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Abstract 
Vibration monitoring plays a key role in the industrial machinery reliability since it allows 

enhancing the performance of the machinery under supervision through the detection of failure 
modes. Thus, vibration monitoring schemes that give information regarding future condition, that is, 
prognosis approaches, are of growing interest for the scientific and industrial communities. This work 
proposes a vibration signal prognosis methodology, applied to a rotating electromechanical system 
and its associated kinematic chain. The method combines the adaptability of neuro-fuzzy modeling 
with a signal decomposition strategy to model the patterns of the vibrations signal under different 
fault scenarios. The model tuning is performed by means of genetic algorithms along with a 
correlation-based interval selection procedure. The performance and effectiveness of the proposed 
method is validated experimentally with an electromechanical test bench containing a kinematic 
chain. The results of the study indicate the suitability of the method for vibration forecasting in 
complex electromechanical systems and their associated kinematic chains. 

Keywords: Condition Monitoring, Forecasting, Fuzzy Neural Networks, Machine Learning, 
Predictive models, Time Series analysis, Vibration analysis. 

1 Introduction 
Rotating machinery, like compressors, steam turbines, automotive, industrial fans, etc. is widely 

used in many industrial fields. Its reliability is an extensively investigated field, aimed to prolong 
their life span and minimize their maintenance cost. Maintenance programs try to avoid fatal 
breakdowns of machines, prevent production loss and human casualties. The early fault diagnosis is 
a challenging problem and has received more and more attention in recent years [1]. In order to reduce 
maintenance costs and maintain machine uptime at the highest possible level, maintenance should be 
carried out in a proactive way. That means a transformation of maintenance strategy from the 
traditional fail-and-fix practices (diagnostics) to a predict-and-prevent methodology (prognostics) [2]. 
The current and future health status of a machine, component or system has to be known in order to 
predict and prevent an eventual occurrence of a failure, enabling the achievement of near-zero 
downtime performance. 
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Vibration measurement is an effective, non-intrusive method to monitor machine condition during 
start-ups, shutdowns and normal operation [3]. Vibration analysis is used on rotating equipment to 
determine the operating and operation condition of the equipment. A major advantage is that vibration 
analysis can identify developing problems before they become too serious and cause unscheduled 
downtime. A majority of the mechanical faults such as defective bearings, mechanical looseness, 
worn or broken gears, misalignment and unbalance could be detected by vibration analysis. Vibration 
signals collected from this equipment during operation contain valuable information about the 
equipment condition. Great research effort has been carried out for the development of several 
algorithms for faults detection and diagnosis in rotating machinery based on vibration monitoring [4]. 
The most popular methods of rotating machine condition monitoring utilize the steady-state spectral 
components of the vibration signals. These spectral components of the vibration are used to diagnose 
faults of rotating machinery and the energy of vibration signals in the frequency domain, being the 
most commonly used method to evaluate the severity of a fault. 

Nevertheless, the vibration signal is often a complex signal which contains stationary, non-
stationary and noisy components. Therefore, the appropriate signal processing techniques have to be 
applied in order to compute numerical fault indicators or features [5]. Features are parameters derived 
from the measured data that robustly indicate the presence of faults in rotating machinery. The major 
feature-calculation methods are: time-domain methods, frequency-domain methods, and time-
frequency methods. Time domain methods such as peak amplitude, root-mean-square amplitude, 
crest factor, kurtosis and shock pulse counting have been successfully applied [6], [7]. Frequency 
domain methods include Fourier spectra time waveform, cepstrum analysis, and the spectral envelope 
technique [8], [9]. A comparative study of various feature-calculation methods in frequency domain, 
such as the fast Fourier transform (FFT) and spectral envelope; and in the time-frequency domain, 
such as the short time Fourier transform (STFT), Wigner Ville, and wavelet analysis, is presented in 
[10] and [11]. 

Clearly, the opportunity to conduct forecasting based on vibrations presents multiple benefits: (i) 
correct deviations before it affects the correct behavior of the system, (ii) anticipate the response 
towards failures, and (iii) assist the diagnosis algorithm in order to assess the future condition of the 
system [12], [13]. Unfortunately, little work has been done in the area with vibration forecasting and 
there is a lack of methodology to perform such approaches [14]. The modeling of the vibration as a 
physical magnitude is a complex process; furthermore, vibration in electromechanical systems is 
affected by several factors such as multiple emission sources, mechanical properties, operation 
condition, etc. However, the modeling of numerical features that characterize the vibration is a more 
affordable problem, since raw data presents redundant or non-important information from the electro-
mechanical components degradation point of view. This is the case when time domain features such 
as the Root Mean Squared value (RMS) or Kurtosis offer a more reliable view of the machine 
condition [15]. As a result, the temporal modeling of features extracted from the vibration signal is a 
matter of interest for many researchers. Therefore, the utility of a vibration’s feature forecasting 
model relays on the early detection of deviations from the correct behavior as early as the model 
output is extended in the future. The optimal scenario of such approaches is the modeling of the RMS 
value of the vibrations during the start-up operation of the machine till it reaches the thermal stability 
in order to indicate the abnormal behaviors as soon as possible to minimize the damage of operating 
under failure conditions.  

Consequently, the forecasting of such vibration feature signals can be approached from the time 
series modeling point of view. Current modeling and forecasting techniques can be categorized into 
three classes, namely model-based, data-driven and hybrid prognostics approaches [16]. Model-based 
techniques describe the future evolution of the system based on the mathematical equations that 
describe its physical properties [17]. Data-driven techniques take advantage of the past records to 
learn the system behavior and conduct the predictions. Hybrid techniques are a combination of model-
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based and data-driven techniques [18]. In this regard, Adaptive Neuro Fuzzy Inference Systems 
(ANFIS) represents a hybrid data-driven forecasting method that fuses the parametric adaptability of 
ANN, and the generalization capabilities of the fuzzy logic. ANFIS offers a reliable and robust 
condition predictor, since it can capture the system dynamic behavior quickly and accurately [19]. 

