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Summary. The automated comparison of process models has received increas-
ing attention in the last decade, due to the growing existence of process models
and repositories, and the consequent need to assess similarities between the un-
derlying processes. Current techniques for process model comparison are either
structural (based on graph edit distances), or behavioural (through activity pro-
files or the analysis of the execution semantics). Accordingly, there is a gap be-
tween the quality of the information provided by these two families, i.e., structural
techniques may be fast but inaccurate, whilst behavioural are accurate but com-
plex. In this paper we present a novel technique, that is based on a well-known
technique to compare labeled trees through the notion of Cophenetic distance.
The technique lays between the two families of methods for comparing a process
model: it has an structural nature, but can provide accurate information on the
differences/similarities of two process models. The experimental evaluation on
various benchmarks sets are reported, that position the proposed technique as a
valuable tool for process model comparison.

1 Introduction

Nowadays process models are ubiquitous objects in companies and organizations. They
are becoming precious for representing unambiguous and detailed descriptions of real
processes. On the one hand, BPMS platforms, which allow designing, deploying and
managing the processes in organizations, are based on process models. On the other
hand, evidence-based process models (i.e., process models with a high alignment with
respect to the underlying real process) can be used to analyze the process formally,
e.g., detecting inconsistencies or performance problems that may hamper the correct
and optimal execution of the process. Furthermore, the existence of environments for
creating, managing and querying process model collections enable the hierarchical and
cross-organizational analysis, with process models as atomic objects.

A core technique necessary in many of the aforementioned situations is the au-
tomated comparison of process models. Due to its importance, this problem has re-
ceived significant attention in the BPM field, which can be split into structural tech-
niques based on graph-edit distance [8, 9, 10, 18], and behavioural techniques that
focus on the execution semantics or behavioural relations of the corresponding mod-
els [1, 7, 13, 16, 17]. Intuitively, structural techniques are fast but inaccurate (in terms
of the differences found), whereas pure behavioural techniques are complex (both in
computation time and memory usage) but accurate.
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In this paper we propose a novel method to compare process models'. The tech-
nique is based on a recent algorithm [5] from the field of computational phylogenetics,
where the objects to compare are labeled trees showing the inferred evolutionary rela-
tionships among various biological species. We adapt the algorithm to the BPM context,
thus using process trees [4] as notation. Our proposed similarity metric sits halfway be-
tween pure structural similarity methods (inheriting their low complexity features), and
behavioural similarity metrics (capable of providing similar behavioural information).
Moreover, the performance of our approach allow us to consider this metric for large
process models.

The paper is organized as follows: next section provides an intuition of the metric
over a realistic example. In Section 3 the necessary preliminaries are provided. Then in
Section 4 we present the main contribution of the paper: a similarity metric for deter-
ministic process trees. The deterministic restriction is dropped in Section 5, giving rise
to a heuristic technique that relies on an approximate matching algorithm. The tech-
niques of the paper are evaluated thoroughly in Section 6. Finally, Section 7 concludes
the paper and provides pointers for future investigations.

2 Motivating Example

Let us use a real-life example to motivate the contributions of this paper. A product
manager decides to monitor all accesses to an SVN repository. Those accesses are done
through HTTP/S, as specified in the WebDAV/DeltaV protocol. It turns out that those
read and write requests over HTTP/S can be translated to human-friendly SVN com-
mands such as svn update or svn commit. Continuing the work done by Li Sun et.al.
[15], the product manager plans to model the developer’s behaviour based on the SVN
commands they execute daily. Our goal is to measure the differences between those
models, inducing a behavioural distance between individuals. This way, intruder at-
tacks to the repository can be detected globally by analyzing process behaviour that is
clearly separated from the rest.
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Fig. 1. Two process models describing how two users access an SVN repository.

