de 

Castelldefels) of the UPC. 

 

3.3.1. Measuring cell 

Prior assays were performed to develop the measuring cell. Those experiments used a measuring 

cell consisting of a 100ml PET measuring cylinder, with 4 stainless steel electrodes linearly 

distributed horizontally on its wall. Another measuring cell of the same kind but with 2 electrodes 

was used, both provided by Dr Carles Aliau from his work (Aliau, 2015). Figure 13 shows a picture 

of impedance measurements with the 4-electrode cell, using a standard solution of known 

electrical conductivity. 

After this, some design criteria were established in order to develop the final measuring cell. The 

final cell was made using a 500ml PET measuring cylinder and placing 4 electrodes on its walls in a 

radial distribution, as shown in Figure 14-c. 

After studying the distribution of equipotential lines (see chapter 2.3.) in both vertical and 

horizontal arrangements, it was decided to make measurements with the cell vertically oriented. 
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This way, biomass can be detected in a more specific region, which is required to simulate 

bioreactor conditions. 

Although this distribution can be used either with 2 or 4 electrodes, in the end 2 electrodes were 

used, so no additional electronics (front end) were required. Some construction details can be 

seen in Figure 15. 

 

 

Figure 13 Image of the impedance analyser (right) using the 4-electrode cell and a standard water solution 

(σ=1412μS/cm) for prior assays. On the left there is a power supply which is required for the front 

end used for the 4-electrode measurements.  
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3.3.2. Impedance Analyser configuration 

The impedance analyser must be configured to obtain the desired reading. Some of the 

configuration criteria were developed during the current essays, so they are detailed in Results. 

The setup protocol used was as follows: 

- Display:    mode SPLIT ON 

- Scale:    mode AUTOSCALE 

- Sweep:    type LOG 

- Set the frequency range: START at 100KHz and STOP at 1MHz 

- Source/Level:   500mV (default value) 

- Bandwidth:    recommended 2 or 3 

Data is stored on flash memory. 

(a)                                            (b)                                                     (c) 

Figure 14 Details of the construction of the cell. In picture (a) there are three 500ml PET cylinders; (b) shows an electrode 

before insertion into the cylinder wall and (c) the final measurement cell. A flange was used to hold the wires. 
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A screenshot of the impedance analyser during activated sludge measurement is shown in figure 

15. There, the upper plot represents the impedance modulus (|Z|) and represented in blue, the 

impedance phase shift (θ). 

 

 

It was observed that real part of impedance or either impedance modulus plots gave very similar 

results, so it can be said that both can be representative. 

However, this work measures the impedance modulus so that it would be easier to develop an 

automatized system with the instrumentation used (Agilent 4294A) rather than if the real part is 

measured. 

 

 

Figure 15 Screenshot of the Agilent 4294A during activated sludge measurements. The upper plot it is 

measured the impedance modulus variation while the bottom one depicts the phase shift. 
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3.3.3. Measuring bioimpedance of Activated Sludge 

Since it takes some time for the impedance analyser to get started, it has to be switched on about 

15 minutes before starting. 

Once the equipment is ready, cell wires can be connected to the impedance analyser. To avoid 

undesired effects, the cell must be always the same distance from the device. For this reason, the 

cell location was marked with tape, as can be observed in Figure 16. The distance between the 

connection leads was made to be always the same using perforated plastic pieces as shown in 

Figure 17. 

Temperature and electrical conductivity were measured for all samples before and after readings.  

 

Figure 16 Picture of the cell connected to the impedance analyser before starting measurements. The tape 

cross to mark the position of the cell during measurements can be observed. 
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Measurements of activated sludge have always been carried out measuring 4 samples:  

- Clarified water (CW) 

- Outflow water (OW) 

- Activated sludge dissolved 25% in volume with clarified water (AS 25%) 

- Activated sludge dissolved 50 % in volume with clarified water (AS 50%) 

- Activated sludge directly obtained from the water treatment plant (AS) 

In those cases that CW and OW gave almost same behaviour, only one of them was analysed. 

These samples have all been put into the measurement cell filling it up to the 500 ml line on the 

cylinder. First of all, clarified water was measured and then the other samples in the order listed 

above, to avoid remaining biomass accumulation. During the measurement process, interfering 

actions were observed and noted down. In the case of the observation of the effect of 

sedimentation, an agitator was also used to mix samples and a chronometer to measure settling 

time. 

Figure 17 Image of the plastic pieces between the leads to maintain the same distance during measurements. 
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3.4. Analythic methods 

Temperature and Electrical Conductivity (EC) were measured at the same time as the 

bioimpedance readings. Other analytic methods (Chemical Oxygen Demand, COD; Total Solids, TS; 

Volatile Solids, VS; Volatile Suspended Solids, VSS and Total Suspended Solids, TSS) were carried 

out at ESAB (Escola Superior d’Agricultura de Barcelona), at UPC (Universitat Politècnica de 

Catalunya). 

In order to establish a relationship between impedance variation and biomass, COD and VSS were 

taken into account: COD to measure organic matter and VSS as an estimator of microorganisms. 