When facing vibration forecasting, the problem is how to decide for a given an application the 
optimal forecasting horizon and the configuration of the models. In this regard, vibration signals 
usually present a faster or at least equal dynamics in comparison with other magnitudes inherent to 
an electromechanical system, such as voltage, electric current and temperature. Due to this fact, the 
modeling problem should be approached as a time-series forecasting [20]. It is necessary to emphasize 
that the result of a forecasting method is critically associated to the forecasting horizon used to train 
and validate the models. In many applications, the forecasting horizon is usually fixed by application 
requirements, or modeling limitations [21]. Yet, the procedure to select the best horizon for a given 
application is not well established in the literature. For this reason, this paper proposes to perform a 
study relating the selected forecasting horizon and the prediction error once the application is defined. 
In this regard, three open issues can be found in literature: (i) the decision of the optimal prediction 
horizon, (ii) the configuration of the models in terms of number of inputs and past values to be 
considered, and (iii) the decomposition of the signal in different details in order to increase accuracy. 

In this paper, the authors propose a study in order to optimize these three open issues to obtain a 
methodology for modeling the RMS of the vibrations from an electromechanical system and its 
associated kinematic chain. Therefore, the contributions of this work include a novel vibration 
forecasting method that utilizes the theory behind vibration signature under electromechanical 
failures to decompose the vibration signal in three frequency bands related to the vibration signature 
to enhance the forecasting accuracy and adaptability towards different dynamic contents. Then, the 
core of the methodology is based in the generation of three collaborative ANFIS models that are in 
charge of forecasting the evolution of specific spectral content of the vibration signal. The 
configuration of the model is optimized one step beyond the literature by analyzing cross-correlations 
between the signal and past instants, which are selected by using Genetic Algorithm (GA) 
optimization, to find the best input configuration. Complementary, the paper includes a systematic 
study of the forecasting horizon affectation of the model configuration step, in order to establish a 
valid method for selecting the best forecasting horizon in regard a proposed application. Finally, the 
proposed method is validated experimentally by means of vibration data extracted from a complex 
kinematic chain working under different failure conditions.  

The paper is structured as follows: section 2 introduces the theoretical aspects of the vibration in 
rotating machinery, and the theory behind ANFIS for time series forecasting. In Section 3, the basis 
of the proposed method is explained. Section 4 presents the verification of the method capabilities 
with experimental results of vibration data extracted from a kinematic chain. Conclusions are 
presented in section 5. 

2 Theoretical Background 

2.1 Vibration analysis in rotating machinery 
The classical vibration condition monitoring schemes, focused on mechanical and electrical 

defects, are based on the consideration of specific vibrational frequency components [22]. The 
spectral analysis of the vibration signature, either in the motor case, an external bearing house, or in 
any specific component, allows the evaluation of characteristics fault frequencies related with cyclic 
single-point defects. For instance, in bearing failures, the fault frequencies presented in the vibration 
spectrum are related to the bearing design geometry, and follow the well-known equations showed in 
[23]. Vibration analysis is also applied to diagnose the degradation of rotor bars in induction motors. 
The failure here is presented in a form of a partially or completely crack in the section of the bar. 
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Such bars may break because of manufacturing defects, frequent starts at rated voltage, thermal 
stresses, and/or mechanical stress caused by bearing faults and metal fatigue. Furthermore, the 
diagnosis of the broken rotor bar is performed by calculating specific spectral indexes [24]. 

Nevertheless, these characteristic frequencies of the vibration modes, apart from possible electrical 
and mechanical noise during the acquisition, are affected by the specific structure of the considered 
system (i.e. the kinematic chain), and the component deterioration stage. Indeed, the intensity of the 
impact produced between raceways and rolling elements, under a bearing defect, is attenuated 
throughout the propagation from the generation point to the transducer location. Therefore, the 
vibration measurement is done, generally, as close as possible to the mechanical element under test. 
Yet, although favoring the measurement of bearing faults vibration effects, the resulting spectrum 
contains additional vibration modes produced by the rest of the mechanical interactions. These 
additional vibration frequencies mask or complicate the comprehension of the signal. 

The detection of one of the characteristic fault frequencies in the resulting spectrum should be 
interpreted as an existence of the corresponding fault in the component. However, the absence of 
clear characteristic fault frequencies should not be interpreted as a completely healthy condition. In 
this regard, a more general approach to the monitoring of the electromechanical components can be 
found in the literature as a four-stage process [25]. These four stages are related with the apparition 
of failure effects in some of the four zones in which the vibration spectrum is divided for 
electromechanical failure detection. A graphical example of the frequency spectrum of the vibration 
signal versus the different spectral zones in which electromechanical failures occur is presented in 
Fig. 1. The frequency band Z1 is related to electromechanical failures, eventually in an advanced 
degradation stage or presenting high severity, which affects or is related to the rotational speed of the 
machine. This kind of failures appears in Z1 as sidebands of the fundamental frequency. Z2 is related 
to the regular degradation such as gears or bearings. Indeed, Z2 is the frequency band in which the 
characteristic bearing faulty frequencies are located. Z3 corresponds to a high frequency band in which 
early or incipient degradation occurs. The failure detection in this area is generally done by means of 
feature bases characterization, since the failure pattern is not as specific as the characteristic ones in 
the low frequency bands. Z4 covers the very-high frequency part of the spectrum. This area is related 
to the premature degradation of any electric or mechanical component. Nevertheless, it is also very 
close to the electrical noise inherent in every electromechanical system. Due to this fact, the patterns 
in this area are very chaotic and are rarely considered for regular diagnosis purposes. 