! We assume the problem of dealing with real activity labels, e.g., when the name of an activity
in the models does not perfectly match, is resolved prior to the techniques of this paper.
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Figure 1 depicts the access behaviour of two users to the same repository, using
a block-structured process discovery algorithm?. In our preliminary study, the process
model of an average user shows lots of concurrency, duplicate activities and iterative be-
haviour?. Existing behavioural comparison techniques struggle when dealing with such
models. Either they fall short in describing duplicate activities and loops [16], or the
underlying technique does not scale in the presence of concurrent process branches [1].
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Fig. 2. Extract of the tree representation of the two processes in Figure 1. Only the subtrees
related to two common activities A and B are represented, and their least common ancestors are
depicted in bold. Activities S; are unrelated to A and B.

The approach presented in this paper evaluates the difference of the two minimum
subtrees containing a selected pair of activities, and extends the comparison to all possi-
ble pairs. Analysis over such subtrees is expected to be more simple and efficient, while
still capable of comparing both the structure and behaviour of the two processes. See
Figure 2 for an example, which focuses on activities A and B in both models. One can
check that the difference between the depth of the two activities is an approximation to
the graph distance between those two models. For instance, in Figure 2, depths of A are
11 in the first subprocess and 4 in the second subprocess, whilst depths of B are 11 and
6. The difference of their depths sum 12, implying that 8 nodes must be removed and 2
extra edges are needed in order to transform one model into the other. Besides, and more
importantly, one can see that the common ancestors of activities A and B in Figure 2
model two different behaviours: On the first subprocess, activities A and B are mutually
exclusive; On the second, A is executed after activity B. Notice that the depth of this
common ancestor also highlights how long it takes to make the behavioural decision of
how activities A and B relate to each other. Therefore, by incorporating these notions
into the distance function, we would be able to not only measure structural differences
but also highlight differences in the behaviour of two process models. For instance, one
could obtain the sentence: Activities A and B in Figure 2 are mutually exclusive in the
first subprocess, but activity A always occurs after B in the second subprocess. Be-
sides, the behavioural decision in the first subprocess is done 6 steps after the decision
is taken in the second subprocess.

2 We used Discover a Process Tree using Inductive Miner (ProM 6.5) and then converted them
to Petri Nets.

3 The most common sequence of commands in the dataset is svn -options, svn update, svn -
options indicating they use an IDE that overwrites the SVN options just to perform an update
and then returns to its previous status.
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3 Background

3.1 Process Trees: a Tree-like Representation of Business Processes

A rooted tree is a directed graph with a distinguished node, called the root, from which
every node can be reached with exactly one path. A weighted rooted tree is a pair
(T, w) consisting of a rooted tree 7" and a weight function w : E — R that associates
every arc e € F a non-negative real number w(e) > 0. A labeled rooted tree is a
rooted tree T" such that there exists a mapping between a subset of the nodes of the tree
and a set of labels S.

Let T = (V, E) be arooted tree. Whenever (u,v) € E, we say that v is a child of
w and that u is the parent of v. The nodes without children are the leaves of the tree,
and the other nodes are called internal. Whenever there exists a path from a node u to a
node v, we say that v is a descendant of » and also that u is an ancestor of v. An internal
node is elementary if it only has one child. The depth of a node « in a tree 7', denoted
by dr(u), is the sum of the weights of the arcs in the path from the root to u. Weights
are usually set to 1, but we will later see that we can encode behavioural information
from the process by modifying these weights.

Definition 1 ([4]). A process tree is a labeled rooted tree T in which activities are
represented as leaves of the tree and internal nodes describe the control-flow of the
process.

We say that a process tree is deterministic if there is a one-to-one mapping between
activity labels and leaves of T'. For the sake of simplicity, we will label internal labels
as OR*, AND, SEQ and LOOP to represent the usual behavioural structures in a process
model. We will also denote these internal nodes by gateways, following the BPMN
nomenclature. We allow silent activities by labeling them as ().

Definition 2. A process tree is reducible if there are elementary nodes, silent transitions
hanging over a gateway other than OR, or there exist a pair of internal nodes u and v
such that (u,v) is an edge in the graph and both model the same type of gateway.

Any reducible process tree can be converted into an irreducible tree by merging all
conflicting nodes. We will suppose that all process trees are given in its irreducible form.
Figure 3 depicts an example of a reducible process tree and its irreducible counterpart.

