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SUMMARY

We present three velocity-based Updated Lagrangian formulations for standard and quasi-
incompressible hypoelastic-plastic solids. Three finite elements, named V, VP and VPS elements are
derived and tested for benchmark for non-linear solid mechanics problems. The V-element is based on a
standard velocity approach, while for the VP and VPS elements a mixed velocity-pressure formulation
is used. The two-field problem is solved via a two-step Gauss-Seidel partitioned iterative scheme. First
the momentum equations are solved in terms of velocity increments, as for the V-element. Then the
constitutive relation for the pressure is solved using the updated velocities obtained at the previous
step. For the VPS-element the equation for the pressure is stabilized using the Finite Calculus (FIC)
method in order to solve problems involving quasi-incompressible materials. All the solid elements are
validated by solving 2D and 3D benchmark problems in statics as in dynamics. Copyright © 2010
John Wiley & Sons, Ltd.
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1. Introduction

The objective of this work is the derivation and analysis of three velocity-based Updated
Lagrangian (UL) formulations for non-linear solid mechanics. In particular, a purely velocity
scheme and two mixed velocity-pressure formulations, with and without stabilization, are
presented. From the adaptation of these schemes to the hypoelastic-plastic model, three finite
elements are derived, namely, the Velocity (V), the Velocity-Pressure (VP) and the Velocity-
Pressure Stabilized (VPS) elements.

In solid mechanics, velocity-based schemes are not largely used and generally displacement-
based approaches are preferred [24]. The main reason is that velocity formulations require a
time integration procedure also for computing the stresses of an elastic material, as for the
inelastic ones. However, there are some applications in which a velocity formulation may be
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2 A. FRANCI, E. ONATE AND J.M. CARBONELL

preferred. For example, a velocity approach can be useful for the description of solids that
undergo huge deformations. In industrial processes, as the extrusion and forming of solids,
the plastic (or viscoplastic) deformations are so large that the elastic strain is negligible. In
these situations, the problem becomes one of incompressible viscous, non-Newtonian flow and
a velocity-based formulation is the most appropriate scheme for its description. This is the
main idea of the so-called flow approach [15, 34, 35]. Also in the context of fluid-structure
interaction (FSI) problems, the use of a velocity formulation for solids may be very helpful. In
fact, this scheme facilitates the coupling with fluids, that are typically solved for the velocities,
and allows the solution of FSI problems with a monolithic scheme ensuring in this way a
strong FSI coupling [22, 23, 2]. In this sense, the velocity-based formulations derived in this
paper represent a further step towards the unified solution of continuum mechanics problems,
in which solids and fluids can be computed using the same solver [17, 13].

It is well known that one-field formulations, displacement-based or velocity-based
indifferently, are not enough for dealing with incompressible materials [1]. In order to avoid
numerical drawbacks, as volumetric locking or spurious hydrostatic pressure fluctuations,
multi-field elements are required [9, 14, 6]. In this work a mixed Velocity-Pressure scheme
is used for both VP and VPS elements.

One of the novelties of this work is the proposal of a new stabilization procedure for the
VP formulation and lower order elements. For this reason, linear shape functions have been
used for interpolating both nodal velocities and pressures within the elements (triangles in 2D
and tetrahedra in 3D). For incompressible or nearly incompressible materials, this combination
does not fulfill the inf — sup condition [8] and the numerical scheme needs to be stabilized. The
required stabilization is given using a Finite Calculus (FIC) procedure analogous to the one
derived in [21]. In the mentioned work the stabilization was derived for quasi-incompressible
Newtonian fluids. Here, a similar stabilization procedure, obtained by introducing only small
modifications into the scheme proposed in [21], is applied to quasi-incompressible hypoelastic
solids and implemented in the VPS-element. This operation is facilitated by the similarity
between the constitutive models for hypoelastic solids and quasi-incompressible Newtonian
fluids [17, 13].

Thanks to its rate-based definition, hypoelasticity could be included in the proposed velocity-
based schemes in a natural way. However, note that these formulations do not preclude the
extension to other constitutive laws, as hyperelastic models [4]. Using the definition of Truesdell
[32], a hypoelastic body is a material which may soften or harden in strain but in general has
neither a preferred state nor a preferred stress. The hypoelastic laws were created with the
purpose of transfering the linear theory of elasticity from the small to the finite strains regime
[32]. In [33] a deep dissertation about the differences between elasticity and hypoelasticity
is given. Hypoelastic models are not free of drawbacks [28, 19, 18]. First of all, the Cauchy
stresses need to be computed through a time integration and this must be such that the frame
invariance of the formulation is preserved. Furthermore, contrary to hyperelastic models, for
large deformations the hypoelastic laws do not guarantee that the work done in a closed
deformation path is zero [24]. However this error can be considered negligible if the elastic
deformations are small versus the total deformations [4]. For this reason, the hypoelastic
laws are often used for describing the elastic part of elastic-plastic materials, where the
plastic deformations represent the largest part of the overall deformation. This explains why
hypoelasto-plastic models have been largely used for modeling forming processes [7, 16, 11].
One of the objectives of this work is to show the reliability of the hypoelastic model despite
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VELOCITY-BASED FORMULATIONS FOR HYPOELASTIC-PLASTIC SOLIDS 3

the mentioned inconveniences. This is done by testing the formulation with highly non-linear
solid mechanics problems, involving plasticity, large displacements and quasi-incompressible
materials. The solutions given by the V, VP and VPS elements are discussed and compared
to each other and to other numerical scheme presented in the literature.

