
A graph-semantics of business configurations

José Luiz Fiadeiro1, Nikos Mylonakis2, and Fernando Orejas2

1Royal Holloway, University of London
2Department of Computer Science, UPC

September 10, 2014

Abstract

In this paper we give graph-semantics to a fundamental part of the
semantics of the service modeling language SRML. To achieve this
goal we develop a new graph transformation system for what we call
2-level symbolic graphs. These kind of graphs extend symbolic graphs
with a simple 2-level hierarchy that can be generalized to arbitrary
hierarchies. We formalize the semantics using this new graph transfor-
mation system using a simple example of a trip booking agent.

1 Introduction
SRML ([8, 10, 11]) is a service modeling language designed within
the project SENSORIA. Its state model is considered at two levels
of abstraction. Roughly, at the lowest level, a state configuration is
a graph consisting of interconnected components and, at the highest
level, business configurations are graphs consisting of interconnected
activities, where each activity is a graph of components. This definition
at two levels of abstraction is needed to allow for dynamic service
binding. Unfortunately, the operational semantics of SRML is defined
in a relative ad-hoc way, which means that, to animate its models, one
would have to build a specific implementation.

The goal of this work is to provide a graph transformation seman-
tics for SRML so that its models could be animated using some graph
transformation tool, such as the Maude implementation of graph trans-
formation [2]. Following these ideas, in this paper, we present a new
framework of 2-level graphs, based on the notion of symbolic graph
and symbolic graph transformation [12], showing that it is m-adhesive.
Then we show how this framework can be used to define (part of) a
graph transformation semantics of SRML. We believe that this new
semantics has the advantage that an implementation could be relati-
vely easy if we had a tool for the graph transformation system that we
propose.

1

The paper is organized as follows. In Sections 2 and 3, we present an
overview of SRML and symbolic graphs, respectively. Then, in Section
4, we present our framework of 2-level graphs. Section 5 is dedicated
to showing how we can define part of the semantics of SRML using
hierarchical graph transformation. Finally, in Section 6, we discuss
some related work and conclude the paper.

2 Introduction to SRML
The essential concept of the Sensoria Reference Modeling Language
(SRML) is the notion of module which is inspired by the constructions
presented in Service Component Architecture (SCA). See [8, 10, 11]
for a detailed description of the language. Roughly speaking, a mo-
dule can be seen as a graph of components that are connected by wires.
Moreover a module also includes some provides and requires interfaces,
which are also connected by wires to the components. As an example
of a module we present a booking agent. This module, which is grap-
hically depicted in Fig. 1, is supposed to offer a service for booking
trips (flight and hotel). It includes a single component (BookAgent)
that is supposed to take care of the booking and three interfaces: a
provides interface (Customer) for customer requests and two requires
interfaces (FlightAgent and HotelAgent). The BookAgent is supposed
to receive trip reservation requests from customers that are connected
to the Customer interface. Then, BookAgent is supposed to request a
flight and a hotel to services connected to the FlightAgent and Hote-
lAgent, respectively, which are supposed to provide the corresponding
reservation confirmations through a hotel and a flight code. These co-
des will then be returned to the customer. However, due to lack of
space, in our example, we only see how the Bookagent requests a flight
to the FlightAgent.

BOOKING AGENT

CR:
Customer

BA:
BookAgent

FA:
FlightAgent

HA:
HotelAgent

CB

BH

BF

Figure 1: BOOKING AGENT service module

2

Components are specified by a business role consisting of a signa-
ture and an orchestration part. The signature declares the events in
which that component may take part and the orchestration describes
the behavior of the component. For instance, below we can see a small
part of the specification of the main component of the booking agent
module.

BUSINESS ROLE BookAgent is
r&s booktrip

from,to:string; out,in:integer;
Btconf : (fcode,hcode);

s&r bookflight

from,to:string; out,in:integer;
Bfconf : fcode;

. . .
ORCHESTRATION
local
from,to:string; out,in:integer;
fconf : fcode; hconf : hcode;

transition Torder
triggered by booktrip

effects
from’ = booktrip.from ∧
to’ = booktrip.to ∧
out’ = booktrip.out ∧
in’ = booktrip.in

sends bookflight

bookflight.from = from’ ∧
bookflight.to = to’ ∧
bookflight.out = out’ ∧
bookflight.in = in’ ∧

. . .