 
Fig. 1 Main frequency zones in mechanical degradation. 

As a conclusion, the first three spectral zones are of major interest from the diagnosis and the 
vibration monitoring point of view. The forecasting method is intended to take advantage from this 
spectral decomposition in order to isolate each frequency band and gain forecasting performance by 
modeling each band, from Z1 to Z3, with a dedicated ANFIS model. It should be noticed that Z4 is 
discarded for forecasting purposes since the noisy and random patterns make the model very complex 
in regard with the vibration information provided by this frequency region. 
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2.2 Adaptive Neuro-Fuzzy Inference System 
There are different techniques to design forecasting models. Yet, the primarily used schemes are 

frequently based on the concept of hybrid forecasting; which means that the method integrates 
different techniques in order to take advantages of each one involved. In this topic, one of the most 
important hybrid system is ANFIS [26]. This method fuses the parametric adaptability of artificial 
neural-networks, and the generalization capabilities of the fuzzy logic. ANFIS based prognostic 
systems offers a reliable and robust condition predictor, since it can capture the system dynamic 
behavior quickly and accurately [27]. 

The neural-fuzzy architecture can be divided in five different layers, as shown in Fig. 2. For the 
specific architecture shown in this figure, the method aims to find a relationship between the output 
signal, z, and a set of different input signals, x and y, by means of the activation of different 
polynomials regarding the fuzzification of the input signals by means of the membership functions, 
A1, A2, B1, and B2. The output is computed regarding the pertinence of the inputs and the two if-then 
rules as defined in (Eq. 1).  

 
Fig. 2 Adaptive Network-based Fuzzy Inference System scheme with two inputs, four membership functions, two rules and 

one single output. 

The input layer, L1, is in charge of addressing the input signals to a node. Each node, g, of each 
layer, j, is an adaptive node with an output function, 𝑂𝑂𝑔𝑔

𝑗𝑗, defined in (Eq. 2), where 𝜇𝜇𝐴𝐴𝑔𝑔 and 𝜇𝜇𝐵𝐵𝑔𝑔−2 
represent the membership degree of the respective input in regard with the membership functions. In 
the fuzzification layer, L2, the weight of each rule is computed by means of a fuzzy AND operation 
that multiplies the input signals. The outputs of this layer, Wg, represent the activation variables of a 
fuzzy rule (Eq. 3). The fuzzy rules definition layer, L3, provides the antecedent consequence 
statements of fuzzy logic. Each node calculates the reason between the g-th activation variable, and 
the sum of all the activation variables (Eq. 4). The outputs of this layer are called normalized 
activation variables, 𝑊𝑊�𝑔𝑔. In the defuzzification layer, L4, each node computes the contribution of the 
g-th fuzzy rule over all the outputs (Eq. 5). It should be noticed that pg, qg and rg are the polynomial 
coefficients that would be estimated during the learning phase of the algorithm. The outputs of each 
node are named consequents. The nodes of the output layer, L5, calculate the output signal, z, as the 
summation of all the input signals (Eq. 6). 

Rule 1: if 𝑥𝑥 ∈ A1 ∪ y ∈ 𝐵𝐵1 →   𝑧𝑧1 = 𝑝𝑝1𝑥𝑥 + 𝑞𝑞1𝑦𝑦 + 𝑟𝑟1 
Rule 2: if 𝑥𝑥 ∈ A2 ∪ y ∈ 𝐵𝐵2 →   𝑧𝑧2 = 𝑝𝑝2𝑥𝑥 + 𝑞𝑞2𝑦𝑦 + 𝑟𝑟2 (1) 

𝑂𝑂𝑔𝑔1 =  𝜇𝜇𝐴𝐴𝑔𝑔(𝑥𝑥) , g = 1,2    𝑂𝑂𝑔𝑔1 =  𝜇𝜇𝐵𝐵𝑔𝑔−2(𝑦𝑦) , 𝑔𝑔 = 3,4 (2) 

𝑂𝑂𝑔𝑔2 = 𝑊𝑊𝑔𝑔 =  𝜇𝜇𝐴𝐴𝑔𝑔(𝑥𝑥) · 𝜇𝜇𝐵𝐵𝑔𝑔+2(𝑦𝑦),         g = 1,2 (3) 

𝑂𝑂𝑔𝑔3 = 𝑊𝑊�𝑔𝑔 =
𝑤𝑤𝑔𝑔

𝑤𝑤1 + 𝑤𝑤2
,         𝑔𝑔 = 1,2 (4) 
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𝑂𝑂𝑔𝑔4 = 𝑊𝑊𝑔𝑔���� · 𝑧𝑧𝑔𝑔 = 𝑊𝑊𝑔𝑔���� · �𝑝𝑝𝑔𝑔𝑥𝑥 + 𝑞𝑞𝑔𝑔𝑦𝑦 + 𝑟𝑟𝑔𝑔�, 𝑔𝑔 = 1,2 (5) 

𝑂𝑂𝑔𝑔5 = z = � 𝑊𝑊𝑔𝑔���� · 𝑧𝑧𝑔𝑔
𝑔𝑔

=
∑ W𝑔𝑔 · 𝑧𝑧𝑔𝑔𝑔𝑔

∑ 𝑊𝑊𝑔𝑔𝑔𝑔
 (6) 

The ANFIS structure allows the consideration of a data-driven modeling approach with adaptive 
rule changing capability, fast convergence rate, and does not require extensive experiences about the 
process to include such patterns in the fuzzy rules. 