This paper is structured as follows. First the hypoelastic-plastic model used in this work is
presented. Next the governing equations are given. In section 4 the linearization procedure of
linear momentum equations is explained in detail. Then the solution schemes for the V and
the VP elements are given. Next the FIC stabilization is introduced and the solution algorithm
for the VPS-element is described. Section 9 is devoted to the validation of the V, VP and VPS
elements through the solution of three benchmark problems. Finally the conclusions of this
work are given.

2. Hypoelastic model

The hypoelastic model is defined by a direct relation between the Cauchy stress rate tensor
oV and the deformation rate tensor d. Using the Jaumann measure of stress, oV is computed
as [4]

oV =cV:d (1)

where the fourth-order tensor ¢V is the Jaumann tangent moduli and d is defined as

- 1 Bvi 81)]'

For an isotropic body ¢V is computed as

2
CZI;]Z = K00kt + jt <5ik5jl + 0310k — 35ij5kl) , eV =k1@1+ 2.1 (3)
where the bulk modulus & is computed from the Lamé parameters, A and p, as
2
R = )‘ + g2 (4)
3
1 is the second-order identity tensor and I’ is a fourth-order tensor computed as
1
I'=1- §1 ®1 (5)

where I is the fourth-order symmetric identity tensor and it is computed as Ijjn =
1
3 (0051 + 0i10k;j ).

For the computation of the Cauchy stress it is required to integrate on time its material
time derivative. This is computed as

=0V +Q(0) (6)

where €2 is a tensor that accounts for the rotations and it is required for guaranteing the frame
invariance of the scheme. This tensor is defined as

Q=W -oc+o - W' (7)

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1-6
Prepared using nmeauth.cls



4 A. FRANCI, E. ONATE AND J.M. CARBONELL

where W is the spin tensor defined as

1 /0v;, Ov,
Wi == £ - 8
J 2 <6$J 8,%,) ( )
Discretizing in time Eq.(6) for the time step interval ["¢, "1 ¢] and replacing o with Eq.(1),
yields

n+1o. _ no.
At
Q is viewed as a correction of the Cauchy stress tensor. Thus the two tensors are joined as

=cV/:"d 4 Qo) (9)

"G ="+ AtQ (o) (10)

Note that the explicit computation of €2 is allowed only if the solid undergoes small rotations
within a time step increment. Otherwise, a proper objective integration algorithm should be
used [4].

Substituting Eq.(10) in Eq.(9), yields

LIUA; O _ v g (11)
Substituting in Eq.(11) the relation for ¢V7 using Eq.(3), yields
ntlg _ng
A =(K1®142u):""d (12)
Hence,
"o ="+ kAt(1®1):"Td + 2uAtl . "d (13)

The second term of the right hand side of Eq.(13) represents the increment of the volumetric,
or pressure, part of the Cauchy stress. Thus, the following relation for the increment of pressure
holds

Ap="Hp—"p=krAt1:"d (14)

Hence,
n+1p — np 4 HAt n+1dv (15)

where d” = 1 : d is the volumetric strain rate.
From Eq.(13) one may compute the updated stresses using the velocities only, or both the
pressure and the velocities, as follows

"o ="+ At (k1®1+2ul’) : "Tld (16)
"o ="¢ + Apl + 2Atul’ - "d (17)

The plastic behavior of the hypoelastic-plastic model is described considering the Jy von
Mises flow model and an associative plasticity [4]. The von Mises law is particularly indicated
for metal plasticity and the associative plastic flow gives important benefits for the symmetry
of the tangent matrix [4].

For this model the elastoplastic tangent moduli is [4]

cyp‘] =rl1®@1+2ul’' —2umen (18)
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VELOCITY-BASED FORMULATIONS FOR HYPOELASTIC-PLASTIC SOLIDS 5

3 ’
with v = and n = \/; O-T, where H is the plastic modulus and & is the effective
o

1

1+ (H/3p)
stress.

Note that the continuum elasto-plastic tangent modulus tensor of this model preserves the
symmetry properties of its elastic counterpart. For elastic loading or unloading, CZ)J =cVJ.

In order to guarantee the consistency of the elastoplastic incremental scheme, a return
mapping algorithm is used. The return mapping algorithm consists of an initial trial elastic
step followed by a plastic corrector one that is activated when the yield function at a trial
elastic step takes a positive value [4]. For the Jy flow theory and associative plasticity the
return mapping is characterized to be radial with respect to the yield surface [30].

3. Governing equations

The motion and deformation of a body are described by the linear momentum equations.
These are solved using an Updated Lagrangian (UL) description. In this framework the
governing equations are integrated over the unknown configuration €2 (the so-called updated
configuration) and the space derivatives are computed with respect to the spatial coordinates.
Thus, the local form of the linear momentum equations reads

paa—jfdiv(a)szo in Qx (0,T) (19)

where p is the density, v is the velocity vector, o is the Cauchy stress tensor and b is the body
force vector and t is the time.

The set of governing equations is completed by the following conditions at the Dirichlet (T,)
and Neumann (T';) boundaries

v —vP =0 on I, (20)
04515 — tf =0 on Ft (21)
where v? and ¢, i = 1,..,n are the prescribed velocities and the prescribed tractions,
respectively.
In the following, summation of terms for repeated indices is assumed unless otherwise
specified.

For mixed velocity-pressure elements, an additional equation for the pressure is required.
Thus, for VP and VPS elements also the constitutive relation between the volumetric
deformation rate and the pressure variation (Eq.(15)) is solved.