In this specification we de-
clare that BookAgent has an
interaction called booktrip in which
the component participates re-
ceiving and then sending infor-
mation (r&s) and another in-
teraction called bookflight in which
the component participates sen-
ding and then receiving infor-
mation (s&r). For example, bo-
oktrip has four input parame-
ters
(from, to, out and in) and one
output parameter
(tconf). Then, in the orches-
tration part, first we declare the
local variables of the component
and possibly their initialization,
and then we specify the effects
of the interactions in which the
component may take part. For
instance, in the example, the
local variables from, to, in, and
out are supposed to store the basic data of the trip being booked
(source, destination, departure and return dates, respectively), and
fconf and hconf are supposed to store the flight and hotel reservation
codes that have been booked. In the example, we also declare the
local effects of an interaction, called Torder, in which the component
takes part. This interaction is triggered by the event booktrip that
the component receives. The contents of the local variables from, to,
in, and out after the interaction are the contents of the corresponding
parameters of booktrip. Moreover, the interaction triggers an event bo-
okflight, which is sent by the component with the corresponding input
parameters.

External interfaces are specified through business protocols. They
also include a signature and they specify the conversations that the
module expects relative to each party. It is the responsibility of the
coparty to adhere to these protocols. Finally, wires bind the names
of the interactions and specify the protocols that coordinate the in-
teractions between two parties. For instance, this module includes the
wire CB that connects the business protocol of the customer of the
BOOKING AGENT module and the business role BookingAgent of
the same module. We do not include here an example of an interface

3

or of a wire specification, since they are not relevant for this paper.
Another issue of SRML that we do not treat for reasons of space is
service level agreement (SLA).

As we saw in the definition of our service oriented architecture, business configu-
rations can be described as a graph whose nodes are the components that are active
at a given moment and whose edges are the wires connecting them. Moreover, a
business configuration also includes the values contained by the local variables of
wires and components and the events that are pending to be executed.

These states can evolve in two different ways. On the one hand, the execution
of an event causes that this event is eliminated from the set of pending events and,
moreover, it may cause that some local variables in the components involved in the
event change their value, and some other events are triggered meaning that they are
added to the set of pending events. On the other hand, when the requires interface
of an activity module AM matches the provides interface of a service module SM
the two modules are connected and the activity is bound to this new service. This
implies that initialized instances of the components and wires of SM are added to
the state configuration and also to the activity associated to AM . The activity
module associated to the enriched activity would include the components and wires
of that activity and, in addition, the remaining (non-matched) interfaces of AM
and SM .

3 Symbolic graphs and symbolic graph transforma-
tion

Symbolic (hyper)graphs [12] can be seen as a specification of a class of attributed
graphs (i.e. of graphs including values from a given data algebra in their nodes
or edges). In particular, in a symbolic graph, values are replaced by variables
and, moreover, a set of formulas, Φ, specifies the values that the variables may
take. Then, we may consider that a symbolic graph SG denotes the class of all
graphs obtained replacing the variables in the graph by values that satisfy Φ. For
instance, the symbolic graph in Figure 2 specifies a class of attributed graphs,
including distances in the edges, that satisfy the well-known triangle inequality.

- 1 -

with d
3
 ! d

1
+d

2

d
1

d
2

d
3

Figure 2: A symbolic graph

The notion of symbolic graph is based on the notion of a special kind of labeled
graphs called E-graphs (for details, see [6, 7]). The only difference of the notion of E-
graph that we use with respect to the notion in [6] is that we deal with hypergraphs.

4

This means that, for every graph G, instead of having source and target functions
that map edges to nodes, we have an attachment function, attachG, that maps each
(hyper)edge to a sequence of nodes, i.e. the nodes connected by the edge.

Definition 3.1 A symbolic graph over the data algebra D is a pair 〈G,ΦG〉, where
G is an E-graph over a set of variables X, and ΦG is a set of first-order formulas
over the operations and predicates in D including variables in X and elements in
D.

Given symbolic graphs 〈G1,ΦG1
〉 and 〈G2,ΦG2

〉 over D, a symbolic graph morp-
hism h : 〈G1,ΦG1

〉 → 〈G2,ΦG2
〉 is an E-graph morphism h : G1 → G2 such that

D |= ΦG2 ⇒ h(ΦG1), where h(ΦG1) is the set of formulas obtained when replacing
in ΦG1 every variable x1 in the set of labels of G1 by hX(x1).