3 Methodology 
The objective of the proposed method is to model and forecast the evolution curve of the 

vibration’s RMS signal during the start-up and the thermal stabilization of an electromechanical 
actuator. The main point is to obtain a forecasting model of the RMS capable of giving the future 
value with enough resolution taking into consideration the dynamics of different failures occurring to 
the system. After the output of the method, the presence of the failure can be anticipated by knowing 
the future value of the RMS and a simply statistical characterization as a diagnosis method. 

Therefore, the challenge is to develop a vibration model with enough performance, in terms of 
forecasted signal error and forecasting horizon that considers the dynamics modes generated by 
different faulty scenarios of different elements of the electromechanical actuator. The general block 
diagram of the method is shown in Fig. 3, including the training procedure, and the on-line operation. 
The main limitation in the modeling of complex signals is that a unique forecasting model is not able 
to capture all the particular dynamics that different fault scenarios may cause. In this regard, the 
method uses a decomposition of the vibration signal in the three frequency bands in order to provide 
resolution and generalization towards multiple failure scenarios by improving the response towards 
their specific spectral components dynamics. Then, the previous pre-filtering stage and the RMS 
calculation is the author’s contribution in order to increase of the model resolution by limiting the 
amount of dynamics that each ANFIS model should face to.  

 
Fig. 3 Block diagram of the proposed method. 

3.1 Training Procedure 
The training procedure corresponds to the off-line learning process in order to: (i) tuning of the 

structure of the forecasting models, (ii) analysis of the optimum inputs delays and, (iii) identification 
of the longest forecasting horizon. 
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The first step, Step1, aims to decompose the vibration signal, y(t), with a length L, in three different 
details that are modeled with a specific ANFIS. This decomposition is made with Finite Impulse 
Response (FIR) digital filters, the cutting frequencies follows theoretical considerations of 
mechanical fault appearance explained in section 2.1. Then, the output signal of a certain filter Zi is 
considered to be yzi(t). Three FIR filters are defined:  

• First filter, band Z1, is defined as a low pass filter and covers the low frequency band of 
the spectrum. This filter isolates those frequencies related with the rotating mechanical 
frequencies and first harmonics. 

• Second filter, band Z2, is defined as a bandpass filter covering the middle frequency band. 
This band is related with different mechanical degradations such as bearing defects. This 
filter isolates those components in order to gain forecasting resolution in these kinds of 
failures.  

• Third filter, band Z3, is a bandpass that covers the rest of the frequencies till the Nyquist 
frequency. It is designed to model high frequency modes that appear in the vibration signal 
under incipient failure scenarios. 

The next step, Step 2, deals with the calculation of the energy as a windowed Root Mean Squared 
(RMS) value for each of the three resulting filtered signals. As the method is intended to be used on-
line, this calculation is made as shown in Eq. (7), that is, by means of a sliding window, h(t), with a 
defined width, wh and an overlapping factor, ovRMS. Note that overlapping is defined to smooth the 
response of the filter versus new signals. Therefore, the signals to be modeled to forecast the vibration 
of the system are the obtained RMS of each filter, EZi. Note that the temporal duration of wh is 
configured to be short in comparison with the high dynamics of the signal. For this reason the obtained 
RMS should be considered as a signal giving information of the instantaneous variation of the 
vibration RMS instead of a static feature. Due to this fact, the resulting RMS presents a characteristic 
and quantifiable dynamics that can be analyzed. 

EZi(𝑡𝑡) = �
1
𝑤𝑤ℎ

·  � �𝑦𝑦𝑧𝑧𝑧𝑧(𝑡𝑡) · ℎ(𝑡𝑡)�2𝐿𝐿

𝑡𝑡=1
 (7) 

Previous to the model generation, the identification of the best past intervals to enhance the 
forecasting performance is proposed as Step 3. The optimization process gets simply as the search 
space is being bounded. The interval selection is made by calculating the correlation of the objective 
signal, EZi (t+p), with successive delays of the same signal, EZi (t-n), where 𝑛𝑛 ∈ [0, 10𝑝𝑝].  

The resulting correlation coefficient is obtained by Eq. (8), and represents a measure of statistical 
similitude between y(t) and its successive delays represented by n. The evolution of this coefficient 
as n increases shows signal oscillation modes and periodicities in which the target signal and their 
delays are significant correlated. Then, the interval is selected by setting a correlation threshold, Cth, 
and selecting those intervals with the highest accumulated correlation.  

Ccoef (n) =
𝑐𝑐𝑐𝑐𝑐𝑐 �𝐸𝐸𝑧𝑧𝑧𝑧 (𝑡𝑡 − 𝑛𝑛),𝐸𝐸𝑧𝑧𝑧𝑧 (𝑡𝑡+ 𝑝𝑝)�

σ �𝐸𝐸𝑧𝑧𝑧𝑧 (𝑡𝑡 − 𝑛𝑛)� · σ �𝐸𝐸𝑧𝑧𝑧𝑧 (𝑡𝑡+ 𝑝𝑝)�
  𝑓𝑓𝑐𝑐𝑟𝑟 𝑛𝑛 = 0 … 10𝑝𝑝 (8) 

It is common to find modeling situations, especially with vibration signals, in which it is necessary 
to deal with different training sets or operating conditions. In these situations, the search of the optimal 
intervals turns into an iterative process that tries to localize those intervals with a consistent 
correlation, and once identified, select the maximum common range that accumulates the highest 
correlation. 
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The following step, Step 4, consists on the generation and the training of the ANFIS-based models 
to predict the energy of each filter output, being respectively MZ1, MZ2 and MZ3. The structure of the 
models is fixed , and corresponds to: (i) the current value of the energy in the i-th filter, EZi (t) , (ii) a 
past value of the energy in the i-th filter delayed n1 samples, EZi (t-n1) and (iii), another past value of 
the RMS in the i-th filter delayed n2 samples, EZi (t-n2). The three inputs combined with the ANFIS 
model give the predicted vibration energy E (t+p) as shown in Eq. (9). 

