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Abstract—. Underwater localization using acoustic signals is 
one of the main components in a navigation system for an AUV as 
a more accurate alternative to dead-reckoning techniques. While 
different methods based on the idea of multiple beacons have been 
studied, other approaches use only one beacon, which reduces the 
system costs and deployment complexity. The inverse approach 
for single-beacon navigation is to use this method for target 
localization by an underwater or surface vehicle. In this paper we 
present a method of range-only target localization using a Wave 
Glider ™, for which simulations and sea tests have been conducted 
to determine optimal parameters to minimize acoustic energy use 
and search time and to maximize location accuracy and precision. 
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I. INTRODUCTION 

One of the main challenges in oceanographic research is that 
of underwater positioning. It is well known that the GPS signal 
suffer a large attenuation underwater. Therefore, different 
methods and architectures have been developed using acoustic 
signals, which have better underwater performance, such as 
Long Baseline (LBL), Ultra Short Baseline (USBL) and GPS 
Intelligent Buoys (GIB). Each of these systems has its own 
application as a function of project necessities and constraints. 
For example LBL system offer the best precision and accuracy, 
but with high deployment and maintenances costs. These costs 
can be somewhat reduced by GIB systems, which use surface 
buoys instead of seafloor nodes. If the main goal is to reduce the 
setup time, the best option is a USBL system, but with less 
accuracy than the other methods.  

The most recent works are focused on Underwater Acoustic 
Networks (UWAN), which implement traditional concepts of 
acoustic positioning. On the other hand, some studies have 
focused on single beacon localization methods to reduce 
deployment costs. In these architectures the main goal is to use 
one autonomous mobile beacon to localize different underwater 
targets. This methodology, known as single-beacon range-only 
localization [1][2][3][4] has its particular challenges, such as 
path characterization (path shape, number of points and 
maximum range) or performance evaluation (accuracy and 
reliability). All of these parameters must be evaluated under 
different circumstances and setup characteristics. 

In the literature different papers about observability (which 
introduces some restrictions in paths and maneuvers) can be 
found, for example in [5] the authors derive that the best 

trajectory is to do turning motions around the beacon, and in [3] 
a similar approach is used with a surface vehicle following three 
AUVs. However, all these works are mathematical 
developments and only show some simulations. On the other 
hand, in other works such as [4] and [6] the authors present some 
field test results to localize an underwater target using range-
only methods, but in their case, they do not present a general 
study to find the best parameters for target localization. 

In this work we show how to determine the optimal 
parameters for this method. Additionally, we present results of 
simulations and sea tests to demonstrate the good performance 
of a Wave Glider used as a single-beacon LBL system for target 
localization. This method can be used in a wide range of 
applications using the long-duration, autonomous navigation 
and computational characteristics of Wave Glider applications. 

A) Target localization in benthic zone:

- Instruments on seabed, which may be stationary or
moving (e.g. slowly sliding down a submarine 
canyon, or on a benthic ‘rover’)  

- Low motion tagged benthic marine species 

B) Target localization in Pelagic zone:

- Drifter buoys
- Autonomous underwater vehicles (AUV)
- Low motion tagged pelagic marine species

II. RANGE-ONLY TARGET LOCALIZATION

The concept of single-beacon range-only positioning can be 
divided into two groups: as a navigational aid for a moving 
vehicle [7] (group 1), or to localize a stationary or moving target 
[1] (group 2). All these methods use a set of ranges between a 
target and different static nodes, known as anchor nodes. 
Typically, these ranges can be obtained using Time of Flight 
(TOF) given the speed of sound in water. Then, the unknown 
underwater target position problem can be solved using 
trilateration, where in general, three or more points are needed 
in 2D dimensions and, at least, four points in 3D scenarios.  

In general, the inverse problem has received more attention 
in the literature (group 1) where an AUV needs to be located 
using a set of known transponders, as in [2].  However similar 
approaches can be used in this case, where an autonomous 
vehicle is used to find an underwater target (group 2). The 



method used in this paper can be seen in Fig. 1, where a range-
only target localization method based on single-beacon 
architecture is presented. The target position is computed using 
a Wave Glider, which periodically measures the range to the 
underwater target, while it is moving on the surface. 

 Therefore, following the same notation as [2], the 
underwater target positioning vector can be defined as  𝒑𝒑𝑇𝑇  ∈
ℝ𝒏𝒏, where 𝑛𝑛 can be either 2 or 3 and is the space dimension of 
the problem. All the Wave Glider positions used in the 
trilateration problem can be denoted as  𝒑𝒑𝑖𝑖  ∈ ℝ𝒏𝒏  where  𝑖𝑖 ∈
{1,2, … ,𝑚𝑚} . Then, the ranges measured with Wave Glider 
between itself and target can be expressed as 

�̅�𝑟𝑖𝑖 = ‖𝒑𝒑𝑇𝑇 − 𝒑𝒑𝑖𝑖‖ + 𝑤𝑤𝑖𝑖 ,   𝑖𝑖 ∈ {1,2, … ,𝑚𝑚} (1) 

where ‖𝒑𝒑𝑇𝑇 − 𝒑𝒑𝑖𝑖‖ =  𝑟𝑟𝑖𝑖  is the true range and 𝑤𝑤𝑖𝑖  ~ 𝒩𝒩(0,𝜎𝜎2)  is 
some zero mean Gaussian measurement error where  𝜎𝜎2 is the 
variance. Also, this expression can be written in matrix form as 
𝒓𝒓� = 𝒓𝒓 + 𝒘𝒘 .  In general, this non-linear, non-smooth and 
overdetermined (when   𝑚𝑚 > 𝑛𝑛 + 1 ) system doesn’t have a 
straightforward solution. At this point, two different 
methodologies are used in the literature to solve the system and 
find the target position through ranges: linearize the function and 
find a closed-form Least Squares (LS) solution; or use an 
iterative minimization algorithm to minimize a cost function 
related to the Maximum Likelihood (ML) estimate.  