4. Linearization of the momentum equations

Integrating Eq.(19) over  and after standard transformations, the Galerkin expression of the
Principle of Virtual Power [4] in the UL framework for the node I is obtained as

. ON
/ NypdQ) v; + / JUjidQ = / Nib;dQ) + N[tfdl_‘ (22)
Q o Ox; Q I,
dyn int ext
I Ii I3
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6 A. FRANCI, E. ONATE AND J.M. CARBONELL

where N are the shape functions, & are the spatial coordinates and f%", fi"* and fe** are
the dynamic, internal and external forces, respectively, expressed in the UL framework. In this
work we use linear shape functions for approximating the velocity and pressure fields.

For convenience, the linearization of the internal forces '™ is performed in the known
configuration 2y, as for a total Lagrangian (TL) description and then the UL linearized form
is obtained via a push-forward transformation of the TL form.

Applying standard pull back tranformations to vector fi"* of Eq.(22), the internal forces
for a TL description 7% fi"t read

TL pint __ aNI

nt— [ ZLpoaq, (23)
I %% 5‘X] J

where P is the first Piola-Kirchhoff stress tensor (also called nominal stress tensor) and
X are the material coordinates. All the variables with subscript (), refer to the last known
configuration. For the sake of clarity in the notation, the terms referred to the TL description
are denoted with the left upper index 7%(-). Unless otherwise specified, the variables belong
to the UL description.

The hypoelastic constitutive relations are defined for the rates of stresses and strains. Hence
it is more convenient to perform the linearization of the material derivative of the internal
forces and then integrate for the time step increment At. The material time derivative of
Eq.(23) is

TL jint ON; .
= o, OX, Pj;d€g (24)
As the first Piola-Kirchhoff stress tensor P is not symmetric and its rate is a non-objective
measure, it is preferable to work with the second Piola-Kirchhoff stress tensor S. P and S are
related to each other through the following relation

Py = Sy FL + SuFL (25)
where F' is the deformation gradient tensor and it is defined as
8131'
F.. = 26
) an ( )

Substituting Eq.(25) into Eq.(24), and considering an infinitesimal increment of force yields

L mt = 7Fir T Q A~ Pgr F'Lr Q 2
ofrs e 0.8, dQ + o, anSj 0F;.dQg (27)

TL(SfIT? TLéfj(']i

where 7§ fm is the material contribution to the variation of the internal forces and it accounts
for the material response through S. TE5 9 is the geometric contribution and it contains the
information of the updated stress field.

Material tangent matrix

Thanks to the symmetry of S', the material part TLdfm of Eq.(27) can be rewritten
considering only the symmetric part of the deformation gradient term as follows

TLofm™ = [ BL§SdQ, (28)
QO
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VELOCITY-BASED FORMULATIONS FOR HYPOELASTIC-PLASTIC SOLIDS 7

where matrix By is defined for a node I as

ON,
BO,Iijk = Sym(i’j) (a)(Iij> (29)

S is related to the deformation rate through the tangent constitutive tensor, as
S=[C°E (30)

where C9 is the fourth-order constitutive tensor referred to the original configuration and E
is the rate of the Green-Lagrange strain tensor. This can be expressed in terms of the nodal
velocities vector U as
E = Byo (31)
In Eq.(31) and in the following, (-) denotes a nodal value (e.g. 77, is the s-component of the
velocity of node J).
Substituting Eqs.(30,31) into Eq.(28), yields

TLyfm — / B¢ [C°] Bod0v (32)
Qo

In order to obtain the increment of the internal forces, the material time derivative of the
internal forces increment is integrated over a time step increment At as

TL(Sfm _ TL(Sj_"mAt (33)
From Eq.(33) and Eq.(32), we deduce

TLsfm™ = [ BgAt[C°] BodQ (34)
Qo
In order to obtain the material tangent matrix in the UL framework, push-forward
transformations are applied over Eq.(34), as explained next.
First of all, the new integration domain is the updated configuration £ and, for an
infinitesimal volume, this is related to €y as follows

o
dQg = — (35)

Similarly, the constitutive tensor is referred to the spatial configuration by applying the
following tranformation

0 1 =1 =1 -1

ikt = Foi oy Fop Fyp Comop (36)

Ci mnop

where ¢V7 is the Truesdell tangent moduli for the rate of the Cauchy stress V. Finally, the
material derivatives are replaced by spatial derivatives defining matrix B as follows

ON;
Briji = symy; j (5):,3_5@) (37)
For the node I of a 2D element, matrix B is
a(;v[ 0
xr
ONp
B, =| 0 ¥ (38)
ONr ONp
dy ox
Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1-6
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8 A. FRANCI, E. ONATE AND J.M. CARBONELL

Substituting Eqgs.(26,35-37) into (34), yields

5f™ = [ BTAt[cVT]| BdQsv (39)
Q

Therefore, the material tangent matrix for the velocity increments in UL framework reads
(4]

K™ = / BT At [eVT]| BdQ (40)
Q

The Truesdell tangent moduli tensor ¢V™ is computed from the Jaumann tensor ¢V (Eq.(3))
as follows [4]
VT =cV) —c* (41)

where the fourth order tensor ¢* is defined as
" 1
Cijkl = 5 (0ikoji + 0510k + 0jk0i + 0j10ik) — 03Okl (42)

The incorporation of tensor ¢* in the material part of the tangent matrix would induce the loss
of symmetry of the overall tangent matrix. For this reason, in this work this component has
not been included, and the following approximation of the exact material part of the tangent
matrix has been considered

K™= / BT At [¢V7] BdQ) (43)
Q

Geometric tangent matrixc

The geometric tangent matrix for the UL framework is derived using the same procedure as
for the material component.