𝐸𝐸 (𝑡𝑡 + 𝑝𝑝) = �ANFIS𝑍𝑍𝑍𝑍�𝐸𝐸𝑍𝑍𝑧𝑧(𝑡𝑡),𝐸𝐸𝑍𝑍𝑧𝑧(𝑡𝑡 − 𝑛𝑛1),𝐸𝐸𝑍𝑍𝑧𝑧(𝑡𝑡 − 𝑛𝑛2)�
3

𝑍𝑍=1

 (9) 

Although each model presents the same quantity of inputs, the delayed samples n1 and n2 could be 
different for each filter depending on the optimization results. The identified correlation intervals are 
here introduced as boundaries for the Genetic Algorithm (GA). The cost function of the optimization 
procedure is defined as the Root Mean Squared Error (RMSE) of the forecasting model that can be 
seen in Eq. (10). The three models are trained independently with all the available information 
regarding the different operating conditions and failure scenarios. Ultimately, in Step 5 the final 
forecasting outcome of the vibration is obtained by means of the direct combination of three filters 
models outputs.  

In order to evaluate the performance of the models, classical statistical metrics have been used, 
that are RMSE defined in Eq. (10), Mean Absolute Error (MAE) in Eq. (11) and Mean Absolute 
Percentage Error MAPE in Eq. (12). These metrics have been widely used and accepted from the 
research community as indicated in [28] or [29]. RMSE is one of the most used performance metrics 
for the development of forecasting models; it is a measure of the standard deviation of the differences 
between predicted values and observed values. It is useful in order to analyse the global behaviour of 
the model, but it is very sensitive to the amplitude. In this regard the MAE error is used to evaluate 
the forecast since it is less sensitive to outliers. Finally, the MAPE error helps to determine the mean 
deviation of each sample normalized by the amplitude, so it helps to unify the scale and can be used 
to compare the errors of signals with different levels of amplitudes. 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 =  �
∑ �𝐸𝐸(t) − 𝐸𝐸�(𝑡𝑡)�2𝐿𝐿
𝑡𝑡=1

𝐿𝐿
 (10) 

𝑅𝑅𝑀𝑀𝐸𝐸 =  �
∑ ��𝐸𝐸(t) − 𝐸𝐸�(t)��𝐿𝐿
𝑡𝑡=1

𝐿𝐿
 (11) 

𝑅𝑅𝑀𝑀𝑀𝑀𝐸𝐸 =

∑ �
�𝐸𝐸(𝑡𝑡) − 𝐸𝐸�  (t)�

𝐸𝐸(t) �𝐿𝐿
𝑡𝑡=1

𝐿𝐿 
· 100% 

(12) 

3.2 On-line Behavior 
One of the primary characteristics of the proposed method is that it is prepared to work 

continuously online, that is, receiving new data from the machine as shown in Fig. 3. Therefore, after 
the training procedure of the method, vibration signal is acquired periodically from the machine under 
study. Then, the signal is filtered with the defined three digital filters and the corresponding RMS 
values are calculated. As the structure of the models and the best past inputs are already defined, the 
trained models are used to project the three energies among the specified p. Finally, the output of the 
three models is combined giving with it the new forecasted value of the vibration energy. 
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4 Experimental Results 
The test bench used to obtain experimental vibrations is shown in Fig. 4. This test bench consists 

on a kinematic chain composed by a three phase 1492 W induction motor, WEG 00236ET3E145T-
W22, which speed is controlled by a variable frequency drive-VFD, WEG CFW08, the operating 
speed is fixed to 60 Hz for all experiments. A 4:1 ratio gearbox, BALDOR GCF4X01AA, is used to 
couple the drive motor to a DC generator, BALDOR CDP3604. The DC motor is used as a non-
controlled mechanical load that comprises around 20% of the nominal torque of the driving motor. 
The DAS is a proprietary low-cost design based on field programmable gate array technology. The 
output rotational speed is obtained by using a digital encoder; the motor start-up is controlled by a 
relay in order to automatize the test run. A 12-bit 4-channel serial-output sampling analog-to-digital 
converter, ADS7841, is used in the on-board data acquisition system (DAS). 

Vibration signal from the perpendicular plane of the motor axis is acquired using a tri-axial 
accelerometer, LIS3L02AS4, mounted on a board with the signal conditioning and anti-aliasing 
filtering. Sampling frequency is set to 3 kHz for vibration acquisition. The data retrieved by the DAS 
is stored in a regular computer (PC). 

 
Fig. 4 Electromechanical test bench used for experimental validation of the method. 

Four scenarios have been considered, that is, the healthy condition, HC, a bearing defect condition, 
BF, a half broken rotor bar condition, HBRB, and full broken rotor bar, FBRB. The detail of the 
failures is shown in Fig. 5. The failure in a 6205-2ZNR bearing has been induced by means of a hole 
of 1.191 mm ∅ in the outer race; the hole has been produced by a tungsten drill bit. HBRB failure 
is artificially produced by drilling a 6 mm ∅ hole with a depth of 3 mm that corresponds mostly to 
the 22% of the section of the rotor bar. Finally, FBRB is produced by a through-hole with a diameter 
of 6 mm ∅ and a depth of 14 mm, which corresponds to the complete section of the rotor bar.  