A. Closed-form Least Squares algorithm 
Because the main goal of this paper is not to compare 

different algorithms performance, a simple Unconstrained Least 
Square algorithm is used, which was introduced in [8]. 
However, as will be shown, its performance is quite good.  

The main idea on LS algorithms is linearize the system using 
the squared range measurements, obtaining 

𝒅𝒅� = 𝒅𝒅 + 𝝃𝝃 (2) 

where 𝝃𝝃 is the new measurement error as a function of  𝒘𝒘 and 𝒓𝒓. 
In this case, is not obvious that 𝝃𝝃 ~ 𝒩𝒩(0,𝝈𝝈2) as before. Under 
some circumstances this assumption is possible, for example 
when  𝑟𝑟𝑖𝑖 ≫  𝜎𝜎𝑖𝑖, but this assumption is not true when the vehicle 
is close to the target. See [2] for more information. 

On the other hand, a 2D formulation can be done in this case, 
where all the points used to compute the underwater target 

position are coplanar, in the same z-coordinate, which in this 
case is on the sea surface. The square ranges are defined by 

𝑑𝑑𝑖𝑖  =  ‖𝑷𝑷𝑇𝑇 − 𝑷𝑷𝒊𝒊‖2 

=  (𝑝𝑝𝑇𝑇𝑇𝑇 − 𝑝𝑝𝑖𝑖𝑇𝑇)2 + �𝑝𝑝𝑇𝑇𝑇𝑇 − 𝑝𝑝𝑖𝑖𝑇𝑇�
2  +  (𝑝𝑝𝑇𝑇𝑇𝑇 − 𝑝𝑝𝑖𝑖𝑇𝑇)2

=  ‖𝒑𝒑𝑇𝑇′ − 𝒑𝒑𝒊𝒊′‖2 + 𝛿𝛿𝑇𝑇2  

=  𝒑𝒑𝒊𝒊′𝑇𝑇𝒑𝒑𝒊𝒊′ − 2𝒑𝒑𝒊𝒊′𝑇𝑇𝒑𝒑𝑇𝑇′ + ‖𝒑𝒑𝑇𝑇′ ‖2 + 𝛿𝛿𝑇𝑇2  (3) 

and 

𝒅𝒅 =  𝛿𝛿(𝑷𝑷′𝑇𝑇𝑷𝑷′) − 2𝑃𝑃′𝑇𝑇𝒑𝒑𝑇𝑇′ + (‖𝒑𝒑𝑇𝑇′ ‖2 + 𝛿𝛿𝑇𝑇2)1𝑚𝑚 (4) 

The unknown scalar terms  ‖𝒑𝒑𝑇𝑇′ ‖2 + 𝛿𝛿𝑇𝑇2  are multiplying the 
vector of ones 1𝑚𝑚. Therefore, this unknown term can be deleted 
multiplying both sides of the equation by matrix 𝑴𝑴, which has 
1𝑚𝑚 in his null space, obtaining 

𝑴𝑴𝒅𝒅 =  𝑴𝑴𝛿𝛿(𝑷𝑷′𝑇𝑇𝑷𝑷′) − 2𝑴𝑴𝑃𝑃′𝑇𝑇𝒑𝒑𝑇𝑇′ = 𝑴𝑴𝒅𝒅′ (5) 

Consequently, the square range in 2D is the same as in 3D and 
the same algorithm can be used. In this situation the depth of the 
target is not necessary to obtain its (x,y) position. Therefore, the 
depth can be computed using Pythagoras' theorem.   

Finally, (4) can be written as a linear system with 
form  𝑨𝑨𝑨𝑨 = 𝒃𝒃 + 𝝃𝝃, which can be solved by minimizing as small 
as possible the length of the error, with solution   𝑨𝑨𝑇𝑇𝑨𝑨𝑨𝑨� =  𝑨𝑨𝑇𝑇𝒃𝒃 
. Therefore, the target position estimation is 

𝒑𝒑�𝑇𝑇 = 𝑵𝑵(𝑨𝑨𝑇𝑇𝑨𝑨)−1𝑨𝑨𝑇𝑇𝒃𝒃 (6) 

where 

𝑵𝑵 = [𝑰𝑰𝑛𝑛 0] (7) 

𝑨𝑨 = �
2𝒑𝒑1𝑇𝑇 −1
⋮ ⋮

2𝒑𝒑𝑚𝑚𝑇𝑇 −1
� (8) 

𝑏𝑏 =  �
‖𝒑𝒑1‖2 −  �̅�𝑑1

⋮
‖𝒑𝒑𝑚𝑚‖2 −  �̅�𝑑𝑚𝑚

� (9) 

𝜃𝜃 =  �
𝒑𝒑𝑇𝑇

‖𝒑𝒑𝑇𝑇‖2
� (10) 

B. Iterative minimization algorithm 
The main goal of this method is to use the Maximum 

Likelihood Estimation (MLE), a statistical technique to compute 
the value that maximizes the similarity between selected values 
and observed data, which come with an unknown probability 
density function. For a normal distribution and using the log-
likelihood function, which is a continuous strictly increasing 
function over the range of the likelihood, the log-likelihood can 
be written as 