SEQ SEQ
SEQ 0 OR A////l:\\\\b
/\ ‘
A B C

Fig. 3. Two process trees modeling exactly the same behaviour. The left model is reducible, and
the right model is its irreducible representation. The silent transition ) is removed because it is
not part of an OR structure. The OR elementary node does not provide behavioural information.

4 Following the semantics of block-structured models in [4], only exclusive ORs are modeled.
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3.2 Cophenetic vectors

The least common ancestor (LCA) of a pair of nodes u and v of a rooted tree 7T,
denoted by [u,v]r, is the unique common ancestor of them that is a descendant of
every other common ancestor. The definition of the Cophenetic vector is based on the
discrepancies on the depth of the LCA of every pair of activities.

Definition 3 ([14]). Let S be the set of labels of a weighted labeled rooted tree T. For
every pair of different labels 1, j, their Cophenetic value is

or(iyj) = or([u,v]r)  u,v have labels i, j

To simplify notation, we denote the depth of a node with label i by pr(i,1), and
or(i, ) = 0 if either i or j are not activities of the process tree T.

Definition 4. Let T be a weighted rooted tree, and S the set of activity labels of the tree
T, its Cophenetic vector is

o(T) = (@T(ivj))i,jes

T1) SEQ, TABIC[DE ] comE ) SEQ;
[Al[3]2]1]1]1 [Al[3]2]1]1]1
OR2 AND> B 3111 B 3111 AND> AND>
N RN C 4132 C 40213 > TN
As  Bs ORs B3 |j a2 D 32| As  Bs  ORs  Da
TN E 3 B 4 P
C4 D4 C4 E4

Fig. 4. Example of process trees and their Cophenetic vector (in matrix representation), assuming
the depth of the root is 1. For simplicity, we included node’s depth as a subscript of the label. For
instance, the LCA of activities C' and F in T3 is the AND gateway that is one children of the root
and, hence, its Cophenetic value is 2.

In an already fifty years old paper [14], Sokal and Rohlf proposed the use of the
cophenetic values to compare dendrograms. Authors in [5] show that cophenetic values
can also be applied to uniquely project labelled trees into a multidimensional vector
space, allowing them to define a distance on labelled trees as Theorem 1 states.

Theorem 1 ([5]). Two weighted labeled trees without elementary nodes, unlabeled
leaves nor repeated labels are equal if, and only if, they share the same Cophenetic
vector.

Cophenetic vectors are not enough for determining process tree similarity: for in-
stance, in Figure 4 if the OR and AND labels of the left tree are interchanged, the
Cophenetic vectors of both trees are equal whilst the behaviour represented is different.
Besides, constraints in Theorem 1 do not allow models with multiple silent transitions.
Next section shows how to transform process trees in order to overcome this limitation.
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4 Distance between Deterministic Process Trees

4.1 Cophenetic Distance definition

As we have seen, Cophenetic values unequivocally represents weighted labeled rooted
trees. As it is well known, this allows to induce distance metrics in the set of labeled
trees. Let dist be any distance between two points in a vectorial space, we define

d(T,T") = dist(e(T), o(T"))

as the distance between two trees. For instance, by using the L'-norm we get

(T, 1) = lerli,j) — er (i j)]
i,jES

The Cophenetic values were originally conceived to measure structural differences
between the leaves of two dendograms, but we can extend its use to deterministic pro-
cess trees thanks to Theorem 1. This result allow us to modify the depth of each node
in order to model the path of gateways we are tracing from the root to activities (the
leaves of the tree). In Definition 5 we propose a depth function to overcome the follow-
ing weaknesses of the original Cophenetic distance over labelled trees: (1) ensures that
non-common activities increases the distance between two models; (2) depth of activi-
ties in a sequential order increase in the same sequential order, modeling the complexity
of the blocks already seen by the process; (3) allows for silent transitions; and (4) dif-
ferentiates two processes with the same structure but modeling different gateways at the
root.