Two different datasets with the same length have been acquired; the first one is used to train the 
proposed method, and the second dataset is used to validate the performance of the method. In this 
regard, periodical acquisitions of 30 seconds containing 90 ksamples are obtained from the 
accelerometer; the acquisitions are temporally spaced 30 seconds. The average duration of the 
experiments for all operating conditions is configured to be 3600 seconds. 
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A) B) C) 

Fig. 5 Detail of the failures produced in the test bench. A) Corresponds to the bearing failure, BF. B) Corresponds to the 
½ broken rotor bar, HBRB, and C) to 1 broken rotor bar, FBRB. 

The selected duration allows obtaining the complete response of the vibrations in regard with the 
thermal stability of the electromechanical system. This is done in order to consider the thermal 
evolution of the vibrations as a part of the system and facilitate the representation of the failure. The 
proposed approach brings the experimental validation closer to the real behavior of complex industrial 
machinery, in which the behavior of the vibration presents a non-constant dynamic from the starting 
point till its steady state. As a result, the modeling of the vibration considering the thermal evolution 
represents an additional challenge to the validation of the proposed method. Furthermore, Fig. 6 
shows the behavior of the vibration in healthy condition, HC, in regard with the temperature of the 
motor from the starting point till the end of the experiment; note that the thermal steady state is 
reached. 

 
Fig. 6 Evolution of the acceleration signal versus the motor temperature  

As can be appreciated in Fig. 6, the raw signal of the acceleration gives no important information 
regarding the condition of the system since it is difficult to detect underlying patterns such as the 
affectation of the thermal stabilization, since it is modulated in the oscillatory waveform of the 
vibration. For this reason, the necessity of calculating a statistical feature representative of the 
condition of the system is justified after the pre-processing stage.  

The vibration signal filtering and the corresponding windowed RMS calculation is carried out by 
means of FIR filters and considering the rotating speed, the sampling frequency and, also, the 
theoretical background in regard with mechanical failures. As a result, the cut-off frequencies of the 
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filters in order to isolate the three primarily frequency bands, Z1, Z2 and Z3, are shown in Table 1. The 
attenuation is fixed to get -60 dB in the cutting frequency. It should be noticed that, as it was expected, 
the order of the filter decreases with the bands since the bandwidth of each filter increases. 
Table 1. Design characteristics of the three digital filters used to decompose the vibration signal. Calculations made for a 

sampling frequency of 3 kHz. 

Filter Cut-off frequency 1 Cut-off frequency 2 Order 

FZ1 0 Hz 120 Hz 248 

FZ2 120 Hz 350 Hz 136 

FZ3 350 Hz 1000 Hz 120 

Finally, the RMS feature is calculated for each filter output; the results are 3 RMS signals that 
summarize the information regarding the vibration of the electromechanical actuator under a concrete 
failure condition, and are the target signals to be modeled. For this experimental application, the 
temporal windows is configured to be wh = 3000 samples, that corresponds to a window of 1 second 
of actuator operation, and an overlapping factor of ovRMS =25% is selected to smooth the filter 
response. The resulting signals to be predicted are shown in Fig. 7 for all considered failures. It can 
be appreciated how the faulty signal corresponding to a bearing fault is mostly located as it was 
expected in the second filter, Z2, from 100 to 500 Hz. The figure justifies the decomposition of the 
signal since different spectral behavior can be observed in each filter output with the presence of 
failure. This means that each specific failure focus its affectation to a certain frequency band, 
conclusion that matches with the theoretical considerations exposed previously. The next step in the 
method deals with the design and the generation of the optimal dedicated ANFIS forecasting model 
for each filter output. 

 

Fig. 7. RMS of each filter output for all operating conditions: A) HS, B) BF, C) FBRB, D) HBRB. 
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Finally, to understand the fundamentals of the method, Fig. 8 shows the characteristic RMS signature 
of each faulty condition. It demonstrates how the calculated RMS provides the necessary information 
to distinguish the different failures presented in the system during the thermal stabilization of the 
actuator. It also justifies the suitability of modeling the RMS of the vibration signal for forecasting 
and diagnosis purposes. It should be remarked that these RMS are the target signals to be obtained by 
the models among the defined forecasting horizon p, the final result of the proposed method. 

 
Fig.8 RMS of the vibration signal during the thermal stabilization period. Note that the different failures can be identified 

during this period, and as it was expected, the BF case shows the highest vibration.  

4.1 Study of Forecasting horizon Selection 
The selection of the forecasting horizon is a crucial step that has been considered to be studied. 

Most of the related literature selects the forecasting horizon simply by application requirements. Yet, 
the behavior if the signal to be forecasted and, consequently, its limitations, must be analyzed, and 
such procedure is not established. It is proposed, then, in this work, to select the optimal horizon by 
analyzing the performances of the method at different horizon values. 

The proposed analysis interval comprises from p=1 samples, 1 sec., to p=600 samples with an 
increase ratio of Pinc=5. Once the evaluation range is established, the proposed models are trained 
and evaluated iteratively for all the specified horizons. The forecasted outcome of the three models is 
evaluated by the proposed performance metrics considering the four operating conditions. As a result, 
the mean performance of all operating conditions in regard with the metric used and the evaluated 
model is shown in Fig. 9. Nevertheless, the error of the model depends on the performance of the 
optimization algorithm used to select the best past inputs, for this reason, a smoothed response of the 
error has been generated in order to estimate the average expected error with the selected horizon. 

The general results show that, as it was expected in time-series forecasting applications in which 
the forecasted signal does not present a periodic pattern, the lowest error can be found in the initial 
area that comprises p = [1-50]. Then, the error increases for all the models, especially the model of 
the first frequency band; that exhibits a linear behavior by increasing gradually with the forecasting 
horizon. However, for the model of the second and third frequency bands, there is a second decay of 
error growth around p=200. This area also represents a low error region that can be utilized to develop 
the forecasting models, and thus, p=200 is selected for the current application.  