𝑙𝑙𝑙𝑙𝑙𝑙ℒ(𝒑𝒑𝑇𝑇) = −𝑚𝑚
2

 𝑙𝑙𝑙𝑙𝑙𝑙2𝜋𝜋 − 1
2
𝑙𝑙𝑙𝑙𝑙𝑙|𝑹𝑹| − 1

2
(𝒓𝒓� − 𝒓𝒓)𝑇𝑇𝑅𝑅−1(𝒓𝒓� − 𝒓𝒓) 

 = 𝐾𝐾 − 1
2

(𝒓𝒓� − 𝒓𝒓)𝑇𝑇𝑹𝑹−1(𝒓𝒓� − 𝒓𝒓) (11) 

where 𝑹𝑹 is a diagonal matrix, which values are the measurement 
error covariance 𝜎𝜎2. Then the MLE can be found by solving the 
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Fig.  1. Range-only single-beacon underwater target localization 
methodology representation, using a Wave Glider as a moving LBL 



optimization problem   𝜃𝜃� = 𝑎𝑎𝑟𝑟𝑙𝑙min
𝒑𝒑𝑇𝑇

𝑓𝑓(𝒑𝒑𝑇𝑇) , where the cost 
function is 

𝑓𝑓(𝒑𝒑𝑇𝑇) ≔  1
2

(𝒓𝒓� − 𝒓𝒓)𝑇𝑇𝑹𝑹−1(𝒓𝒓� − 𝒓𝒓) (12) 

In general, this cost function is non-linear because of the square 
root that defines the range measurements, therefore there is no 
closed form solution. However, an iterative method can be used 
to solve this minimization problem, such as negative gradient 
descent or Newton methods. Only the final formulation is 
presented in this paper to reduce its length, for detailed 
development see [2] and [9]. 

To use these two iterative minimization methods the cost 
function gradient and its Hessian must be calculated, obtaining  

∇𝑓𝑓(𝒑𝒑𝑇𝑇) = −𝑪𝑪𝛿𝛿(𝒓𝒓)−1𝑹𝑹−1(𝒓𝒓� − 𝒓𝒓) (13) 

And 

∇2𝑓𝑓(𝒑𝒑𝑇𝑇) 

= −𝑪𝑪𝛿𝛿(𝒓𝒓)−3𝑹𝑹−1𝛿𝛿(2𝒓𝒓 − 𝒓𝒓�)𝑪𝑪𝑇𝑇 + 𝜶𝜶𝑇𝑇𝛿𝛿(𝒓𝒓)−1𝟏𝟏𝑚𝑚𝑰𝑰𝑛𝑛 (14) 

where 

𝑹𝑹 =  �
𝜎𝜎2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝜎2

� (15) 

𝜶𝜶 =  𝑹𝑹−1(𝒓𝒓� − 𝒓𝒓) (16) 

𝑪𝑪 =  [𝒑𝒑𝑇𝑇 − 𝒑𝒑1 … 𝒑𝒑𝑇𝑇 − 𝒑𝒑𝑚𝑚] (17) 

Using the gradient of the cost function and its Hessian the 
iterative minimization algorithm can be computed by Algorithm 
1. 

Algorithm 1: Iterative Minimization 

1: Start from an initial estimation value  𝒑𝒑𝑇𝑇0. And set  𝑘𝑘 = 0 

2: Calculate a search direction using Gradient descent (13) or 
Newton descent (14). 

a) ℎ(𝒑𝒑𝑇𝑇) = −𝛻𝛻𝑓𝑓(𝒑𝒑𝑇𝑇)
b) ℎ(𝒑𝒑𝑇𝑇) = −(𝛻𝛻2𝑓𝑓(𝒑𝒑𝑇𝑇))−1𝛻𝛻𝑓𝑓(𝒑𝒑𝑇𝑇)

3: Determine the step size (Armijo rule). 

𝑠𝑠𝑘𝑘 = 𝑠𝑠𝛽𝛽𝑚𝑚𝑖𝑖  

where 𝑠𝑠 > 0,  𝛽𝛽,𝜎𝜎 ∈ (0,1), and 𝑚𝑚𝑖𝑖  is the first integer that 
satisfies 

𝑓𝑓�𝒑𝒑𝑇𝑇 𝑘𝑘 + 𝑠𝑠𝛽𝛽𝑚𝑚𝑖𝑖h(𝒑𝒑𝑇𝑇 𝑘𝑘)�
≤ 𝑓𝑓(𝒑𝒑𝑇𝑇 𝑘𝑘) + 𝜎𝜎𝑠𝑠𝛽𝛽𝑚𝑚𝑖𝑖h(𝒑𝒑𝑇𝑇 𝑘𝑘)𝑇𝑇∇𝑓𝑓(𝒑𝒑𝑇𝑇 𝑘𝑘) 

4: Update the estimation value. 

𝒑𝒑𝑇𝑇 𝑘𝑘+1 =  𝒑𝒑𝑇𝑇 𝑘𝑘 +   𝑠𝑠𝑘𝑘ℎ(𝒑𝒑𝑇𝑇) 

𝑘𝑘 = 𝑘𝑘 + 1 

5: if ‖∇𝑓𝑓(𝒑𝒑𝑇𝑇)‖ ≤  𝜖𝜖 or 𝑘𝑘 ≥  𝑘𝑘𝑚𝑚𝑚𝑚𝑇𝑇:   stop 

else:   go to 2 

After these mathematical formulations a set of different 
simulations and real tests can be conducted to characterize the 
performance of the system and identify the best parameters for 
underwater target localization using a Wave Glider with single-
range and single-beacon architecture. 