Definition 5. Let T be a deterministic process tree. We define the depth function 8. as
follows:

1. Root node has depth 1.
2. Iterate over all nodes in a pre-order traversal.
3. The depth of all nodes is 1 plus the depth of its parent, except
a) If the parent is an OR clause, increase 0.5 instead of 1.
b) If the activity is silent, increase 0.25 the depth of the parent and any other
sibling. Afterwards, remove the silent activity.
c) If the parent is the start of a LOOP, increase also by the maximum depth of the
underlying tree.
d) If the parent is a SEQ gateway, consider the depth of deepest visited children
of the node’s siblings instead of the parent.
4. Any remaining elementary node will be removed, and its parent and children will
be directly connected.

For the sake of simplicity, tr f (T) will denote the combination of the tree T with the
aforementioned depth function .

Figure 5 depicts the transformation of the two processes in Figure 4. With the afore-
mentioned depth function, Cophenetic values now highlight, for example, differences
in the two activities A and B due to the behavioural change of their parent node. This
transformation allow us to overcome the limitations of Theorem 1, since silent transi-
tions are allowed, but also by ordering children of sequential gateways. As we state in
Theorem 2, this transformation uniquely represents deterministic process trees.
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Fig. 5. Transformation of the process trees in Figure 4. For the sake of simplicity, we included
node’s depth as a subscript of the label. For instance, depth of the AND gateway in 77 is 3.5
because its parent represents a sequence and the maximum depth of the previous processed branch
is 2.5

Theorem 2. Let T and T’ be two deterministic process trees. If tr f(T) and trf(T")
share the same Cophenetic vector, then T and T' are the same process tree.

This theorem shows that Theorem 1 is also applicable to the new depth definition,
and therefore useful for checking equality of two process trees and measuring differ-
ences between the models. The proof of this theorem is based on the observation that
the Cophenetic values of any subtree are highly related to the Cophenetic values of the
complete tree, as Lemma 1 shows. Details of the proof of this lemma are omitted, but it
is a direct consequence of the pre-order traversal approach of Definition 5.

Lemma 1. Let T be a weighted rooted tree, and S a subtree of T. Then the Cophenetic
vector of S satisfies that

ws(i,4) = or(i,5) — 8 (root of S) + 1
Proof (Theorem 2). Let’s proof this by induction.

— For processes with 1 or 2 activities, one can list all possible deterministic process
trees and check that no two processes share the same transformed tree.

— For processes with n > 2 activities, we will show that every strict subtree’ of T' is
equal to another subtree of 7”. Let VT be a strict subtree of 7. Suppose A and B
are two activities such that [A, B]r is the root of VT'. Activities A and B are also
included in the deterministic process tree 7”, and [A, B]7 is the root of a certain
subtree V'T".

T T

| i
[ABlr [ABl7

T T
A ... B A ... B

Lemma 1 ensures that

5 Here a strict subtree of T is any subtree that does not contain the root of T
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QOVT(Z.’j) = @T(i,j) - 6%([A7B]T) +1
= @T’(imj) - 5&“(["473]7") +1= SOVT/(Z'Mj)

where the second equality holds since trf(T) = ¢r f(T") and Theorem 1. And there-
fore, VT and VT’ share the same Cophenetic vector and its size is smaller than T’
and T". By induction, we can say that both process trees are equal.

There is one case where there are no two activities A and B such that [A, B]r is the
root of V'T': The root of VT is an OR-clause, and one children is a silent transition. In
this particular case, we can work with the non-silent children VT, ;. The combination
of two consecutive OR conditions is not possible in a valid deterministic process tree,
and therefore VT, falls under the proved assumption. Hence, there is a subtree VT, |
of T” that is equal to V'T,.

T T
\ \
VT(=OR) X
/\ P
0 VT, VT,,s C

VT,s and VT share the same activities, and VT, is a strict subtree of T". There-
fore, VT, is also a strict subtree of T”. Let X be its parent node. We will show that
X isin fact an OR condition, and it only has another silent branch. Let’s assume there
exists an activity C' under X but not included in V'T} .. There are two options:

— X is the root of 7”. In that case, we can replace the subtrees VT, and VT, by a
mock activity C’. We reduced the problem to the 2 activities case, already solved.
In that case, we share the same Cophenetic value but the two process trees are
different (7" does not have a silent transition). We arrived to this contradiction by
assuming that C' exists.