As specific conclusions, it should be noticed that low frequency dynamics are easier to be modeled 
independently of the selected forecasting horizon, since their represent the tendency of the vibration, 
and thus they suffer slower changes among time. It should be observed how error increases in the 
higher frequency bands, since fast dynamics are more punctual and closely related to adjacent samples 
of the current vibration value.  



13 
 

 A) B) C) 

R
M

S 
of

 F
Z1

 

   

R
M

S 
of

 F
Z2

 

   

R
M

S 
of

 F
Z3

 

   
Fig. 9 Study of the affectation of the forecasting horizon to the forecasting performance. 

4.2 Competency of the Method 
The proposed method begins once the forecasting horizon is selected and the RMS of the three 

filter outputs is calculated. The structure of the three models, MZ1, MZ2 and MZ3, is fixed by a single 
output, EZi (t+p), and three inputs (i) EZi (t), (ii) EZi (t-n1i).and (iii) EZi (t-n2i).  

At this point, the problem derives to the selection of the best past values, n1i and n2i, for each 
frequency band. To do so, a generic GA based optimization algorithm has been used. Yet, in order to 
increase the effectiveness of the optimization and reduce the associated computational cost in terms 
of search iterations, the method proposes a prior past index interval finding step. The correlation 
coefficient, Eq. (13), has been calculated for each filter considering the average correlation between 
all the considered scenarios.  

Due to the fast dynamics of the acquired vibration signal, the delayed signals of more than 20 
acquisitions are considered to be non-significant for the application; therefore, the total number of 
delayed signals is set to 600. The amount of necessary correlation to consider a strong relation 
between the signal and a self-delayed is not defined. Thus, the experimental results shows that useful 
intervals are considered with a correlation threshold above 40% (Cth >0.4). Additionally, in order to 
avoid finding empty intervals in which only few index are found, intervals with a length lower than 
5 indexes are discarded. The interval that accumulates the highest Cth value is selected as the upper 
and lower values constrains of the optimization algorithm. Fig. 10 shows the average correlation 
coefficient for the experimental set-up.  
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A) 

  
B) 

 
C) 

 
Fig. 10 Correlation coefficient for each target RMS. A) Corresponds to the correlation in the first band, RMSZ1, B) to RMSZ2, 
and C) to RMSZ3. 

The correlation of the target signal in Z1 shows a quick drop in the correlation coefficient in the 
first 20 delays, this behavior is characteristic of vibration forecasting applications, such as the used 
test bench, since the dependence of the target signal with the correlative delays is high. The coefficient 
decrease continues until delay 200, in which there is a zone between till 400 seconds that the 
correlation increases moderately. This coefficient increase is due to a certain similarity that can be 
found in the signal. This interval can be exploded by the GA algorithm in order to find the best index 
for MZ1.  This fact confirms the previous selection of the forecasting horizon for Z1 since the 
correlation increases in the same area that the selected horizon does.  

The correlation of Z2 presents a smoother decrease of the coefficient as the delay time increases. 
Moreover, it presents some oscillations as the delay increases; this resonance corresponds to signal 
periodicities that are characteristic of the dynamics of the signal. These periodicities can be used to 
enhance the forecasting capabilities of the model, since the past signals introduced are more correlated 
to the target signal. In this regard, the selected in MZ2 to exploit this periodicities is set IZ2 = [200 350] 
seconds. Note that another time, the periodicity also matches with the selected horizon extracted from 
the proposed method error analysis. Additionally, notice that the correlation in the second band is the 
highest in regard with the others. This happens because the fundamental harmonic of the operating 
speed is allocated primarily in the second band, and therefore, it presents a soft dynamic easier to be 
modeled.  

Finally, Z3 exhibits a lower correlation coefficient for the entire analyzed interval. This behavior 
is expected since it corresponds to the highest frequency band. In vibration forecasting, the high 
frequency band is closely related with noise while the system is working in proper condition, but it is 
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modified with the apparition of incipient failures. This behavior near to the noise makes the signal 
chaotic and only dependent to adjacent past values; this causes the coefficient to drop quickly as the 
delay increases. Even tough, there is an upswing of the value in the interval of IZ2 = [200 350] that 
could be taken advantage of for MZ3. 

In the proposed ANFIS modeling structure, each input is normalized with the min-max method in 
order to obtain a range from 0 to 1. The inputs are fuzzified by means of three generalized bell-shaped 
membership functions. The model is trained for 15 epochs by means of the classical hybrid learning 
algorithm, which is the combination of the least-squares method and the backpropagation gradient 
descent method. The resulting past value indexes after 20 generations of the GA are shown in Table 2. 
Note that the indexes are referenced to the absolute delay; to get the relative indexes p value must be 
subtracted.  

Table 2 Selected past index as a result from the constrained GA based optimization. 

 n1 n2 
MZ1 217 389 
MZ2 285 397 
MZ3 247 348 

As a result, the forecasting models have been trained and validated using the validation set. The 
performance of the model for all operating conditions is quantitative analyzed by means of RMSE, 
MAE and MAPE coefficients, shown in Table 3.  
Table 3. Error achieved by the model with the four different sets used in the experimental validation. E1 corresponds to 
RMSE, E2 to MAPE and E3 to MAE. 
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 E1 0.014 
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E3 0.105 

M
ea

n E1 0.016 
E2 2.5981% 
E3 0.111 
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 E1 0.007 
E2 1.212% 
E3 0.075 
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 E1 0.005 
E2 0.784% 
E3 0.065 
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 E1 0.005 
E2 0.745% 
E3 0.063 
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 E1 0.007 
E2 1.002% 
E3 0.073 