III. SIMULATIONS

Different simulations were conducted to determine the best 
parameters to increase the capabilities of the acoustic 
positioning system. Four parameters were selected: path shape, 
number of points needed, radius around target and offset from 
target. Moreover, the performance of the derived LS and MLE 
algorithms was compared against the Cramér-Rao Bound 
(CRB), which specifies the best possible performance 
attainable with any estimator.  

For a scalar unbiased case, the variance of estimator 𝒑𝒑𝑇𝑇�  is 
bounded by the Fisher information 𝐼𝐼(𝒑𝒑𝑇𝑇�) as 

𝑣𝑣𝑎𝑎𝑟𝑟(𝒑𝒑𝑇𝑇�) ≥  1
𝐼𝐼(𝒑𝒑𝑇𝑇�)�  (18)

where the Fisher information is defined by 

𝐼𝐼(𝒑𝒑𝑇𝑇�) =  −𝐸𝐸 �𝜕𝜕
2ℓ(𝑟𝑟;𝒑𝒑𝑇𝑇)

𝜕𝜕𝒑𝒑𝑇𝑇2
� � (19) 

where ℓ(𝑟𝑟;𝒑𝒑𝑇𝑇) = 𝑙𝑙𝑙𝑙𝑙𝑙ℒ(𝒑𝒑𝑇𝑇), which can be seen in (11), and 𝐸𝐸 
denotes the expected value. Computing the second derivative 
of the likelihood logarithm function and its expected value, the 
CRB obtained is 

𝑣𝑣𝑎𝑎𝑟𝑟(𝒑𝒑𝑇𝑇�) ≥ 𝑡𝑡𝑟𝑟[(𝑪𝑪𝛿𝛿(𝒓𝒓)−1𝑹𝑹−1𝛿𝛿(𝒓𝒓)−1𝑪𝑪𝑇𝑇)−1] (20) 

which can be compared with the Root Mean Square Error 
(RMSE), which represents the sample standard deviation of the 
differences between predicted values and observed values, 
using the expression  𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 =  �𝑣𝑣𝑎𝑎𝑟𝑟(𝒑𝒑𝑇𝑇�). 

Different scenarios can be computed using (20) to observe 
the theoretical performance of the configuration (Wave Glider 
as a LBL system and an underwater target at 1800 m of depth). 
For example, Fig. 2 shows the CRB comparison between 
different shapes, number of points and radius from target (top, 
center and bottom images respectively). These figures show 
that the better accuracy and precision are obtained with a circle 
shape, long radius and large quantity of points.  However, more 
scenarios have been simulated to obtain a better 
characterization. All the simulations conducted for this paper 
have been obtained through 1000 Monte Carlo iterations, with 
a normal noise probability distribution, with zero mean and 
standard deviation equal to 1. 



Fig.  2.  Cramér-Rao Bound representation under different scenarios: 
comparison of different path shapes (top figures), comparison of 
different number of points (middle figures), and comparison of 
different radius (bottom figures). All these representations are for a 
target depth equal to 1800 m. Blue dots represents the points used. 

A. Number of points 
One of the main ways to increase the precision of the system 

is using more points to compute the target position. This is the 
most common method to reduce the variance of any 
measurement with random noise, and is given by 

𝑣𝑣𝑎𝑎𝑟𝑟(𝑧𝑧𝑖𝑖) =  1
𝑛𝑛−1

∑ ( 𝑧𝑧𝑗𝑗 − 𝑧𝑧̅ )2𝑛𝑛
𝑗𝑗=1  (21) 

where 𝑧𝑧𝑖𝑖  are 𝑛𝑛 independent observations of 𝑧𝑧 . This behavior 
can be seen in Fig. 3, which show the results for 4, 6, 12, 24 
points for different radius and distances from target.  

Fig.  3. RMSE evolution as a function of the number of points used to 
compute the target position, for circles centered over the target with 

100 m, 400 m, and 1000 m of radius (r100, r400, and r1000 
respectively). With 1800 m target depth. 

B. Radius around target 
Another interesting test is to observe the behavior under 

different path radii centered over the target, this parameter is 
shown in Fig. 4 where 50, 100, 200, 400, 600, 800 and 1000 
meters path radius are simulated. Moreover, LS and MLE 
algorithms are compared against CRB. It can be observed that 
the performance of both algorithms are very similar and very 
close to the CRB. In all cases a greater radius results in a lower 
RMSE. 

Fig.  4.  RMSE evolution as a function of the circle radius, for a target 
at 1800 m of depth. Moreover, a comparison between LS, MLE and 
CRB algorithms are shown.  