To measure VSS, also TS, VS and TSS must be determined. 

 

3.4.1. Temperature and EC 

Temperature and EC have been determined with a conductivity meter with automatic 

temperature compensation. The instrument is automatically calibrated at 25 ᵒC.  

It has to be placed inside the sample before waiting for the reading, which gives the temperature 

and EC. 

 

3.4.2. COD (Chemical Oxygen Demand) 

Previous steps: 

It is important to homogenise the samples before starting the analytics to ensure that they are 

representative. Three repetitions were done for each sample and they had to present minimum 

variation (less than or equal to 5%). 

The COD digester takes some time to reach 150 °C, so it can be switched on before starting to 

prepare the tubes. 
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Basis: 

Chemical Oxygen Demand (COD) is defined as the required amount of oxygen to chemically 

oxidize organic matter and oxidisable compounds of a sample. It is expressed in mgO2/L or 

mgO2/kg. 

This theoretical quantity of oxygen is determined by putting the sample in contact with potassium 

dichromate into an acid medium at high temperature (150 °C) for two hours, and measuring the 

remain oxidizer by titration. 

In these experiments, prepared COD reagents (Hanna Instruments ©) were used instead of 

preparing the potassium dichromate and sulfuric acid mixture, thus avoiding the need to prepare 

and handle corrosive and toxic chemicals. All that is required is to add the sample to the COD vial, 

digest and measure using a control sample. 

Materials: 

- COD regents (HI 94754C-25, HANNA Instruments©) 

- Test tubes 

- Graduated pipette and pipette tips 

- Beakers 250ml (one for each analysed sample) 

- Glass rod 

- COD digester (HI 839800 COD Reactor and Test Tube Heater 2008 Series, HANNA 

Instruments©) 

- Spectrophotometer (HI 83224 Wastewater Treatment Photometer, HANNA 

Instruments ©) 

 

 

Procedure: 

- First of all it must be decided if any samples will need to be diluted, if a high COD value 

is expected. 

- A standard tube is also required to calibrate the spectrophotometer, therefore 3 COD 

reagents are filled with 200µL of distilled water.  
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- With a graduated pipette, put 200µL of each sample into the COD reagent (3 copies). 

- Properly cap all the test tubes. It is important to tape all the tubes so that they will not 

open during digestion. 

- Then, shake all the tubes well with up and down movements to ensure that the 

reactants are homogenized. 

- When the digester has reached a temperature of 150 °C, insert all the tubes and start 

the 2-hour countdown. 

- After that time, remove the tubes. They will be hot, so a cooling time is needed. 

- Finally, COD values can be read with the spectrophotometer using the COD program. 

Before this is done, it has to be calibrated with the standard tubes. 

 

 

3.4.3. Total Solids and Volatile Solids  

Previous steps: 

It is important to homogenise the samples before starting the analytics so that it can be ensured 

that they are representative. Therefore, 2 repetitions are done for each sample and they have to 

present a minimum variation (less than or equal to 5%). 

 

Basis: 

Total Solids:  The term applied to the material left in a dish after evaporation of a sample and 

its subsequent drying in an oven at a temperature 105 ᵒC for 24 hours non-stop. Total solids 

include “Total Suspended Solids” and “Total Dissolved Solids”. 

 

Volatile solids: Those solids that are lost during ignition (by burning) for 15-20 minutes at 550 

ᵒC in a muffle oven. In general, volatile solids are representative of organic material. 
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Materials: 

- Drying oven 

- Desiccators 

- Analytical Balance (SCALTEC with 0.0001g precision) 

- Measuring cylinder  

- Muffle oven 

- Porcelain crucibles 

- Glass agitator 

 

Procedure: 

1. Preparation: 

- First of all, porcelain crucibles have to be cleaned and dried for 1 hour in the muffle 

oven at 550 °C and then allowed to cool down into a desiccator. 

- The oven and muffle oven will have to be switched on about 20 minutes before 

starting to guarantee that they reach a constant temperature. 

- Before starting the solids determination, samples must be identified in each crucible 

that will be used. 

 

 

2. Total Solids Determination 

- Weigh the empty but dried crucibles, and record the value as weight A. 

- Then, 1ml of sample must be put in the crucible and weigh it all again. This will be 

weight B. 

- The samples have to be carefully put into the oven at 105 °C for 24 hours. 

- After that, the samples will be hot, so before weighing again they must be kept in the 

desiccators for almost 30 minutes. The weight value obtained must be recorded as 

weight C. 

- The final value of Total Solids, expressed in % in fresh weight is obtained using the 

following equation: 
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𝑇𝑆(%) =
𝐶−𝐴

𝐵−𝐴
· 100  .   (10) 

 

 

 

3. Volatile Solids Determination 

- The samples obtained at the end of TS determination are put into the muffle oven at 

550 °C for 3 hours. 

- After being in the muffle oven for this long, samples will be very hot and they will have 

to be kept in the desiccators for 45 minutes. 

- Finally, weigh the samples and record the value as weight D. 