The geometric part of 7§ £t (Eq.(27)) reads

: ON, .
TL #9 1
off, = —— S50 F;-dQ (44)
e Jo, 0X;77
where the rate of the deformation gradient F' is defined as
. ON;
F.=—"vy 45
ax; "’ (45)

Substituting Eq.(45) into Eq.(44), the geometric component of the internal power in the TL
description can be written as
: ON; , ONy
TL _
5‘]‘?1 = o TXJS]TTXFCZQO 5'0]1' (46)
Integrating Eq.(46) on time for a time step increment At and adding a dummy unit matrix
[4] yields
ONy ON;

TLseg _ ALS. Q0. 87 4
Of; 0, OX, tSjraer 00ik 00 gk (47)

In order to recover the UL form, the Piola identity has to be recalled, i.e.

Sij = Flouk;"J (48)
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VELOCITY-BASED FORMULATIONS FOR HYPOELASTIC-PLASTIC SOLIDS 9

Applying the chain rule over the material derivatives of Eq.(47), and using Eqs.(26,35,48)

yields
ON7 ONj
§ff; = Oz, o Atojr—— oz,

The geometric part of the tangent matrix for the velocity increments is obtained from Eq.(49)
as

A5, 601 (49)

ON7 ONy

K{ = 91, At —— oz dQ0;, (50)
Matrix K9 for nodes IJ in Voigt notatlon is
K, = 1/ BT AtaB;dQ (51)
Q

Oox ’ Oy
Dynamic component of the tangent matrix
In this work the implicit Newmark integration rule has been adopted. In particular, the
Newmark parameters chosen are 8 = % and v = % [4]. According to this unconditionally stable
scheme, the accelerations v and the displacements u are computed, respectively, as
2

v = ~ ("o — ") =" (52)

u="u-+ % ("o + ") (53)

T
For 2D problems 3; = [a,NI aNI}

n+1
n+1
Replacing Eq.(52) into the dynamic term fdyn of Eq.(22), and differentiating for the

increment of velocities, the dynamic component of the tangent matrix, also known as the
mass matrix, is obtained as

2p
Kl =04 /Q N; 3 Nd€ (54)
Or also
KP]71/N1 2P N;d) (55)
5. V-element

The solution scheme of the V-element constists on solving iteratively the linear momentum
equations for the velocity increments, using the linearization described in the previous section.
For each iteration i the following linear system of equations is solved

KA =R’ (56)
with ' ' o _
K= Km(n+1:iz,cv,]) +Kg(n+1jz’o_z) + Kp(’nr‘rlil) (57)
where K7 is Eq.(43), K9, is Eq.(51) and K7, is Eq.(55) and
. - ON
i / NipNydS oy + | 5o Lo
Q I]

where, for the V-element the Cauchy stress tensor o is computed according to Eq.(16).
Algorithm 1 describes all the steps of the solution scheme for the V-element.

109 — / N opdQ — [ NPT (58)

ry
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10 A. FRANCI, E. ONATE AND J.M. CARBONELL

For each iteration i:
1. Compute the nodal velocity increments Av: K'Av = R'(7?)
where: K'= K™(z',cV/) + K9(x',0") + K°(Z')
2. Update the nodal velocities: "ot = "+lgl + Av
3. Update the nodal coordinates: "*1zitl =n+1zi 4 G(AD)
4. Compute the updated stress measures:
nt+lgvitl — VI . g (,l—)i+l) o nHlgitl —ng 1 At n+1o_v,i+1
5. Check the convergence: || R (%'*!) || < tolerance
If condition 5 is not fulfilled, return to 1 with ¢ < i + 1.
At the end of each time step
ntlg — nt+ly + At (n-‘,—l,‘—), n+10.)

Algorithm 1: Iterative solution scheme for the V-element.

6. VP-element

The governing equations of the VP-element are the linear momentum equations and the
constitutive relation described by Eq.(15). From the Galerkin approximation of Eq.(15), yields

1

_NHTn+1% Mn+1—:n 59
Q v+ AP g (59)
where:

1
My, = / NN do (60)

Qe K
Qs = | BimN,;dQ (61)

Qe
ng[ = N[LNJCZQ nﬁ (62)
Qn K,At J

where N are linear shape functions, B is the same matrix defined in Eq.(38) and
m=[1,1,1,0,0,0]"

The whole problem is solved via a two-step Gauss-Seidel partitioned iterative scheme. First
the momentum equations are solved in terms of velocity increments. Then Eq.(59) is solved
for the nodal pressures using the updated velocities computed with the momentum equations.
Concerning the stresses, the Cauchy stress tensor is computed as the sum of its deviatoric part
and the pressure using Eq.(17).

In conclusion, for a general time interval ["¢,"*1¢] of duration At the following linear
systems are solved for each iteration i

KA = R (51, ') (63)
1 =141 T ~i+1 n
Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1-6
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VELOCITY-BASED FORMULATIONS FOR HYPOELASTIC-PLASTIC SOLIDS 11

where K is the same tangent matrix as for the velocity formulation (Eq.(57)) and the residual
vector R is computed as
_ . ON o
in = / NIpNJdQ ’ULZH =+ ai'laij ({ﬂ’ﬁl) d§Q) — / NI"+1bidQ
Q Q OZ; Q
— [ N/ tHPar (65)
Iy
Algorithm 2 describes the iterative solution incremental scheme for the VP-element for a
generic time interval ["¢,"T7¢].