Symbolic graphs overD together with their morphisms form the category SymbGraphsD.
In [12] it is shown that SymbGraphsD is an adhesive HLR category, which means
that all the fundamental results of the theory of graph transformations apply to
this kind of graphs [7].

In symbolic graph transformation we consider that the left and right-hand sides
of a rule are symbolic graphs, where the conditions on the left hand side on the
rule are included in the conditions in the right hand side of the rule. This means
that applying a transformation to a symbolic graph 〈G,ΦG〉 reduces or narrows the
number of instances of the result. For instance, G may include an integer variable
x such that ΦG does not constrain its possible values. However, after applying a
given transformation, in the result graph 〈H,ΦH〉 we may have that ΦH includes
the formula x = 0, expressing that 0 is the only possible value of x.

Definition 3.2 A symbolic graph transformation rule is a triple 〈ΦL, L ←↩ K →
R,ΦR〉, where L,K are E-graphs over the same set of labels XL, R is an E-graph
over a a set of labels XR, with XL = XK ⊆ XR, L ←↩ K → R is a standard
graph transformation rule, and ΦL and ΦR are sets of formulas over XL and XR,
respectively, and over the values in the given data algebra D, with ΦL ⊆ ΦR.

Figure 3: A symbolic rule

As an example, in Figure 3 we show a rule with two events and a bookagent
component. The rule states that when arriving a booktrip event, the bookagent
registers them and sends a new bookflight event. The formula below expresses that
the origin, destination, and departure and return dates are the same in the incoming
and in the outgoing events. For simplicity, we do not depict the intermediate graph

5

K, nor do we state explicitly which are the sets XL and XR of the given rule.
Instead, we assume that XL consists of all the variables that are explicitly depicted
in the left-hand side graph, and XR consists of all the variables that are depicted in
the rule. Similarly, we just depict a single set of formulas for a given rule, assuming
that ΦR is the set consisting of all these formulas and ΦL is the subset of ΦR

consisting of the formulas that only include variables in XL.
As usual, the application of a graph transformation rule to a given symbolic

graph SG can be defined by a double pushout in the category of symbolic graphs.
However, it can also be expressed in terms of a transformation of E-graphs.

As a remark, given a symbolic graph transformation rule 〈ΦL, L←↩ K ↪→ R,ΦR〉
over a given data algebraD and a symbolic graph morphismm : 〈L,ΦL〉 → 〈G,ΦG〉,
we have that 〈G,ΦG〉 =⇒p,m 〈H,ΦH〉 if and only if the diagram below is a double
pushout in E−Graphs and D |= ΦG ⇒ m(ΦL).

L

(1)m

��

K

(2)

? _oo � � //

��

R

m′

��
G F?

_oo � � // H

and, moreover, ΦH = ΦG ∪m′(ΦR).

4 2-level symbolic graphs
In this section we introduce our notion of 2-level symbolic graph and it can be
shown that these graphs, together with their associated notion of morphism, form
anM-adhesive category [7]. Our notion of 2-level graph is inspired by the notion
of Petri Net refinement in [13]. According to that notion, in a net refinement, a
transition t can be replaced by another net, Nt, where some of its transitions are
connected to the same places that t was connected. In our case, we consider that
a 2-level graph is a graph whose edges include (standard) graphs, that may be
considered their refinement. As in the case of nets, the edges in the graph inside e
may be connected to the same nodes that e is connected. This is done by means of
a notion of graph with interface, where the interface consists of some nodes of the
graph (more precisely a sequence of nodes). In particular, if e is an edge of a 2-level
graph, whose attachment is the sequence α, we assume that the graph inside e is a
graph with interface α. Notice that, as a consequence, the nodes in the attachment
of e may be considered to be simultaneously inside and outside e. For instance, in
Fig. 4 we can see a 2-level graph. On the left, we can see the top level graph of
that graph, i.e. the graph without seeing the contents of its edges. This graph has
two nodes, n1 and n2 and two edges, e1 and e2. Edge e1 is connected to n1 and
n2 and e2 is connected to n1 and twice to n2. This means that the attachment
of e1 may be n1n2 and the attachment of e2 may be n1n2n2. The graph on the
right shows the contents of the edges. In particular, e1 has no contents or, to be
more precise, technically it includes the nodes in its interface (n1 and n2). The
edge e2 includes a graph with three edges e3, e4 and e5, whose interface is n1n2n2.
In particular e3 and e4 are connected to n1 and n2 (and to other internal nodes).
Notice that, technically, we consider that nodes n1 and n2 belong simultaneously
to the top level edge and to the graphs contained in e1 and e2.