- Value of Volatile Solids, expressed in % in fresh weight is obtained using the following 

equation: 

 

  𝑉𝑆(%) =
𝐶−𝐷

𝐵−𝐴
· 100  .   (11) 

 
 
 

3.4.4. Total Suspended Solids and Volatile Suspended Solids  

Basis: 

Total Suspended Solids: Those solids that will not pass through a standard glass fibre filter. 

This includes both those solids that will settle or float in the clarifier and the lighter 

non-settleable (colloidal) solids. 

 

Volatile Suspended Solids: Those volatile solids that will not pass through a standard glass 

fibre filter.   

 

Materials: 

- Drying Oven 

- Desiccators 

- Analytical Balance (SCALTEC © SBA 31 with 0.0001g precision) 
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- Forceps 

- Fiber glass filter paper 

- Vacuum pump 

- Büncher funnel 

- Kitasato 

- Muffle oven 

- Porcelain crucibles 

- Glass agitator 

- Beaker 

- Pipette 

- Measuring cylinder  

 

Procedure: 

1. Preparation: 

- First of all, the porcelain crucibles must be cleaned and dried for 1 hour in the muffle 

oven at 550 °C and then allowed to cool down into a desiccator. 

- Filter papers must also to be prepared: using the Büncher funnel, they must be filtered 

with distilled water three times and allowed to dry in a clean crucible in the oven at 

105 °C for 1 hour,  

- After being allowed to cool down in the desiccator, the filter paper and the crucibles 

have to be weighed together and the weight recorded as weight A. 

- Weigh 5mL of sample in a beaker and record it as weight B and filter that sample. 

Clean the beaker with deionized water to make sure the entire sample has been 

filtered. 

 

 

2. Determination of Total Suspended Solids: 

- Put the filter into the corresponding crucible (properly identified) and put them into 

the oven at 105 °C for 24 hours. 

- After this time samples will be hot, so they must be cooled down in the desiccators for 

30 minutes. 

- Then, weigh them with the analytical balance and record the weight as C. 
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- Final value of Total Suspended Solids, expressed in % in fresh weight is obtained using 

the following equation: 

 

  𝑇𝑆𝑆(%) =
𝐶−𝐴

𝐵
· 100     (12) 

 

 

3. Determination of Volatile Suspended Solids: 

- Put the crucibles into the muffle oven at ambient temperature and switch it on to 550 

°C for 3.5 hours. The first half hour will be to reach the desired temperature avoiding 

spontaneous ignition. 

- After this time, the samples will be very hot, so they must be cooled for 1 hour in the 

desiccators.  

- Then weigh and record as weight D. 

- Value of Volatile Suspended  Solids, expressed in % in fresh weight is obtained using 

the following equation: 

 

  𝑉𝑆𝑆 (%) =
𝐶−𝐷

𝐵
· 100     (13) 

 

3.5. Statistic methods 

A simple linear regression model has been used to contrast the possible linear relationship in two 

cases: first, impedance slope vs. VSS and then, impedance slope vs. COD. 

Absence or presence of relationship between the mentioned variables has been contrasted by a 

correlation test, with a confidence interval (CI) of 95%. Following, the linear regression model has 

been tested, again with a CI of 95%. 

After knowing its significance, the correlation coefficient has been studied, in order to know how 

good the model is. Finally, a normality test has been done in order to contrast if there is normality 

or not. Obtained models with correlation coefficients higher than 90% and satisfy the normality 

presumptions and constant variance have been considered as good model. 
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Figure 18 Impedance readings for activated sludge and clarified water. 

4. Results and discussion 

4.1. Previous assay 

The results obtained from the previous assays, performed in order to design the measurement 

cell and the experimental procedure, are detailed here. It starts with the simple (and first) 

bioimpedance measurement of a sample of activated sludge (AS) and clarified water (CW), the 

results of which are shown in Figure 18. 

Even though the β-relaxation was not located, another determining behaviour was observed and 

gave meaning to the work: measures of activated sludge present a variation in its impedance 

along a range of frequencies, while the value for water, without biomass, remains constant.  

In other words, when measuring biomass through bioimpedance, the obtained curve presents a 

slope, while the slope is very close to zero when there is no biomass in the medium. 

This explanation suggests that a simpler measuring system could be developed to detect biomass 

through bioimpedance by detecting a determined modulus variation. 
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4.2. Defining the measurement range 

After knowing about the undesired effects of the parasitic capacities observed in the readings, it 

was necessary to set a measurement range of frequencies. For this, another assay was performed 

by measuring a patron solution with a known conductivity (σ = 1412μS/cm).It could then be 

observed how parasitic capacitances affect measurement. The result is shown in Figure 19. 

 

 

Knowing that impedance for no-biomass remains constant, it can be observed that only from 

104Hz to 106Hz is there the flat tendency which corresponds to the true impedance of the 

medium. Therefore, it can be said that there are two undesired effects at the lowest and highest 

frequencies: from 102Hz to 104Hz the capacity of the electrodes prevails, while going up to 1 GHz 

the polarization of free water molecules produces another capacitive effect (see chapter 2.3).  