M
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n E1 0.006 
E2 0.936% 
E3 0.069 

 

The modeling of each frequency band vibration presents remarkable results for all operating 
conditions, as it achieves a MAPE error lower than 5% in all operating conditions. Nevertheless, the 
healthy condition presents a dynamic that is more difficult to model in comparison with the others. 
The behavior of the vibration in healthy condition presents a steady pattern since there is an absence 
of a strong signature related to the failure such as the BF case. This healthy pattern should seem a 
priori easier to be modeled; however, as the model is being forced to learn different dynamics, it 
dedicates more efforts to those datasets that are similar to each other.  
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As a consequence, the healthy state presents a different dynamic in regard with the faulty scenarios 
and therefore the modeling error slightly increases, around 2% of error increase in terms of MAPE. 
The learning ability of the model is finite, thus, there should be a trade of between the number of 
different dynamics that the model needs to consider and the performance achieved by the model 
versus a single set. Furthermore, regarding the models, the best performance is achieved by MZ3, since 
it presents the lowest RMSE for all datasets. This means that the model does not present outliers and 
the forecasted outcome follows the target signal in its mean value. Regarding the operating condition, 
the bearing failure is the easiest scenario to be modeled in bands Z1 and Z2, since the fault signature 
presents a monotonic dynamic easily to be captured by the model. The outputs of three models are 
combined to obtain the final forecasting information. In this regard, the prediction performance during 
the validation can be seen in Fig. 11. The adjustment of the models can be appreciated in the figure 
below, and in the performance metrics shown in Table 4.  

The results show that when the outputs of the three models are combined, the obtained signals 
outperform in terms of error the individual results of all models. In this regard, low error is achieved 
in all the considered scenarios. The method is capable of obtaining a MAPE; lower than 2% in all the 
cases studied. Also the MAE shows the stability of the output by maintaining the absolute error near 
to 0.125 in all cases. Additionally, as can be seen in the figure, and by terms of RMSE, the proposed 
method presents a smooth response that presents a marginal number of outliers. 

 

 

 

 
Fig. 11 Results of the forecasting method. A) Combined output applied to HC. B) Combined output applied to HBRB, 
C) Combined output applied to FBRB, D) Combined output applied to BF versus the output of the single model method to 
the same scenario. 

A) 

B) 

C) 
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Table 4 Performance of the statistical error metrics applied to the combination of all model outputs. Also, the 
performance of the forecasting without the frequency decomposition is also shown in the table. 

 Method Single Modelling 

 RMSE MAPE MAE RMSE MAPE MAE 

HC 0.013 1.69% 0.135 0.203 3.45% 0.129 

BF 0.020 2.27% 0.125 0.275 6.77% 0.265 

HBRB 0.022 2.82% 0.133 0.478 6.92% 0.184 

FBRB 0.025 3.44% 0.139 0.394 8.93% 0.192 

To conclude the results, the performance of the proposed method is tested versus a forecasting 
approach in which the vibration signal is not decomposed. The performance achieved by the second 
method named Single Modelling that can be also seen in Table 4.  

The main limitation of the single model approach is that, despite the model is able to learn the first 
scenario, HC, with virtually less error that the proposed method; it is not capable of modeling 
additional dynamics contained in the other scenarios. For example, as it can be seen in Fig. 11 D), the 
model gets lost with the BF set, that furthermore, was the easiest to be modeled with the method. The 
point here is that the amount of signal dynamic each forecasting model can face is limited, and thus 
by filtering the vibration signal and facing the forecasting problem from a signal decomposition point 
of view, the final performance and the adaptability of the models towards different behaviors and 
operating condition increases. 

5 Conclusions 
This paper presents a novel vibration signal modeling methodology applied to a kinematic chain 

under different failure conditions. First, it should be pointed that the RMS value of the vibration have 
been proved to be a representative feature regarding the health condition of the electromechanical 
actuator.  

Furthermore, there are three important aspects in this new method having a strong implication in 
the vibration forecasting field. The first one is the application of a signal decomposition strategy. It 
has been proved that signal decomposition allows to a better characterization of the signal dynamics, 
and improves the forecasting accuracy by reducing the amount of dynamic that each model should 
face to. The second is the optimal model configuration by means the proposed analysis of the 
prediction horizon and time delays. This analysis leads to an optimal configuration of the 
optimization, and thus the simplification of the process assuring the convergence to a reliable and 
robust forecasting. The third is the calculation of the forecasting value by means of the linear 
combination of the models. It has been seen how the combination of the three individual models 
concludes in a better performance when facing the original forecasting method, this fact is evidenced 
when the proposed method is compared with the classical approach with only one model. 

For the experimental validation of the method, four different operating conditions have been 
considered which represent an important range of system condition possibilities. Under these 
experimental conditions, the proposed prognosis methodology achieves reliable results with an error 
lower than 2% in all the exposed scenarios. Moreover, considering the analyzed model error 
parameters, the prognosis methodology shows still enough dynamic range to include additional 
patterns. 

The aim of the study has been to propose a new reliable prognosis methodology for diagnosis 
analysis under multiple failure conditions. The study is based on different motor faults scenario. 



18 
 

Therefore, it should be pointed that the results obtained in this work suggest that this methodology 
may be also useful for any other component in the kinematic chain. 

A limitation of this study is that the affectation of other sources of information, such as the 
temperature of the motor or the stator current, has not been considered. This additional information 
should be correlated with the vibration of the system, and thus may help to increase the response and 
adaptation capabilities of the models towards new scenarios. In this regard, further research can be 
focused on investigating information management methods such as information compression or 
topology preservation to exploit and add other information available in the kinematic chain in the 
design of the forecasting models. 
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