This behavior can be derived computing the surface range, 
which is 

 𝑠𝑠𝑟𝑟 = �𝑟𝑟2 − 𝑑𝑑𝑑𝑑𝑝𝑝𝑡𝑡ℎ2 = �𝑟𝑟2 − (𝑟𝑟 − 𝑥𝑥)2 (22) 

where 𝑥𝑥 is the difference between range and depth. The error 
can be defined as 𝜀𝜀 =  (𝑠𝑠𝑟𝑟 − 𝑠𝑠𝑟𝑟� ) and is 

𝜀𝜀 =  √2𝑟𝑟𝑥𝑥 − 𝑥𝑥2 −�2𝑟𝑟(𝑥𝑥 + 𝑤𝑤) − 𝑥𝑥2+𝑤𝑤2 (23) 

With (23) we can observe that if 𝑥𝑥 ≃ 0 (depth and range are 
very similar) the error is  𝜀𝜀 ≃ √2𝑟𝑟𝑤𝑤 + 𝑤𝑤2 and if 𝑥𝑥 ≃ 𝑟𝑟 (range 
is much bigger than depth) the error is  𝜀𝜀 ≃ 𝑤𝑤. 

C. Offset from target 
Finally, a set of simulations have been conducted to observe 

the RMSE with different offsets between the center of the circle 
path and the underwater target. In this case, as before, both 
algorithms have the same performance as the CRB. RMSE 
increases with the offset between the path and target, as shown 
in Fig. 5.   

IV. REAL FIELD TESTS

Several sea tests have been conducted to compare and 
validate the algorithm’s ability to locate a target, and to validate 
the optimal path, radius and number of points suggested by 
simulations. These tests have been conducted with two different 
seabed targets in Monterey Bay, California; a shallow water 
target (80 m depth) and a mid water target (1800 m depth). 
These target locations can be seen in Fig. 6. 
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Fig.  5  RMSE evolution as a function of the offset between 
circumference center and target, for a target at 1800 m of depth. 
Moreover, a comparison between LS, MLE and CRB algorithms are 
shown. 

Fig.  6.  Map of Monterey Bay, where the tests were carried out. These 
were done in two locations: first location (A) in a temporary 
deployment at 80 m depth, and a second location (B) over a BIN 
instrument node at 1800 m depth in the Monterey canyon. 

In the first case (A), a set of tests was carried out to evaluate 
the algorithms, and the scripts to control the Wave Glider 
navigation. These tests were done over a temporary modem 
deployment in shallow water, near the coast zone at 80 m of 
depth. The path shapes realized are shown in Fig. 7; in this case 
a square and a circle path were used. 

After these initial tests, two groups of tests were conducted 
over the BIN instrument node (which is deployed at 1800 m of 
depth) to determine the best radius and offset of a circle path 
shape. Fig. 8 shows the path shapes of the first group of tests, 
which consists of three circles of 100 m, 400 m and 800 m of 
radius, all of them centered over the BIN. Moreover the main 
results are shown in Table I: the target position computed using 
LS algorithm (easting, northing and depth), the error versus 
target true position, number of points used (Np), and total time 
to complete the path. Target true position was obtained using 
the average value of three paths shapes with a total of 154 
ranges. 

Fig.  7. Square and circle path shape, blue and red lines consecutively, 
done over a temporary deployment target at 80 m depth. Each dot 
represents a WG range acquired, where its color is the range value in 
meters. Triangle is the computed target position.  

Fig.  8. WG trajectories realized over BIN target with three different 
radius, which were 100, 400 and 800 meters. 

To compare field test results with the simulation results we 
compute the target position using only 4 or 6 equidistant points 
between all the ranges obtained in the field test, which allow us 
to choose different groups of 4 and 6 points and take the average 
value of the RMSE. These results are shown in Fig. 9. 

TABLE I.  MAIN RESULTS FOR FIELD TEST 1 

Path Easting error Northing error Depth error Np Time

r100 580922.120 15.1 4062178.835 -1.2 1860.7 0.7 11 13'

r400 580936.959 0.2 4062175.635 2.0 1858.7 2.7 36 56'

r800 580936.095 1.1 4062179.406 -1.8 1863.8 -2.4 64 1h57'
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Fig.  9. These graphics show a behavior comparison between 
simulation (SIM) and real data (RD) results for different radius of 
circle paths centered over the BIN target. Using 4 and 6 equidistant 
points to compute the target localization. 

In these graphs we can observe that the real data 
performance is similar to the results obtained with simulations. 
And with a radius equal or greater than 400 m we obtain good 
performance, with a RMSE lower than 10 m. We can obtain a 
RMSE lower than 5 m for radius greater than 800 m. 

Finally a second field test was conducted over the BIN 
target to observe the accuracy influence with offset. For this 
purpose three paths was done, with distances of 0 m, 500 m and 
100 m between circumference center and target, and with a 
radius of 400 m. Fig. 10 shows the path shapes of this second 
test. Moreover the main results are shown in Table II. 

TABLE II. MAIN RESULTS FOR FIELD TEST 2 

Fig.  10. WG trajectories realized over BIN target with three different 
offsets between target and circle center, which were 0, 500 and 1000 
meters. 

As before, we compute the RMSE using different groups of 
4 or 6 equidistant ranges to compare the field results with 
simulations. These results can be observed in Fig. 11.  We can 
see that the behavior between real tests and simulations is 
similar, but the RMSE obtained during the tests is bigger than 
the results obtained with simulations. This shows that the 
mathematical model for standard deviation used for simulations 
is not accurate, when we want to compute the target localization 
error, when the center of the points used as anchors are far away 
from the target. Therefore, a future and more detailed study for 
this case is necessary.  

Fig.  11. These graphics show a behavior comparison between 
simulations (SIM) and real data (RD) results for different offsets of 
circle paths cover the BIN target. Using 4 and 6 equidistant points to 
compute the target localization. 