From this result, a measurement range of frequencies was approximately established, at which 

the effects of high frequencies and capacitive artefacts can be negligible. First, it was accepted a 

measurement range from 104 to 106 Hz, but considering the disposition of the β-dispersion and 
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Figure 19 Impedance readings for measuring patron solution with conductivity σ = 1412μS/cm.  
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the noise affecting measurements at 104 Hz, the definitive frequency range for the readings was 

set at between 105 and 106 Hz (100kHz and 1MHz). 

4.3. Establishing number and position of the electrodes 

 Another design criterion for the measurement cell was defining whether it would require 4 or 2 

electrodes and its distribution along the cell. As is known, with 4 electrodes a more sensitive 

reading can be obtained, but the setup is more complex and it requires designing specific 

electronics (front end). On the other hand, using 2 electrodes would enable a simpler and cheaper 

instrumentation, but it must be ensured that readings will be as representative as with 4 

electrodes.  

Table 1 and Table 2 summarize the impedance slopes for 2 and 4-electrode configuration 

measurements, respectively. It can be observed that the slopes for activated sludge samples are 

higher in both cases. Moreover, the differences are even clearer in the 2-electrode configuration. 

The impedance readings are shown in figures 20 and 21. 

  

 

 

 

Table 1 Impedance slopes and temperatures for 2 electrodes measurements of activated sludge, outflow water and 

clarified water.  

Table 2 Impedance slopes and temperatures for 4 electrodes measurements of Activated sludge, outflow water and 

clarified water.  

4 el. measurement Activated sludge Outflow water Clarified water 

Slope [100kHz, 1MHz] (Ω/MHz) -2.2113 0.0731 0.1894 

temperature (ᵒC) 23.2 23.0 22.9 

 

2 el. measurement Activated sludge Outflow water Clarified water 

Slope [100kHz, 1MHz] (Ω/MHz) -8.1978 -0.7900 -0.8867 

Temperature (ᵒC) 22.6 22.7 22.5 
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Figure 21 Bioimpedance measurement of activated sludge, clarified water and outflow water with 4 electrodes 

Figure 20 Bioimpedance measurement of activated sludge, clarified water and outflow water with 2 electrodes 
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Looking at Figures 20 and 21, it can be confirmed in both 2 and 4-electrode measurements that 

there is an impedance gradient in the activated sludge samples, while the impedance value for 

water remains almost constant. So, it is confirmed that both systems can be used to detect 

biomass in a frequency range from 100 kHz to 1MHz. 

However, the 2-electrode design was chosen. Firstly, because it would enable easier handling of 

data as well as a generally cheaper instrumentation, but also because the results have less noise 

in the readings and the slope difference is more evident (see Tables 1 and 2). Therefore, is not just 

that using 2 electrodes is enough to detect the presence or absence of biomass, but also that it 

will give a clearer result and it will become easier to automatize.  

Note that temperatures after 4 electrodes measurements had increased respect the previous 2 

electrodes measurement, suggesting that this measurement device produces a heating of about 

0.3 ᵒC ± 0.1. This effect will be discussed in chapter 4.6.  

 

4.4. Measures of different biomass concentrations 

After establishing measurement characteristics and defining that there is an impedance slope 

when biomass is measured, the aim was to find out if bioimpedance measures are sensitive to 

different biomass concentrations. For that, samples with different biomass concentration (100%, 

50% and 25%) were measured as well as clarified water samples. Furthermore, VSS and COD 

analytics, water electrical conductivity (EC) and water temperature were measured for each 

sample as control. 

These measurements were performed 3 times in order to have 3 experimental replicates. 

Samples were taken from the water treatment plant on 3 different days, so biomass 

concentration, EC and temperature were different in each case. The 3 impedance readings 

obtained from the impedance analyser are shown in Figures 22, 23 and 24. Moreover, Tables 3, 4 

and 5 summarize their impedance variation along a range of frequencies (slope) and the analytic 

results.  
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Table 3 Impedance variations (slope), temperatures, EC, COD and VSS results of 1st run biomass concentration 

measurements. 

 
Activated sludge 

AS diluted 
50% 

AS diluted 
25% 

Clarified 
water 

Slope [100KHz, 1MHz] 
(Ω/MHz) 

-5.9556 -3.7289 -2.5589 -1.8889 

temperature (ᵒC) 19.7 19.5 19.5 19.4 

EC (dS/cm) 2.03 2.03 2.04 2.04 

COD (g O2/l) 10010 5989 3402 55 

VSS (g VSS/l) 0.6220 0.4350 0.2114 0.1000 

 

Figure 22 Impedance readings of activated sludge, diluted activated sludge and water samples of 1st run of biomass 

concentration measurements. 
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Table 4 Impedance slopes, temperatures, EC, COD and VSS for different concentration biomass samples and clarified 

water of 2nd run of biomass concentration measurements 

 
Activated 

sludge 
AS diluetd 

50% 
AS diluted 

25% 
Clarified Water 

Slope [100KHz, 1MHz] 
(Ω/MHz) 