— X is not the root of 7”. In that case, the subtree V' X induced by the node X is
a strict subtree of 77 and X is not and OR condition. By applying the previous
reasoning, there is a subtree W of T that is equal to VX and includes V'T,.
Notice that, in that case, the only possibility is that C' is a silent transition.

This shows that any subtree of T is equal to a certain subtree of 7”. By applying this

result to all the direct children of the root of T one can see that 7' and 7" are indeed

equal. O

4.2 Behavioural information captured by Cophenetic values

The syntax of process trees allow us to easily check the direct causality of two activities
in the model: one simply needs to check the behaviour explained by their LCA. Co-
occurrence of activities is described by an AND gateway, whilst OR internal nodes
induce conflict between their underlying activities. Notice that this causal relation is a
property for the minimum subtree containing the pair of activities. For instance, if the
two activities are inside a bigger loop structure, we would not be able to retrieve this
information due to the loop gateway being some levels above the LCA.
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To provide a more global information than the local direct causality, depths given by
Definition 5 can be used. They summarize the behavioural situation of the given node.
See, for instance, the processes of Figure 5. Depth of activity D could be seen as the
sum of the blocks found from the root to the node.

o7, (D) = 1(root) + 2.5(Seq) + 1(And) + 0.5(Or)
dr, (D) = 1(root) + 3(Seq) + 1(And)
o7, (D) — 07, (D) = (1 — 1)(root) + (2.5 — 3)(Seq) + (1 — 1)(And) + (0.5)(Or)
= —0.5(Seq) + 0.5(Or) (1
Notice that by considering the difference of the two depths, i.e. the value considered by
the Cophenetic distance, we start highlighting where are the differences, and the type
of changes committed, of the behaviour up to activity D.
When comparing pairs of activities, the cophenetic distance does not only consider

the depth of the two activities but also the LCA. Following the previous example, let’s
compare activity D with C":

O, (C) — 61,(C) =(1 — 1)(root) + (2.5 — 3)(Seq) (2)
+ (1 —1)(And) + (0.5 — 0.5)(Or)
= —0.5(S5eq) 3
or, ([C, D]r,) — 01, ([C, D]1,) = (1 — 1)(root) + (2.5 — 3)(Seq) + (1 — 0)(And)
= —0.5(Seq) + 1(And) 4)

The Cophenetic value of C stores the differences on the previous block in the sequence,
as it did with Activity D. Besides, the Cophenetic value of activities C' and D captures
again the difference in the sequence and also an AND gateway. Hence, the pair of ac-
tivities C' and D are a step closer to the end in one of the two process models. But more
interesting properties could be extracted by measuring the difference of such Cophe-
netic values: Whilst the cophenetic value o, ([C, D)) — 0, ([C, D]) gives an idea of the
difference of the two processes up to the LCA [C, D], these two new values provides
the same differential analysis on the paths from the ancestor to the activities. In this
example, (2) — (3) = 1 indicates that the position of C' with respect to their common
ancestor differ in the insertion of an AND gateway; whilst in the case of activity D,
(1) — (2) = 0.5 recognizes that an OR gateway has been added, or replaced by an AND,
in one of the models.

This example shows the potential of the LCA, and the Cophenetic values, to gen-
erate more understandable and user-friendly comparison tools between process trees.
Definition 6 shows two possible sentences we could build thanks to this information.

Definition 6. A set of human-readable differences can be generated using the Cophe-
netic values.

— Given a pair of activities A and B such that they differ in the behaviour explained by
their LCA. We could say that

”In the first model, Activities A and B are (in sequential order / co-occurrent /
conflict). Whilst they are (in sequential order / co-occurrent / conflict) in the second
model. Besides, the position of this behavioural decision differ in

ot ([A, B]) — 01, ([A, B)) units.”
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Fig. 6. Example of two indeterministic process trees. Activities A are indexed for the sake of
simplicity, but all of them are indistinguishable.