V. CONCLUSIONS 
This work shows the Wave Glider performance as a moving 

LBL with simulations and real sea tests. With this study we can 
determine the best path and its characteristics, such as number 
of points, radius or offset, to obtain the desired target 
localization performance, which are a minimum number of 
points equal to 12, radius greater than 400 m and offset as low 
as possible. With these parameters we can obtain a RMSE less 
than 4 meters. 

Mathematical algorithms and performance have been 
compared with sea test, showing a good similarity, which 
corroborates the simulations done in this paper. However, the 
RMSE observed with different offsets was greater than the 
RMSE obtained by simulations; this might be caused by the 
noise model used, which was simple Gaussian noise with zero 
mean and standard deviation equal to one. Therefore, future 
improvements of this model will be studied to adjust it with the 
real performance observed. 

Finally, future comparisons with these results with other 
aspects such as weather conditions or mission parameters (for 
example, time to complete the path or power consumption) can 
be done. 
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Abstract—. Underwater localization using acoustic signals is one of the main components in a navigation system for an AUV as a more accurate alternative to dead-reckoning techniques. While different methods based on the idea of multiple beacons have been studied, other approaches use only one beacon, which reduces the system costs and deployment complexity. The inverse approach for single-beacon navigation is to use this method for target localization by an underwater or surface vehicle. In this paper we present a method of range-only target localization using a Wave Glider ™, for which simulations and sea tests have been conducted to determine optimal parameters to minimize acoustic energy use and search time and to maximize location accuracy and precision.

Keywords— target localization, underwater, vehicle, acoustic

Introduction 

One of the main challenges in oceanographic research is that of underwater positioning. It is well known that the GPS signal suffer a large attenuation underwater. Therefore, different methods and architectures have been developed using acoustic signals, which have better underwater performance, such as Long Baseline (LBL), Ultra Short Baseline (USBL) and GPS Intelligent Buoys (GIB). Each of these systems has its own application as a function of project necessities and constraints. For example LBL system offer the best precision and accuracy, but with high deployment and maintenances costs. These costs can be somewhat reduced by GIB systems, which use surface buoys instead of seafloor nodes. If the main goal is to reduce the setup time, the best option is a USBL system, but with less accuracy than the other methods. 

The most recent works are focused on Underwater Acoustic Networks (UWAN), which implement traditional concepts of acoustic positioning. On the other hand, some studies have focused on single beacon localization methods to reduce deployment costs. In these architectures the main goal is to use one autonomous mobile beacon to localize different underwater targets. This methodology, known as single-beacon range-only localization [1][2][3][4] has its particular challenges, such as path characterization (path shape, number of points and maximum range) or performance evaluation (accuracy and reliability). All of these parameters must be evaluated under different circumstances and setup characteristics.

In the literature different papers about observability (which introduces some restrictions in paths and maneuvers) can be found, for example in [5] the authors derive that the best trajectory is to do turning motions around the beacon, and in [3] a similar approach is used with a surface vehicle following three AUVs. However, all these works are mathematical developments and only show some simulations. On the other hand, in other works such as [4] and [6] the authors present some field test results to localize an underwater target using range-only methods, but in their case, they do not present a general study to find the best parameters for target localization.

In this work we show how to determine the optimal parameters for this method. Additionally, we present results of simulations and sea tests to demonstrate the good performance of a Wave Glider used as a single-beacon LBL system for target localization. This method can be used in a wide range of applications using the long-duration, autonomous navigation and computational characteristics of Wave Glider applications.

A) Target localization in benthic zone:

· Instruments on seabed, which may be stationary or moving (e.g. slowly sliding down a submarine canyon, or on a benthic ‘rover’) 

· Low motion tagged benthic marine species

B) Target localization in Pelagic zone:

· Drifter buoys 

· Autonomous underwater vehicles (AUV)

· Low motion tagged pelagic marine species



Range-Only Target Localization

The concept of single-beacon range-only positioning can be divided into two groups: as a navigational aid for a moving vehicle [7] (group 1), or to localize a stationary or moving target [1] (group 2). All these methods use a set of ranges between a target and different static nodes, known as anchor nodes. Typically, these ranges can be obtained using Time of Flight (TOF) given the speed of sound in water. Then, the unknown underwater target position problem can be solved using trilateration, where in general, three or more points are needed in 2D dimensions and, at least, four points in 3D scenarios. 

In general, the inverse problem has received more attention in the literature (group 1) where an AUV needs to be located using a set of known transponders, as in [2].  However similar approaches can be used in this case, where an autonomous vehicle is used to find an underwater target (group 2). The method used in this paper can be seen in Fig. 1, where a range-only target localization method based on single-beacon architecture is presented. The target position is computed using a Wave Glider, which periodically measures the range to the underwater target, while it is moving on the surface.

 Therefore, following the same notation as [2], the underwater target positioning vector can be defined as, where  can be either 2 or 3 and is the space dimension of the problem. All the Wave Glider positions used in the trilateration problem can be denoted as  where. Then, the ranges measured with Wave Glider between itself and target can be expressed as

	(1)

where is the true range and  is some zero mean Gaussian measurement error where  is the variance. Also, this expression can be written in matrix form as   .  In general, this non-linear, non-smooth and overdetermined (when) system doesn’t have a straightforward solution. At this point, two different methodologies are used in the literature to solve the system and find the target position through ranges: linearize the function and find a closed-form Least Squares (LS) solution; or use an iterative minimization algorithm to minimize a cost function related to the Maximum Likelihood (ML) estimate. 

Closed-form Least Squares algorithm

Because the main goal of this paper is not to compare different algorithms performance, a simple Unconstrained Least Square algorithm is used, which was introduced in [8]. However, as will be shown, its performance is quite good. 