-6.8744 -3.0722 -2.3856 -2.0067 

temperature (ᵒC) 22.8 22.4 22.3 22.3 

EC (dS/cm) 1.56 1.56 1.57 1.56 

COD (g O2/l) 4929 2768 1612 167 

VSS (g VSS/l) 0.5047 0.3143 0.1726 0.1516 

 

Figure 23 Impedance readings of activated sludge, diluted activated sludge and water samples of 2nd run of biomass 

concentration measurements. 
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Table 5 Impedance slopes, temperatures, EC, COD and VSS for different concentration biomass samples and clarified 

water of 3rd run of biomass concentration measurements 

 
Activated sludge AS diluted 50% 

AS diluted 
25% 

Clarified 
water 

Slope [100KHz, 1MHz] 
(Ω/MHz) 

-9.5478 -6.8778 -7.1189 -1.8889 

temperature (ᵒC) 27.7 27.7 27.7 27.5 

EC (dS/cm) 1.69 1.69 1.69 1.69 

COD (g O2/l) 11808 4896 2412 40 

VSS (g VSS/l) 0.8714 0.4782 0.2752 0.1343 

 

Figure 24 Impedance readings of activated sludge, diluted activated sludge and water samples of 3rd run of biomass 

concentration measurements 
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In all the observed cases, there are different slopes for different biomass concentrations. 

Observing the results from each day, it can be seen that for higher biomass concentration, the 

slope is more pronounced, with clarified water samples having the lowest slope values.  

There is one anomaly which can be observed in Table 5: the AS 75% diluted sample of the 3rd test 

presents a high slope variation (-7.1189Ω/MHz) but biomass concentration was low (0.2752 

gVSS/l). It is thought that this exception could have been caused by the settling of the biomass 

during the measurement. Thus, biomass was accumulated in the zone around the electrodes, 

giving an impedance reading of a higher biomass concentration. 

Comparing all the samples from each day, it can be observed that there are samples with lower 

biomass concentrations that have higher slopes, and there are samples with higher biomass 

concentration that have lower slopes. This implies that there are more factors altering 

bioimpedance measurements that have not been taken into account. 

However, it is thought that biomass concentration (VSS) is related to impedance slope (from 

100kHz to 1MHz) and even with the organic matter content (COD). To find out if there is a 

relationship between them and moreover, if it is a linear relationship, statistical tests were done. 

All the followed steps and complete results can be found in the annexes.   

The statistic test for the linear regression model between VSS and slope has resulted significant. 

With an adjusted R2 of 0.928, it can be said that the linear model fits to the experimental data and 

that it is statistically valid. The obtained model can be observed in Figure 25. 

The statistic test for the linear regression model between COD and slope has also resulted 

significant. With an adjusted R2 of 0.403, the model is significant. However, this low R2 shows that 

it is not a good model and the residuals-analysis indicated that it is not reliable.  The obtained 

model can be observed in Figure 26. 

Hence, there can be a linear relationship between biomass concentration and impedance slope, 

whereas it cannot be confirmed for organic matter content. 
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Figure 25 Linear regression of VSS vs. slope 

Figure 26 Linear regression of COD vs. slope 

VSS = - 0.00553 + 0.08731 slope 

S        0.0693989 
R2                92.8% 
R2 (adjusted)           92.2% 

COD = 529 + 826.3 slope 

S        2628.09 
R2                44.6% 
R2 (adjusted)           40.3% 



Online bioimpedance measurement: characterisation and Applications in environmental engineering   57 

Escola Superior d’Agricultura de Barcelona 
UPC - BarcelonaTech 

4.5. Measures of non-active biomass 

Whereas VSS can be used as biomass estimator, COD measures the organic matter of the sample, 

but not necessarily biomass. As conclusions of the statistical tests of the last chapter (4.4.), it was 

imperative to contrast experimentally that bioimpedance is sensitive to biomass concentration 

and the organic matter content does not interfere in the result. To prove that, 3 samples of 

activated sludge were thermally treated in order to inactivate biomass and then measured 

through bioimpedance. One of the bioimpedance reading is not shown due to technical problems 

during the data acquisition. Results are shown in figure 27 and table 6. 

 

 

 

1050

1100

1150

1200

1250

1300

1E+05 1E+06

|Z
| 

(Ω
)

Freq (Hz)

Active biomass Non-active biomass 1 Non-active biomass 2

Figure 27 Impedance readings of 2 samples of non-active biomass. 
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Active biomass 

Non-active 
biomass 1 

Non-active 
biomass 2 

Slope [100KHz, 1MHz] 
(Ω/MHz) 

-8.8372 -2.0067 -2.4467 

temperature (ᵒC) 25.5 23.3 23.1 

EC (dS/cm) 1.80 1.79 1.79 

COD (g O2/l) 5510 4829 4837 

VSS (g VSS/l) 0.7675 0.2047 0.1998 

 

 

Again, results shows that bioimpedance is sensitive to biomass concentration. Although all the 

measured samples of Figure 27 present a similar organic matter content (expressed in COD), their 

impedance variation (slope) is different according to the biomass concentration (VSS), as it can be 

observed in table 6. This result confirms the sensitivity of the slope to biomass concentration, but 

does not ensure that can distinguish active form non active biomass. 