For each iteration i:
1. Compute the nodal velocity increments Av: K'Av = R!(v°, p*)
where: K'= K™ (%!, cV’) + KI(%,0') + K*(Z')
2. Update the nodal velocities: "T1gitl ="+1gl 4 Av
3. Update the nodal coordinates: "*1zit! ="+l 4+ 4 (AD)
4. Compute the pressures p't!: Hp'tl = F, (', p?)
where: H = - M; and F, = Q" v'™' + g
5. Compute the updated stress measures:

it = g 4 AP 4 2uAL [I: d (57))]
6. Check the convergence: || R‘FL(5+, pitt) ||< tolerance
If condition 6 is not fulfilled, return to 1 with i < 7 + 1.
At the end of each time step

ntlg — ntly + At (n+1,l—)’ n+1o.)

Algorithm 2: Iterative solution scheme for the VP-element.

Note that for the VP-element the material part of the tangent matrix is defined by the
same tangent moduli as for the V-element (c¢V”). Consequently, the velocity formulation can
be easily recovered from the velocity-pressure formulation. In order to do this, the governing
equations should be decoupled by computing the Cauchy stress tensor using only the velocities
(Eq.(16)) and not as the sum of its deviatoric part and the pressure (Eq.(17)). Note that, if
decoupled, the mixed velocity-pressure formulation does not give any advantage with respect
to the velocity formulation because the problem is governed by the velocities and the linear
momentum equations only.

7. FIC-stabilization for quasi-incompressible solids

For incompressible or quasi-incompressible materials, a mixed approach is required in order
to properly satisfy the incompressibility constraint. Furthermore in the mixed schemes
interpolation functions for the unkown variables must satisfy the inf — sup condition [§],
for avoiding numerical instabilities. As previously mentioned, in this work for the mixed VP-
element we have used linear shape functions for both the pressure and velocity fields. Thus,
for the analysis of quasi-incompressible bodies the scheme has to be stabilized because the
inf — sup condition is not fulfilled [8].

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1-6
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12 A. FRANCI, E. ONATE AND J.M. CARBONELL

The VPS-element is stabilized following the FIC approach described in [21] where an
analogous Velocity-Pressure scheme for the analysis of quasi-incompressible Newtonian fluids.
The analogies between the two formulations are remarkable. First, the schemes are solved
for the same governing equations and unknown variables. In fact, one may note that Eq.(64)
can represent also the continuity equation for a quasi-incompressible fluid [27, 26, 12]. In
particular, for K = oo the canonical divergence-free continuity equation of the Navier-Stokes
problem is recovered. Furthermore, there is a strong analogy between the hypoelastic and the
quasi-incompressible Newtonian constitutive laws [17, 13]. For quasi-incompressible Newtonian
fluids the stress increment can be computed as [17, 13]

Aoy =2url' :d+ Atkf1®1:d (66)

where k¢ is the bulk modulus of the fluid and uyis the fluid viscosity.
From Eq.(13), the increment of the Cauchy stress for hypoelastic solids is

Ao =2Atpl :d+ Atkl ®1 :d (67)

Eqgs.(66 and 67) show the duality between hypoelastic and Newtonian quasi-incompressible
constitutive laws. In Eq.(66) the deviatoric and the volumetric parts of the Cauchy stress
tensor are controled by the fluid viscosity py and the bulk modulus xf, respectively. The
equivalent roles in hypoelastic solids are taken by the second Lame constant p scaled by the
time increment and the bulk modulus k. Using this equivalence, the same structure of the
stabilized mass continuity equation derived for quasi-incompressible fluids in [21] is here used
for the analysis of quasi-incompressible hypoelastic solids. This is done by just replacing the
fluid parameters py and sy with the equivalent terms Aty and ~ for hypoelastic solids. From
this analogy the following stabilized equation for the pressure has been obtained

M,

N ("p+"pAt) + QT v+ f,;  (68)

1 1 M,
— M+ —My+L+M,|p="""p
(At 1+ i M+ L+ b)p A P

where the vectors and matrices in Eq.(68) are

M,,, = / 2 NN a0 (69)
o KR
2T
My, , :/ — NNy dI' (70)
r, hn
Lis= / (V7 Ny VN dS) (1)
Q
2
Tor :/ TNy {pi)n — h—(Qudn — tn)] dr 7/ 7V N;bd (72)
Ft n e
where (+),, refer to the normal projection of the variable and the stabilization parameter 7 is
given by
8Atu  2p -t

where h and § are characteristic distances in space and in time, respectively.
The derivation of Eq.(68) is detailed for quasi-incompressible fluids in [21].
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VELOCITY-BASED FORMULATIONS FOR HYPOELASTIC-PLASTIC SOLIDS 13

8. VPS-element

The VP and the VPS elements differ only for the pressure equation. For the VP-element
the pressure is computed via Eq.(64) while for the VPS-element is computed using the FIC-
stabilized form given in Eq.(68).

The iterative solution incremental scheme for the VPS-element is described for a generic
time increment ["¢," "1 ¢] in Algorithm 3.