— Given a pair of activities A and B showing the same causality but d7, ([A, B]) —
or, ([A, B]) # 0. We could say that

”Activities A and B show the same causality, but the position of this behavioural
decision differ in o1, ([A, B]) — o1, ([A, B]) units.”

In this section a formal guarantee for process tree equality based on Cophenetic dis-
tance has been presented, which restricts process trees to be deterministic. Next section
lifts this restriction deriving an approximate metric based on the existence of a matching
between the two process trees.

5 Distance between Indeterministic Process Trees

Only a small fraction of the process models generated from the human interaction with
the source code repository are deterministic Process Trees. In the general case, each
SVN command is executed several times during a developer day of work, and usually in
different contexts producing processes with several duplicated activities. Unfortunately,
the Cophenetic distance definition does not easily extend to such a kind of process.
Figure 6 depicts an example of two indeterministic process trees where one activity, A,
is duplicated. The Cophenetic distance cannot be used as it is was previously defined.
First, the left model has two options for the depth of activity A. And more importantly,
when computing the LCA of A and C, the results depend on which copy of activity A
we chose. For instance, the LCA of A3 and C is the root, but the AND gateway w.r.t.
A*. Nevertheless, we can still approximate an upper bound similarity metric between
indeterministic process trees. In this section we present a technique that can still be
applicable when (some of) the input process trees are indeterministic.

Notice that two process trees 77 and 75 are equal if there exists a relabeling of
both process trees such that each new label replaces the same label in both models, the
resulting process trees are deterministic and their cophenetic distance is zero. Such a
relabeling could also be seen as a matching between the activity nodes of both process
trees. We could tackle the challenge of extending the Cophenetic distance by making
use of such a matching: instead of considering pairs of activities (uniquely represented
in a deterministic process tree), this similarity metric compares two pairs of matched
nodes. The aforementioned ambiguities among repetitions of an activity are removed
by considering these matches.
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Definition 7. Let w be a matching between the nodes of Ty and the nodes of Ts, we
define their matching Cophenetic distance over w as

dw, = Z Z loT, (11, 1) — @1, (32, J2)
(i1,i2) €Ew (j1,j2) €w

Notice that the nodes i1, i2, j1, jo in Definition 7 are not necessarily representing
activities in the model. Such a distance considers all nodes as labeled. The quality of
such a similarity metric depends on the quality of the matching w. On top of that, the
utility of the measurement decreases if activity labels are not preserved by the matching.

Seqi R Seq:
/\ ATMTAPB] C [And] Or [Seq[D AMTA®TB] C [And] Or [Seq[D /{\
A3 T2 [2]1]1]o A 2T 1 i AN
Anda Ory.o5 [A® 121 [1]o] [A® 5444 a]1]1]A2 D3 Andg
/[\ /\ B 31 (21 ]1]0 B S5|4al4]41 1] &
C 175 1 [425[ 1[0 C 575 4 525 1[1]
And 21 [1]0] [And L \
As As B: As B
3.8 Cars 0 125] 1 [0] [Or s S Ors.25 Bs
\\ AN Seq 1[0 Seq 11 ) h
NN (1) D 0 D 3

P
AN -~ ) Cers D
.

Fig. 7. Example of two indeterministic process trees and a matching Cophenetic distance (rep-
resented as a matrix) with respect to a certain node matching. All nodes are matched to their
respective nodes with the same label, except activities A (discontinued lines (1) and (2) depict
how they are paired) and activity D that does not have a representative node in the first tree.
Subscripts depict the depth of the nodes.

Figure 7 depicts an example of such a matching Cophenetic distance of the models
of Figure 6. From the set of all the possible matching, we choose to pair activities
with the same label and, for activities A and D, we considered the pairs depicted by
discontinued lines. Notice that activity D does not have a matched node in the first tree.
In the middle of the Figure, one can find the Cophenetic vectors of both process trees.
When considering Activity D, we treat this case as is if the activity does not exist in the
first model. This example shows how the matching Cophenetic distance is computed for
a specific node matching, but we could iterate over all matchings and get the minimum
value possible.