It must be said that the thermal treatment applied to inactivate biomass was not effective, and for 

some technical reason the VSS content decreased. However, the obtained slopes for non-active 

biomass shows similarity to those values obtained in measuring clarified water or 25% diluted 

samples (see tables 3, 4 and 5), which indicates that there is the same biomass-slope tendency as 

discussed in previous chapter (4.4.). 

 

 

 

 

Table 6 Impedance slopes, temperatures, EC, COD and VSS for active and of non-active biomass 
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4.6. Effect of sedimentation 

Biomass sedimentation and agitation during bioimpedance measurements induced variations in 

the results. It is thought that the interphase phenomenon which occurs during sedimentation can 

be related.  

Sedimentation plays an important role in wastewater treatment processes. It can be used as a 

separation process in itself, but also as indicator of the end of a biological phase. In Figure 28 a 

scheme of the process is shown. During sedimentation, biggest particles tends to settle first, 

concentrating at the bottom (in Figure 28 represented as compression zone). In the upper zone, 

smallest particles start settling, producing a clear water zone. Between these two zones, there are 

particles of different sizes and densities (which can be attached to bubbles, to other particles or 

forming floccules etc.). When concentration increases, particles start interacting between, 

preventing its downwards movement due to sedimentation. This behaviour results in the form of 

an interphase or transition zone, as it can be observed in Figure 28. 

 

 To observe how this behaviour interferes to impedance measurements, one sample of activated 

sludge diluted at 25% was measured during different moments of the biomass sedimentation. 

Impedance readings are shown in Figure 28 and slopes between 100 kHz and 1 MHz are 

summarized in table 6. Pictures of the measurement cell, taken during the experiment, have been 

added in order to show the settling state of each measurement. 

Figure 28 Scheme of the sedimentation process. A red circle indicates the interphase zone (Medina, 2007).  
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Control 1 and 3 readings were taken with the sample in completely mixed state, as it can be 

observed in Figure 30. Then, biomass started to settle down. Observing bioimpedance results in 

Figure 28 and with the aid of table 6, there can be distinguished three remarkable patrons. First, 

control lectures gives the slopes of the sample homogeneously mixed, which value should 

correspond to the real biomass concentration. It must be said that control 2 was mixed more 

energetically, and turbulences inside the cell were more perceived. This could be the reason for 

having a higher slope value than Control 1. 

After 30 seconds, turbulences stopped and the sample became more stabilized. In table 6 it can 

be observed that impedance slope at second 30 changes to an intermediate value between the 

two controls. As long as biomass is settled, slope becomes more pronounced, because sludge is 

concentrating at the zone of the electrodes, giving an impedance value for a higher biomass 

concentration than for the sample in completely mixed state.  

Second patron is described by the measured samples at seconds 120 and 180, and it can be 

appreciated in Figure 29. Hence, it can be observed that they do not present a continuous 

behaviour. Impedance reading after 120 seconds decrease at the beginning and gets stabilised at 

the end, whereas impedance reading after 180 seconds does the opposite effect. This behaviour is 

of great importance because these lectures correspond to the moment represented in Figure 31, 

when the interface zone is crossing the zone of the electrodes, producing impedance variations. 

Readings at 120 and 140 seconds show these fluctuations, while at 290 seconds measures the 

maximum concentration of biomass.  

From this moment on, slope goes increasing as long as biomass is settling around the zone of the 

electrodes, till a maximum value of -4,0844(Ω/MHz), almost double than the initial slope.  

Finally, the third behaviour is obtained after 405 seconds, when biomass has settled below the 

zone of the electrodes, giving the impedance value of the clarified water or an intermediate 

impedance value between activated sludge and clarified water. Pictures of the cell taken during 

seconds 405 and 2580 (43 minutes) are shown in Figures 32 and 33, respectively. 
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Table 7 Summary of impedance slopes of 25% diluted AS sample at different moments of the biomass 

settling 

time of settling 
(seconds) 

slope [100KHz, 
1MHz] (Ω/MHz) 

notes 

0 -2,9756 Control 1 

0 -3,2911 
Control 2, more turbulences during the 
measurement 

30 -3,1022 
 

60 -3,2511 
 

120 -3,4689 

Interface zone around the electrodes. Impedance 
fluctuates measuring either biomass or water. 

180 -3,1722 

290 -4,0844 

405 -2,3467  

2580 -2,2400  
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Figure 29 Impedance readings of a 25% diluted AS sample at different moments of the biomass settling.  

Figure 30 Impedance readings of 25% diluted AS sample at seconds 120 and 180, compared to Control 1 
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Figure 31 Picture of the cell during in completely mixed state 

Figure 32 Picture of the cell after 290 seconds of sedimentation. 
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Figure 33 Picture of the cell after 405 seconds of sedimentation. 