The main idea on LS algorithms is linearize the system using the squared range measurements, obtaining

	(2)

where  is the new measurement error as a function of   and . In this case, is not obvious that  as before. Under some circumstances this assumption is possible, for example when, but this assumption is not true when the vehicle is close to the target. See [2] for more information.

[image: C:\Users\Ivan Masmitja\Dropbox\phD Ivan\phD Posicionament Acustic SARTI\AA Publications\1 Static Target\2 Congress publication_Path Char\figures.emf]On the other hand, a 2D formulation can be done in this case, where all the points used to compute the underwater target position are coplanar, in the same z-coordinate, which in this case is on the sea surface. The square ranges are defined byFig.  1. Range-only single-beacon underwater target localization methodology representation, using a Wave Glider as a moving LBL



 

 

 

 	(3)

and 

	(4)

The unknown scalar terms   are multiplying the vector of ones. Therefore, this unknown term can be deleted multiplying both sides of the equation by matrix, which has   in his null space, obtaining

	(5)

Consequently, the square range in 2D is the same as in 3D and the same algorithm can be used. In this situation the depth of the target is not necessary to obtain its (x,y) position. Therefore, the depth can be computed using Pythagoras' theorem.  

Finally, (4) can be written as a linear system with form, which can be solved by minimizing as small as possible the length of the error, with solution  . Therefore, the target position estimation is

	(6)

where 

	(7)

	(8)

	(9)

	(10)



Iterative minimization algorithm

The main goal of this method is to use the Maximum Likelihood Estimation (MLE), a statistical technique to compute the value that maximizes the similarity between selected values and observed data, which come with an unknown probability density function. For a normal distribution and using the log-likelihood function, which is a continuous strictly increasing function over the range of the likelihood, the log-likelihood can be written as

 

	(11)

where  is a diagonal matrix, which values are the measurement error covariance . Then the MLE can be found by solving the optimization problem, where the cost function is

	(12)

In general, this cost function is non-linear because of the square root that defines the range measurements, therefore there is no closed form solution. However, an iterative method can be used to solve this minimization problem, such as negative gradient descent or Newton methods. Only the final formulation is presented in this paper to reduce its length, for detailed development see [2] and [9].

To use these two iterative minimization methods the cost function gradient and its Hessian must be calculated, obtaining 

	(13)

And



	(14)

where

	(15)

	(16)

	(17)

Using the gradient of the cost function and its Hessian the iterative minimization algorithm can be computed by Algorithm 1.



		Algorithm 1: Iterative Minimization 



		1: Start from an initial estimation value. And set 

2: Calculate a search direction using Gradient descent (13) or     Newton descent (14).







3: Determine the step size (Armijo rule).



where , , and is the first integer that satisfies





4: Update the estimation value.





5: if or    stop

else:   go to 2







After these mathematical formulations a set of different simulations and real tests can be conducted to characterize the performance of the system and identify the best parameters for underwater target localization using a Wave Glider with single-range and single-beacon architecture.

Simulations

Different simulations were conducted to determine the best parameters to increase the capabilities of the acoustic positioning system. Four parameters were selected: path shape, number of points needed, radius around target and offset from target. Moreover, the performance of the derived LS and MLE algorithms was compared against the Cramér-Rao Bound (CRB), which specifies the best possible performance attainable with any estimator. 

For a scalar unbiased case, the variance of estimator  is bounded by the Fisher information  as

 

	(18)



where the Fisher information is defined by



 	(19)



where , which can be seen in (11), and  denotes the expected value. Computing the second derivative of the likelihood logarithm function and its expected value, the CRB obtained is



	(20)



which can be compared with the Root Mean Square Error (RMSE), which represents the sample standard deviation of the differences between predicted values and observed values, using the expression. 

Different scenarios can be computed using (20) to observe the theoretical performance of the configuration (Wave Glider as a LBL system and an underwater target at 1800 m of depth). For example, Fig. 2 shows the CRB comparison between different shapes, number of points and radius from target (top, center and bottom images respectively). These figures show that the better accuracy and precision are obtained with a circle shape, long radius and large quantity of points.  However, more scenarios have been simulated to obtain a better characterization. All the simulations conducted for this paper have been obtained through 1000 Monte Carlo iterations, with a normal noise probability distribution, with zero mean and standard deviation equal to 1.
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Fig.  2.  Cramér-Rao Bound representation under different scenarios: comparison of different path shapes (top figures), comparison of different number of points (middle figures), and comparison of different radius (bottom figures). All these representations are for a target depth equal to 1800 m. Blue dots represents the points used.

Number of points

One of the main ways to increase the precision of the system is using more points to compute the target position. This is the most common method to reduce the variance of any measurement with random noise, and is given by



	(21)



where  are independent observations of . This behavior can be seen in Fig. 3, which show the results for 4, 6, 12, 24 points for different radius and distances from target. 
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Fig.  3. RMSE evolution as a function of the number of points used to compute the target position, for circles centered over the target with 100 m, 400 m, and 1000 m of radius (r100, r400, and r1000 respectively). With 1800 m target depth.

Radius around target

Another interesting test is to observe the behavior under different path radii centered over the target, this parameter is shown in Fig. 4 where 50, 100, 200, 400, 600, 800 and 1000 meters path radius are simulated. Moreover, LS and MLE algorithms are compared against CRB. It can be observed that the performance of both algorithms are very similar and very close to the CRB. In all cases a greater radius results in a lower RMSE.
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Fig.  4.  RMSE evolution as a function of the circle radius, for a target at 1800 m of depth. Moreover, a comparison between LS, MLE and CRB algorithms are shown. 