Definition 8. We define the minimum matching Cophenetic distance as

dmin W(Tl, Tg) = min dw<p (Tl, TQ)

where the matching w preserves activity’s labels.

Although the matching Cophenetic distance is a quadratic-time algorithm [5], once
we have chosen a particular matching w, it is still computationally infeasible to compute
this distance for each candidate w in the minimum matching Cophenetic distance. In a
practical scenario in which the size of the process trees made it impossible to test all
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possible matchings, one would be able to bound this ideal distance with an approximate
node matching. Although current matching algorithms [2, 11, 12] focus on preserving
the structure of the graph, they could be used to approximate this matching due to the
structural approach of the Cophenetic distance.

We have chosen the Flexible Tree Matching algorithm (FTM) [11] for estimating
the minimum matching Cophenetic distance with indeterministic process trees. The
FTM finds the minimum-cost matching that takes into account the cost of relabeling
a node, removing or adding a node, and breaking structural relations between nodes
(such as direct descendants and siblings). Notice the resemblance to the definition of
the Graph Edit Distance (GED): The cost of the matching resulting from FTM is an
approximation of the GED, but assessing also the cost of not having the same neighbors.
Tuning these costs allows us to focus on mapping nodes with the same activity (we set to
1, the maximum value, the cost of relabeling) and diminishes the relevance of structural
differences. The following proposition establishes also a complexity bound:

Proposition 1. The FTM needs at least O(M - N3 log N?) operations to approximate
the matching between two process trees T and Ts. Where M is the number of iterations
needed by the algorithm (i.e. the expected quality of the results) and N is the total
number of nodes in T and T».

Proof. The Flexible Tree Matching iterates M times over a randomly generated match-
ing, to retrieve the find the best possible matching. In each iteration, the algorithm
needs to recompute the N pair of matches. A weighted bipartite N2 graph is consid-
ered, where weights represent the cost of adding such a pair to the matching. To get the
best outcomes from this choice, the algorithm sort all the edges and randomly chooses
one of the costless edges. Hence, each iteration of the Flexible Tree Marching needs
O(N?3log N?) operations, plus the complexity of computing the cost of each pair of
nodes (which may involve traversing the whole matching depending on the implemen-
tation). O

In summary, extending the technique of this paper to indeterministic process trees re-
quires to first compute a matching and then compute the Cophenetic distance over this
matching. This comes with an increase of the complexity due to the need to compute
a matching, a step that dominates the complexity of the whole approach. In the next
section we evaluate the proposed method on various types of benchmarks.

6 Evaluation

We divided the evaluation of our similarity metric in three experiments: First we con-
sider a small set of synthetic process models to position our metric with respect to
already established comparison tools. Secondly we check that the results given by our
approach are consistent with two other metrics in a set of real process models. Finally,
we stress the Cophenetic distance with large process models to assess its scalability.

Qualitative Comparison. Figure 8 depicts eight models extracted from [3]. These mod-
els were used in [3] to evaluate different similarity metrics. All models are deterministic,
and share the same activity set except process model V5. Table 1 depicts the similarity
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given by the Cophenetic distance and state-of-the-art process models distances. In order
to compute the Cophenetic distance, all models have been represented as process trees.
Notice that the inclusive gateway of model V3 cannot be translated to a deterministic
process tree (because only exclusive ORs are accepted), but it was translated to an AND
gateway with all internal branches being completely optional. The Cophenetic distance
differentiates models V[ and V5, but considers Vjy more similar to V5 than V. Discrep-
ances shown in Table 1 highlights the lack of a clear definition of similarity. Overall,
the Cophenetic distance offers a different view for the comparison with respect to the
other metrics.
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Fig. 8. 8 process models extracted from [3]. Process models Vi, ..., V7 are variants from the
same process model V.