Figure 34 Picture of the cell after 43 minutes of sedimentation 



Online bioimpedance measurement: characterisation and Applications in environmental engineering   65 

Escola Superior d’Agricultura de Barcelona 
UPC - BarcelonaTech 

4.7. Effect of temperature and electrical conductivity 

Aside from observing that there is a relationship between impedance slope (in the range between 

100kHz and 1MHz) and active-biomass concentration, it has been observed that, the impedance 

level can be different in each case. The parameters whose are known to be responsible of this 

phenomenon are temperature and electrical conductivity (EC). 

The measurement of electrical conductivity is affected by the temperature of the solution, and it 

increases by about 2 percent per degree rise in temperature in the range of 15 to 35 ᵒC (Hillel, 

2000). The results obtained at higher or lower temperature are normalized by means of the 

following empirical equation (Hillel, 2000): 

𝜎(𝑇) = 𝜎25(1 + 0.02 · (𝑇 − 25))  ,  (14)  

where 𝜎25 is conductivity at 25 ᵒC, 0.02 (2%/ᵒC) is the temperature coefficient for water solutions 

and T is the ambient temperature. 

Hence, temperature and conductivity have a directly proportional relationship. Besides, 

impedance is indirectly proportional to conductivity and consequently to temperature. 

Although temperature influences the impedance value, it does not modify its variation (slope) in 

different active biomass concentration. In Figure 34 a dot plot of slope with temperature is 

represented, showing that there is no relation between them. Dots looks dispersed with no 

tendency. Finally, in Figure 35 it can be observed the same tendency, but with electrical 

conductivity.  
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Figure 35 Dot plot of impedance slope and temperature. 
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Figure 36 Dot plot of impedance slope and electrical conductivity (EC). 
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5. Conclusions and recommendations 

5.1. Conclusions 

From this work, it is concluded that impedance slope has a direct relationship with biomass 

concentration. Hence, a simple interpretation of the bioimpedance technique is suggested, for 

which the variation of impedance (or slope) can be correlated with the biomass concentration, 

expressed in VSS. 

This new bioimpedance methodology could be used as biomass measurement in bioreactors for 

wastewater treatment. For that, slope impedance is measured in a range between 100kHz and 

1MHz. Although the 4 electrodes configuration is known to be more precise, impedance slope can 

be well detected using 2 electrodes, enabling a simple electronic setup. 

With regard to its application in bioreactors, there are some external interferences that need to 

be overcome. For example, magnetic agitation is not possible due to electrical interferences in the 

measurement. In addition, mechanical agitation has been demonstrated to interfere in the 

impedance readings. However, this behaviour could be studied in order to determine the amount 

of error that it introduces to the reading, in order to finally find the way to integrate the 

bioimpedance measurement into the bioreactor with other sensors (for example temperature, 

oxygen…). Moreover, although temperature and electrical conductivity influence the impedance 

value, they do not produce effect on the slope. 

During sedimentation, different physic phenomena takes part which affect impedance readings. 

Among them, the interface zone has shown to produce alterations in the slope value. By this way, 

bioimpedance-slope technique could be used to follow the sedimentation process through a 

determined point of the bioreactor. Hence, interphase zone could be detected at the time that 

changes in the slope value were perceived. 

Although this is a first contact work, there are optimistic reasons to confirm that the 

implementation of this technique for automatization purposes is possible. In wastewater 

treatment section, it would enable to design more efficient bioreactors and to have a better 

control of the process. 
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5.2. Suggestions for further research 

It must be said that the used circuital model describes cellular suspensions of a single kind of 

bacteria into a homogenous medium. It is assumed it can be applied to all kinds of cellular 

suspensions, but they can appear undesired effects which are not taken into account in the 

model. A future object of study could be the proper electrical modelling for activated sludge or 

other biological waste products of interest. 

In this work it is suggested that a 2-electrode system is used in order to simplify the detection 

system, which could be portable. However, most consulted publications recommends a 4-wire 

measurement method to cancel out the influence of the electrode-electrolyte impedance in the 

measurement. The possibility of using more specific electrodes such as large end-plate electrodes 

or microelectrodes could be studied. In this work, small electrodes have been used, which is said 

to provoke a non-uniform current density. Hence, another experimental line in the 

bioinstrumentation and sensors field could be to develop a portable system to measure 

bioimpedance that satisfies the mentioned design requirements.  

Knowing that metabolic changes can be detected through bioimpedance, more experiments could 

be performed to observe how bioimpedance changes during biomass growing stages. Biomass 

samples could be forced to saturation of glucose or oxygen and their evolution followed. 

Furthermore, other kinds of biomass could be compared, such as anaerobic biomass. 

However, this work encourages to keep developing this methodology, in order to find a simple 

and reliable biomass measuring technique to implement in the wastewater treatment sector. 
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Annexes 

Annex A. Statistical tests 
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Annex A - Statistic test 

Relationships between bioimpedance slope and VSS and COD are studied. 

Impedance slope is chosen as explicative variable due to its practical application in a possible 

model in which, knowing the impedance slope in a range from 100 kHz to 1 MHz could predict the 

biomass concentration expressed in VSS and COD. 