For each iteration i:
1. Compute the nodal velocity increments Av: K'Av = R (9%, p°)
where: K'= K™(z',cV’) + K9(%!, 0') + KP(Z')
2. Update the nodal velocities: "ot = "+lgi + Ap
3. Update the nodal coordinates: "T1zit!t = "+1zi 4 4(Av)
4. Compute the nodal pressures p'*': Hp't! = F,(v'T!, p')
where: H = (ﬁMl + ﬁMQ + L + Mb)
and F, = %"ﬁ + % ("15 + "I_')At) +QT v+ £,
5. Compute the updated stress measures:

ettt =ng + AP+ 2uAt [T s d (071)]
6. Check the convergence: || R (9! pitl) ||< tolerance
If condition 6 is not fulfilled, return to 1 with i < 7 + 1.
At the end of each time step

n+1a. — n+1o. + AtQ (n+1,l—;’ n+1o.)

Algorithm 3: Iterative solution scheme for the VPS-element.

9. Validation examples

In this section the V, VP and VPS elements are tested against three benchmark problems for
non-linear solid mechanics. First, the quasi-incompressible Cook’s membrane is analyzed [10].
Then, a uniformly loaded circular plate is solved in statics using the hypoelastic-plastic model
described in Section 2. Finally a plane strain cantilever is solved in dynamics for both the
hypoelastic and hypoelastic-plastic models. The numerical solutions given by the three solid
elements are discussed and compared to the ones published in the literature.

9.1. Nearly incompressible Cook’s membrane

The Cook’s membrane consists of a tapered plate clamped on one of its sides and subjected to
a transversal load applied to the opposite side [10]. The membrane is solved considering the
Poisson ratio v = 0.4999 and a Young modulus E = 250. The vertical load is 100. In Figure 1
the initial geometry and the problem data are given.

The problem was solved in 2D for several unstructured meshes in order to verify the
convergence of the scheme. The finest mesh tested in this problem has a mean size of 0.25
and a total of 52372 triangular elements.

The reference solution for this problem is taken from [25], where the problem was solved with

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1-6
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16 T F=100
e E=250

44 = v=0.4999
é thickness=1

y
48

X

Figure 1: Nearly incompressible Cook’s membrane. Initial geometry and problem data.

an Incompatible Bubble element. In the mentioned publication the tip vertical displacement
obtained Uy'** by other formulations is also given. Specifically the results are provided for an
FEM formulation with linear displacements and constant pressure, and the Enhanced Assumed
Strain formulation [29, 5]. For all these formulations and the finest mesh tested in [25], this
value is around Uy*** = 7.71.

The Poisson ratio 0.4999 represents a material that is almost incompressible. It is well known
that values of the Poisson ratio close to 0.5 generate numerical problems to non-stabilized
FEM schemes, such as the locking of the solution. Apart from this, the proximity to the
incompressible limit also produces ill-conditioned matrices and deteriorates the convergence of
the solution. In order to overcome these drawbacks a mixed stabilized formulation is required.
For this reason, it is expected that only the VPS-element can give a fine solution to this
problem. However the problem is also solved here using the non-stabilized V and VP elements.
Both these elements, although in different ways, suffer from instability near the incompressible
limit of the material. Despite that, this example is presented with the purpose of showing how
each formulation is affected by the mentioned drawbacks and to underline the superiority of a
mixed formulation for dealing with nearly incompressible materials.

In Figure 2 the top corner vertical displacements obtained with the V, the VP and the VPS
elements for different FEM meshes are plotted.

In Table I the numerical values are given.

From the kinematic point of view, the displacements obtained by the mixed formulation
(VP and VPS elements) are close to the expected solution, while the solution given by the
V-element locks. For the V, VP and VPS the percentage errors for the tip displacement versus
the reference solution are 5.68%, 0.707 % and 0.791%, respectively.

For the analysis of stress results, the mesh with average size 1.5 is studied. In Figure 3
the zx-component of the Cauchy stress tensor obtained with the V, VP, and VPS elements
is plotted over the deformed configurations. The figures show that both V and VP solutions
deteriorate for values of v close to the incompressible limit of the material, while the stress
field given by the VPS-element is good and smooth.

In Figure 4 the pressure solution obtained with the VP-element and the VPS-element are
given.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1-6
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disp Y [m]

10000

20000

- V-element
& VVP-element
V- VPS-element

30000

40000 50000

number of elements

Figure 2: Nearly incompressible Cook’s membrane. Top corner vertical displacement for the V, VP

and the VPS elements.

mesh | number of | V-element | VP-element | VPS-element
size | elements U, Uy U,
5 127 4.411 7.031 7.268
4 194 4.365 7.178 7.338
3 361 4.648 7.401 7.508
2 802 5.643 7.551 7.603
1.5 1441 4.937 7.632 6.655
1 3288 5.690 7.695 7.714
0.75 5806 6.199 7.707 7.729
0.5 13015 6.731 7.745 7.755
0.25 52372 7.272 7.765 7.771

Table I: Nearly incompressible Cook’s membrane. Top corner vertical displacement for different
formulations and discretizations.

The non-stabilized VP-element yields a pressure field that is completely untrustworthy
exhibiting the classical checkerboard modes. Instead, the solution for the VPS element is

smooth and accurate.

Copyright © 2010 John Wiley & Sons, Ltd.
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(a) V-element (b) VP-element

(c) VPS-element

Sxx-CauchyStress.

Sxx-CauchyStress.
334,61
I257 62

Sxx-CauchyStress

15415
7.1894

180.63 -1.0058
103.64 -9.261
-17.486
-25.711
-33.987
-42.162
-50.387
58,612

26,651
-50.339
127.33
-204.32
-281.31
.358.3

Figure 3: Nearly incompressible Cook’s membrane. Results of the XX component of the Cauchy
stress tensor for the V, VP and VPS elements.