Vo compared to

Cophenetic Distance

Percentage of Common Nodes and Edges
Node- and Link-Based Similarity

Graph Edit Distance

Label Similarity and Graph Edit Distance
Number of High-Level Change Operations
Comparing PMs Represented as Trees
Comparing Dependency Graphs

Causal Behavioural Profiles

Event Structures

Longest Common Subsequence of Traces
Similarity Based on Traces

Table 1. Similarity of model V; to the rest of models from Figure 8 with respect to several
similarity metrics. Similar models are depicted by darker cells. Values were extracted from [3],
except for the Cophenetic and Event Structures [1].
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Correlation with two other metrics. We gathered 700 pairs of deterministic process
models from the SAP Reference Book [6] to compare our approach to two other es-
tablished process model similarity metrics in a real scenario. We have chosen the tradi-
tional graph edit distance as a representative of a structural comparison tool; and, for the
behavioural part, we have chosen the Event Structures technique [1]. Figure 9 depicts
the comparison of the three metrics. The X and Y coordinates of a point depicts the
distance given by two comparison tools, and the color represents the density of pairs in
such a situation. L.e., the less dark blue a point is, the more pairs of models satisfying
this relation. One can check, for instance, that most of the models differ at 10 units by
the behavioural technique and the graph edit distance. Histograms show that the mea-
surements given by the three metrics are correlated. It is not clear that the same factual
differences are measured by the three metrics, but the scores obtained are aligned with
the two other established metrics.
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Fig. 9. A set of two-dimensional histograms comparing the results of the three comparison tools
in the SAP dataset.

Scalability of the Cophenetic distance. We also study the differences in performance
over large process models. We considered 7 additional pairs of process models and run
the three comparison tools on each pair. The size of the processes, presence of concur-
rent blocks and loops varies among the models to test the applicability of the three tools.
Table 2 depicts the size of such models, and the time needed to measure the differences.
The Graph Edit Distance wins all the tests, the tree structure made this algorithm work
way faster than usual. The complexity of the other two tools increases significantly
with respect the number of activities, although the growth rate in the Cophenetic dis-
tance is considerably smaller. Notice the second pair of models, in which concurrency is
present, make the behavioural tool run out of memory. Besides, we decided to stop the
behavioural tool after 12 hours in all tested process models with more than 100 activ-
ities, even with deterministic process models in which the cophenetic distance showed
significantly smaller times. This analysis allow us to recommend the Cophenetic dis-
tance over other behavioural approaches to analyze big process models .

5 In all three cases, the Pearson correlation coefficient is above 0.85 with a p-value, for testing
non-correlation, below 10712,

" Remember that the scale of metrics d,,, drs and dgrp is different, a fact that explains the
differences on the absolute values provided in each one.

8 We discover these processes by analyzing the accesses of two developers to an internal source
code repository. Figure 1 depicts an example of a pair of such type of processes.
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Table 2. Time spend in computing the distance between a few selected process models. The table
shows the number of activities in each process model, the distance given by the Cophenetic metric
and the other two selected comparison tools, and the time used.

Size |Deterministic|Concurrency | Realistic dy, Time |dgs|Time (Event Structures)|dagp |Time (GED)
25 No No No 0 1.71s | O 1.63's 0 0.03 s
30 Yes Yes No 7250 | 0.005 s Run out of memory 40 0.009 s
50 No No No 3713 | 54.37s | 9 90.54 s 93 0.12s
60 No No Yes ® 190 |322.48s. > 12 hours 167 0.19s
100 No No No 16615 |467.23 s > 12 hours 184 0.42s
100 Yes No No 452299 | 0.57s > 12 hours 189 0.14s
200 Yes No No |2441571| 2.28s > 12 hours 371 0.53s

7 Conclusions and Future Work

In this paper we have adapted Cophenetic vectors from computational phylogenetics
area to be able to automatically compare process models. Previous techniques were bi-
nary classified as structural and behavioural techniques, but we have shown that such
a classification is indeed fuzzy. Albeit behavioural techniques are computationally de-
manding, the structural-but-behavioural intermediate approach we presented will allow
BPM experts to efficiently asses behavioural comparison between models.

Next steps would focus on extending behavioural differences from the difference
of Cophenetic values. There is also room to improve the utility and efficiency of the
comparison of indeterministic process trees. The presented approximated matching is
computed without taking into account the Cophenetic distance itself, but there might be
a better matching algorithm that exploits the properties of the Cophenetic values.
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