 

1) VSS vs. bioimpedance slope 

First, the behavior of these two variables is analyzed through the dispersion diagram: 

 

 

Seems that they present a linear tendency. To contrast their linear relationship, a correlation 

test is done between them. 
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Figure 37 Scatterplot of VSS vs. slope 
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Contrast statistic used: Pearson coefficient 

H0: Person coefficient = 0 

H1: Person coefficient ≠ 0 

Alpha: 0.05 

 

 

The obtained value is 0.897, which indicates a strong relationship between both variables. 

The obtained p-value is much lower than alpha, which indicates that the null hypothesis can 

be rejected. Hence, variables could be related. 
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Figure 38 Linear regression of VSS and slope 
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The possibility of a linear model is studied. To statistically contrast this hypothesis, data is 

analyzed through a linear regression model. 

Contrast statistic used: F of Fisher with 13 degrees of freedom 

H0: variables are not linearly related 

H1: variables are linearly related 

Alpha = 0.05 

The obtained p-value for this test is lower than alpha. Thus, null hypothesis is rejected. The 

model is well considered with an obtained R2 of 79%. 

To contrast the reliability of this regression test, the residuals are analyzed, assuming 

normality and constant variance. 

 

Figure 39 Residual plots of the regression of VSS vs. slope 
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Variance can be considered constant and residuals normal distributed. Finally, a normality 

test for residuals is done. 

H0: there is normal distribution 

H1: there is no normal distribution 

Alpha = 0.05 

The obtained p-value for this test is higher than alpha. Thus, null hypothesis cannot be 

rejected. 

An outlier is perceived in number 11, which presents a deviation 3 times higher than standard 

deviation. The reason of this anomaly is explained in chapter 4.4. Hence, same statistical 

process is repeated but without this anomalous data. 

Figure 40 Normality test for residual plots of the regression of VSS vs. slope 
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Contrast statistic used: Pearson coefficient 

H0: Person coefficient = 0 

H1: Person coefficient ≠ 0 

Alpha: 0.05 

The obtained p-value is much lower than alpha. Hence, null hypothesis is rejected and it is 

assumed that the two variables could be related. 

In this test the correlation coefficient is higher than the previous test, meaning a strong 

relationship between the two variables. 

Following, the possibility of a linear regression model is analysed: 
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Figure 41 Corrected linear regression of VSS and slope 
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Contrast statistic used: F of Fisher with 12 degrees of freedom 

H0: variables are not linearly related 

H1: variables are linearly related 

Alpha = 0.05 

The obtained p-value is lower than alpha. Hence, null hypothesis is rejected. It can be 

observed that this model fits much better than the previously realized, with a R2 of 92% 

To check the reliability of this regression test, the residuals are contrasted, assuming 

normality and constant variance. 

 

Figure 42 Residual plots of the corrected regression of  VSS vs. slope 
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It can be said that this variance is constant and the provability distribution of the residuals fits 

into the normal distribution. The observation number 10 is an outlier, as it is twice deviated 

from the standard deviation. 

To end with, residuals are analyzed through a normality test. 

H0: there is normal distribution 

H1: there is no normal distribution 

Alpha = 0.05 

 

 

The obtained p-value for this test is higher than alpha. Hence, null hypothesis cannot be 

rejected. Residuals of this models could have a normal behaviour. 

Figure 43 Normality test for residual plots of the corrected regression of VSS vs. slope 
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2) COD vs. bioimpedance slope 

First, the behavior of these two variables is analyzed through the dispersion diagram:  

  

Looks like that these variables have a linear tendency, even though it is diffuse. To check their 

relationship, a correlation test is done between them. 

Contrast statistic used: Pearson coefficient 

H0: Person coefficient = 0 

H1: Person coefficient ≠ 0 

Alpha: 0.05 
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Figure 44 Scatterplot of COD vs. slope 
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The obtained p-value for this test is lower than alpha, which indicated that the null hypothesis 

can be rejected and that variables could be related. 

The obtained Pearson coefficient is 0.668, which indicates a notable relationship between the 

two variables.  

The possibility of a linear model which explains the relationship between the two variables is 

studied. To contrast statistically this hypothesis, data is analysed through a linear regression 

model. 

Contrast statistic used: F of Fisher with 13 degrees of freedom 

H0: variables are not linearly related 

H1: variables are linearly related 

Alpha = 0.05 

Figure 45 Linear regression of COD and slope 
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The obtained p-value for this test is lower than alpha. Hence, null hypothesis can be rejected. 

The obtained model is not considered reliable with a R2 of 40.3%.  

To validate this model, the behavior of the residuals is contrasted, assuming normality and 

constant variance. 
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It can be said that variance is disperse and the probability distribution of the residuals does 

not adjust to the normal distribution.  

To end with, residuals are analyzed through a normality test. 

H0: there is normal distribution 

H1: there is no normal distribution 

Alpha = 0.05 

 

Figure 46 Residual plots of the regression of COD vs. slope 
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The obtained p-value for this test is higher than alpha. Hence, null hypothesis cannot be 

rejected and it is possible that residuals have a normal behaviour. Through the obtained 

results, the model cannot be rejected, although it is not considered a good model. 

 

 

 

 

 

Figure 47 Normality test for residual plots of the regression of CODvs. slope 
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