This behavior can be derived computing the surface range, which is



 	(22)



where  is the difference between range and depth. The error can be defined as  and is



	(23)



With (23) we can observe that if  (depth and range are very similar) the error is   and if (range is much bigger than depth) the error is.



Offset from target

Finally, a set of simulations have been conducted to observe the RMSE with different offsets between the center of the circle path and the underwater target. In this case, as before, both algorithms have the same performance as the CRB. RMSE increases with the offset between the path and target, as shown in Fig. 5.  

Real Field Tests

Several sea tests have been conducted to compare and validate the algorithm’s ability to locate a target, and to validate the optimal path, radius and number of points suggested by simulations. These tests have been conducted with two different seabed targets in Monterey Bay, California; a shallow water target (80 m depth) and a mid water target (1800 m depth). These target locations can be seen in Fig. 6.

[image: C:\Users\Ivan Masmitja\Dropbox\phD Ivan\phD Posicionament Acustic SARTI\AA Publications\1 Static Target\2 Congress publication_Path Char\figures paper\shallowWagerCS (2).emf]Fig.  5  RMSE evolution as a function of the offset between circumference center and target, for a target at 1800 m of depth. Moreover, a comparison between LS, MLE and CRB algorithms are shown.
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Fig.  6.  Map of Monterey Bay, where the tests were carried out. These were done in two locations: first location (A) in a temporary deployment at 80 m depth, and a second location (B) over a BIN instrument node at 1800 m depth in the Monterey canyon.

In the first case (A), a set of tests was carried out to evaluate the algorithms, and the scripts to control the Wave Glider navigation. These tests were done over a temporary modem deployment in shallow water, near the coast zone at 80 m of depth. The path shapes realized are shown in Fig. 7; in this case a square and a circle path were used.
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After these initial tests, two groups of tests were conducted over the BIN instrument node (which is deployed at 1800 m of depth) to determine the best radius and offset of a circle path shape. Fig. 8 shows the path shapes of the first group of tests, which consists of three circles of 100 m, 400 m and 800 m of radius, all of them centered over the BIN. Moreover the main results are shown in Table I: the target position computed using LS algorithm (easting, northing and depth), the error versus target true position, number of points used (Np), and total time to complete the path. Target true position was obtained using the average value of three paths shapes with a total of 154 ranges.

Main results for field test 1

[image: ]







Fig.  7. Square and circle path shape, blue and red lines consecutively, done over a temporary deployment target at 80 m depth. Each dot represents a WG range acquired, where its color is the range value in meters. Triangle is the computed target position. 
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Fig.  8. WG trajectories realized over BIN target with three different radius, which were 100, 400 and 800 meters.

To compare field test results with the simulation results we compute the target position using only 4 or 6 equidistant points between all the ranges obtained in the field test, which allow us to choose different groups of 4 and 6 points and take the average value of the RMSE. These results are shown in Fig. 9.
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Fig.  9. These graphics show a behavior comparison between simulation (SIM) and real data (RD) results for different radius of circle paths centered over the BIN target. Using 4 and 6 equidistant points to compute the target localization.

In these graphs we can observe that the real data performance is similar to the results obtained with simulations. And with a radius equal or greater than 400 m we obtain good performance, with a RMSE lower than 10 m. We can obtain a RMSE lower than 5 m for radius greater than 800 m.



Finally a second field test was conducted over the BIN target to observe the accuracy influence with offset. For this purpose three paths was done, with distances of 0 m, 500 m and 100 m between circumference center and target, and with a radius of 400 m. Fig. 10 shows the path shapes of this second test. Moreover the main results are shown in Table II.



Main results for field test 2
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Fig.  10. WG trajectories realized over BIN target with three different offsets between target and circle center, which were 0, 500 and 1000 meters.



As before, we compute the RMSE using different groups of 4 or 6 equidistant ranges to compare the field results with simulations. These results can be observed in Fig. 11.  We can see that the behavior between real tests and simulations is similar, but the RMSE obtained during the tests is bigger than the results obtained with simulations. This shows that the mathematical model for standard deviation used for simulations is not accurate, when we want to compute the target localization error, when the center of the points used as anchors are far away from the target. Therefore, a future and more detailed study for this case is necessary. 
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Fig.  11. These graphics show a behavior comparison between simulations (SIM) and real data (RD) results for different offsets of circle paths cover the BIN target. Using 4 and 6 equidistant points to compute the target localization.

Conclusions

[bookmark: _GoBack]This work shows the Wave Glider performance as a moving LBL with simulations and real sea tests. With this study we can determine the best path and its characteristics, such as number of points, radius or offset, to obtain the desired target localization performance, which are a minimum number of points equal to 12, radius greater than 400 m and offset as low as possible. With these parameters we can obtain a RMSE less than 4 meters.

Mathematical algorithms and performance have been compared with sea test, showing a good similarity, which corroborates the simulations done in this paper. However, the RMSE observed with different offsets was greater than the RMSE obtained by simulations; this might be caused by the noise model used, which was simple Gaussian noise with zero mean and standard deviation equal to one. Therefore, future improvements of this model will be studied to adjust it with the real performance observed.

Finally, future comparisons with these results with other aspects such as weather conditions or mission parameters (for example, time to complete the path or power consumption) can be done.
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