(a) VP-element (b) VPS-element
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21.773 14.667
5.0548 10.706
-11.663 6.7455
-28.381 2785
45.099 11754
61817 -5.1359
78.535 -9.0964
95.252

-13.057
-17.017
-20.978

Figure 4: Nearly incompressible Cook’s membrane. Pressure solution for the VP and VPS elements.
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9.2. Uniformly loaded circular plate

The problem analyzed in this section is a simply supported circular plate subjected to a
uniform pressure P on its top surface. The constrains of the plate are applied on its lower
edge. The plate has a radius R = 10 and thickness h = 1. The problem was presented in [20]
and solved exploiting the axisymmetry of the loaded plate. In this work, the axial symmetry
of the problem was not used and the plate was analyzed in 3D using 4-noded tetrahedra. The
average size for the tetrahedra is 0.175. This gives 214047 nodes and 1263858 tetrahedra. In
Figure 5 the FEM mesh used is shown.

Figure 5: Uniformly loaded circular plate. Initial geometry and 3D FEM mesh used.

A hypoelastic-plastic model with perfect plasticity (plastic modulus H = 0) was used. The
problem was solved with the VP-element. For the plastic part a von Mises yield criterion was
considered. The plate has Young modulus E = 107, Poisson ratio v = 0.24 and uniaxial yield
stress o, = 16000. The objective of the study is to determine the limit load for the plate. Using
the procedure described in [31], the limit load can be computed analytically by combining the
limit analysis and the finite difference method. According to this theory, the limit load can be
approximated as

= 12
Piim ~ % — 260.8 (74)

The same problem was solved in [20] using eight-noded axisymmetric quadrilateral elements
with four Gauss integration points. The limit load obtained with a relatively coarse mesh (10
finite elements distributed in two layers across the thickness) is PE” = 259.8 [20].

As in [20], the limit load has been considered as the one for which the non-linear procedure
can not longer converge for a small increment of the load.

In Figure 6 the maximum vertical displacement of the plate is plotted against the pressure
on the top surface. In Table II the numerical values are given.

For the present analysis the limit load obtained is Pj;,, = 264.27. The relative percentage
errors versus the solutions given in [31] and [20] are 1.37% and 1.76%, respectively.
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300
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200

150 =~ numerical results
----- theoretical solution
100

applied pressure

50

0 0.25 0.5 0.75 1 1.25
maximum vertical deflection

Figure 6: Uniformly loaded circular plate. Maximum deflection versus the applied pressure.

pressure | max. deflection || pressure | max. deflection
101.84 0.0758 260.71 0.677
178.22 0.138 261.21 0.716
229.14 0.236 261.73 0.761
241.87 0.296 262.24 0.816
253.58 0.424 262.73 0.885
258.67 0.567 263.26 0.972
259.69 0.615 263.77 1.088
260.20 0.644 264.27 1.250

Table II: Uniformly loaded circular plate. Numerical values of the maximum vertical deflection for
different applied pressures.

In Figure 7 the vertical displacements are depicted over the deformed configuration obtained
with the limit load. The plate central section is highlighted in the picture.

In Figure 8 some snapshots of the von Mises effective stress are plotted over the central
section of the plate for the different load conditions. The picture shows clearly the progressive
evolution of the plastic zone.
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Y-TotalDisp (m)
0
-0.13892
-0.27783
-0.41675

-0.55567

-0.69458
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-0.97242

-1.1113

-1.2503

Figure 7: Uniformly loaded circular plate. Vertical displacement contours for the maximum pressure
sustained by the plate (Pim = 264.27).
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(a) Overall load=101.84
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Figure 8: Uniformly loaded circular plate. Von Mises effective stress over the deformed configurations
for different load conditions (only the central section is depicted).
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9.3. Plane strain cantilever in dynamics

The plane strain cantilever illustrated in Figure 9 was chosen as the reference case for a large
displacement dynamics analysis.

thickness =1
A L 25
“ D D 4
Young modulus | 104
Poisson ratio 0.25
Yield stress 300
Plastic modulus | 100
Figure 9: Plane strain cantilever. Initial Table III: Plane strain can-
geometry. tilever. Problem data.

The distributed load f is applied on the free edge as a step function at time ¢ = 0 and its
overall value is 40. The problem data are in given in Table III. The problem was proposed
and studied in [3] and here is solved with both a hypoelastic and a hypoelastic-plastic models.
First the results of the hypoelastic model are given.

Hypoelastic model

The problem was solved in 2D and 3D and using both the V and VP elements. In order to
simulate the plane strain state, in the 3D analysis the nodal displacements in the transversal
direction to the load have been constrained [3]. The reference solution is the elastic one given
in [3].

The 2D problem was solved for several structured finite element meshes in order to verify
the convergence of the scheme.

For the 3D case, the problem was solved only for a structured mesh with average size 0.125
composed by 12800 4-noded tetrahedral elements. The results for the 3D case obtained with the
VP-element are illustrated in Figure 10. The pressure contours are plotted over the deformed
configuration.

In Figure 11 the time evolution of the top corner vertical displacement is plotted for each
tested mesh. These results have been obtained with the VP-element.

According to [3], the maximum vertical displacement is U3*** = 6.88. This value is very close
to the converged results of the V and VP elements. Table IV collects the maximum vertical
displacement obtained with the V and the VP elements for all the meshes.

The four curves plotted in Figure 12 are the converged time evolution of the top corner
vertical displacement obtained with the V-element in 3D, the VP-element in 2D and 3D and
the reference solution [3]. The curves corresponding to the V and VP elements are almost
superposed and they match the reference solution.

Hypoelastic — plastic model

The same problem was solved for an elastic-plastic material with linear hardening. The yield
stress is 300 and the plastic modulus H is 100. The problem was solved with the VP-element
and using structured meshes. The reference solution is taken from [3] where the benchmark
was proposed. In [3] the converged value for the maximum top corner vertical displacement is

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1-6
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» Pressure (Pa)
— 390.01
il 295.4
200.8
106.19
11.582
-83.026
-177.63
-272.24
-366.85
-461.46

Figure 10: Plane strain cantilever. Numerical results for the 3D simulation obtained with the VP-
element: pressure contours plotted over the deformed configuration.

‘ =— Mesh size 1

= Mesh size 0.75
= Mesh size 0.5
= Mesh size 0.25

‘ Mesh size 0.125

Disp Y [m]
N

Time [s]

Figure 11: Plane strain cantilever. Time evolution of the top corner vertical displacement for different
2D discretizations. Results obtained with the VP-element.

8.22. The hypoelastic-plastic mixed velocity-pressure formulation converges to 7.97 (error of
2.998%). In the graph of Figure 13 the time evolution of the top corner vertical displacement
is plotted for the different FEM meshes.

In Table V the numerical values for the maximum and the residual top corner vertical
displacements (U;’“m and U, respectively) are given for each of the FEM mesh.

The problem was solved also in 3D using a structured mesh of 12800 4-noded tetrahedra
with average size 0.125.

In Figures 14 the von Mises effective stresses are plotted over the deformed configuration at
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mesh | V-element | VP-element
size v v,
1 5.759 6.306
0.8 6.144 6.534
0.5 6.568 6.743
0.25 6.811 6.863
0.125 6.875 6.895

Table IV: Plane strain cantilever. Maximum top corner vertical displacement for different 2D
discretizations.

— V-element 3D
7 — VP-element 3D
— VP-element 2D
* reference solution

Disp Y [m]

0 2 4 6 8 10 12 14 16
Time [s]

Figure 12: Plane strain cantilever. Time evolution of the top corner vertical displacement. Solutions
for the 2D VP-element and the 3D V and VP elements obtained with the finest mesh (average size
0.125) compared to the reference solution [3].

mesh size U;”‘“” U; €8
1 6.77 | 3.25

0.8 7.17 | 3.69
0.5 7.56 | 4.14
0.25 7.82 | 4.51
0.125 7.92 | 4.68
0.1 7.94 | 4.72
0.0625 7.97 | 4.77

Table V: Plane strain elastoplastic cantilever. Maximum and residual top corner vertical
displacements for different discretizations.
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3 = Mesh size 0.125

= Mesh size 0.25
2 = Mesh size 0.5
Mesh size 0.8
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0
0 2 4 6 8 10 12 14
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Figure 13: Plane strain elastoplastic cantilever. Time evolution of the top corner vertical displacement
for different 2D discretizations.

the time instant when the maximum top corner vertical displacement is reached (¢ = 6.05s).

VMEffectiveStress
373
331.91
290.81
249.72

208.62
l 167.53

126.43
85.337
44.243
3.1478

Figure 14: Plane strain elastoplastic cantilever. Numerical results for the 3D simulation. Von Mises
effective stress plotted over the deformed configuration at ¢ = 6.05s.

In Figure 15 for the same time instant the xz-component of the Cauchy stress tensor is
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plotted.

Sxx-CauchyStress
- 454.43
344.71
234.99
-125.27
15.548
-94.172
-203.89
-313.61
-423.33
-533.05

Figure 15: Plane strain elastoplastic cantilever. Numerical results for the 3D simulation. xx-
component of the Cauchy stress tensor plotted over the deformed configuration at ¢ = 6.05s.

In Figure 16 the 3D solution is compared to the 2D results obtained with a structured mesh
with the same average size. The curves coincide almost exactly.

9
8
7
6
E s
>-
a 4
5%
o3 — 3D restuilts
2 mm 2D results
1
0 T T T T
0 2 4 6 8 10 12
Time [s]

Figure 16: Plane strain elastoplastic cantilever. Time evolution of the top corner vertical
displacement. Numerical results for the 2D and the 3D simulations for the same average mesh size
(0.125).
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10. Conclusions

We have presented three velocity-based hypoelastic-plastic finite elements for non-linear solid
mechanics. The V-element has been derived from a standard velocity approach, while the
VP and VPS elements are based on a mixed velocity-pressure scheme. The VPS-element is
stabilized using the Finite Calculus (FIC) method and used for solving problems involving
quasi-incompressible materials. The mixed velocity-pressure solution scheme consists on a
two-step Gauss-Seidel partitioned iterative algorithm. In particular, first the linear momentum
equations are solved in terms of velocity increments, as for the V-element. Then the constitutive
relation for the pressure is solved using the updated velocities obtained at the previous step. It
has been shown that the proposed hypoelastic elements are capable of solving highly non-linear
problems for standard and quasi-incompressible solids with a good accuracy. The numerical
results have agreed well with other published results using alternative schemes. The formulation
here presented will be very advantageous for solving monolithically FSI problems using the
same set of variables for the solid and the fluid [17, 13].
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