6

Figure 4: A 2-level graph

Definition 4.1 A symbolic graph with interface over a data algebra D is a triple
〈G,ΦG, IG〉, where 〈G,ΦG〉 is a symbolic graph over D and IG is the interface, a
sequence of nodes from G, i.e. IG ∈ V ∗G. A morphism between symbolic graphs with
interface h : 〈G,ΦG, IG〉 → 〈G′,ΦG′ , IG′〉 is a symbolic graph morphism such that
h∗(IG) = IG′ , where h∗ denotes the extension of h to sequences of nodes.

In what follows, all our symbolic graphs are assumed to include an interface. As
a consequence, symbolic graphs with interface will just be called symbolic graphs
and even if it is an abuse of notation, the class (category) of symbolic graphs with
interface will also be denoted by SymbGraphsD.

Definition 4.2 A 2-level graph TG is a pair 〈TGtop, ctsTG〉, where TGtop is a
symbolic graph, the top level graph, and ctsTG is the contents function, ctsTG :
ETGtop → SymbGraphsD that, for every edge e in the top level graph, yields
the graph included in that edge, such that the attachment of e coincides with the
interface of the graph included in e, i.e. attachTGtop(e) = IctsTG(e).

2-level graphs can be flattened to form a standard symbolic graph replacing
every hierarchical edge by its contents. More precisely:

Definition 4.3 The flattening of a 2-level graph, Flat(TG) is defined as follows:

Flat(TG) = TGtop ∪
(⋃
e∈ETGtop

cts(e)
)
\ {e ∈ ETGtop | Ects(e) 6= ∅}

Morphisms between 2-level graphs TG1 and TG2 can be seen as families of
graph morphisms that map, on the one hand, the top level graph of TG1 to the top
level graph of TG2 and, on the other, the contents of each edge e1 of TG1 to the
contents of the corresponding edge of TG2:

Definition 4.4 A 2-level graph morphism h : TG1 → TG2 is a pair 〈htop, hdown〉,
where htop : TGtop

1 → TGtop
2 is a symbolic graph morphism between the top le-

vel graphs, and hdown = {he : ctsTG1(e) → ctsTG1(htop(e))}e∈E
TG

top
1

is a family

including a symbolic graph morphism for each edge in TGtop
1 .

In general, given a 2-level morphism h = 〈htop, hdown〉 we say that a symbolic
graph morphism g is inside h if g = htop or g is included in hdown.

7

It is routine to see that 2-level symbolic graphs and morphisms over a data
algebra D form a category, that we call 2SymbGraphsD. Moreover, we can see
that this category is M-adhesive, where M is the class of all monomorphisms h
such that if g is inside h then g is an M-morphism in SymbGraphsD. In the
appendix there is a quite lengthy detailed proof. In particular, pushouts in this
category are built as follows. Given the diagram below, the top level graph of TG3

is the pushout of the top level graphs and morphisms in the diagram and for every
edge e3 in TGtop

3 , ctsTG3(e3) is the colimit of the contents of each edge e0 in TGtop
0

such that gtop1 (htop1 (e0)) = e3, of each edge e1 in TGtop
1 such that gtop1 (e1) = e3, and

of each edge e2 in TGtop
2 such that gtop2 (e2) = e3.

TG0
h1 //

h2

��

TG1

g1

��
TG2 g2

// TG3

5 A graph-semantics for business configurations
In our graph semantics business configurations are represented by 2-level symbolic
graphs, whose hyperedges represent components and events at the lowest level and
activities at the top level, and whose nodes represent wires. Additionally, in the
semantics we will have two different graph transformation rules for these two ways
of transforming the state: state transformation rules and reconfiguration rules.

Our graph semantics is presented in the next two subsections. In the first one,
we present the graph semantics of business configurations, and in the second one
its associated transformation system. The semantics that we propose is also more
abstract than the original one [10] and the light version of [9], and therefore we do
not use a concrete temporal logic in our provide and request specifications and we
do not treat either the problem of name injections in wires.

5.1 Business configurations
In the first definition we present the basic concept of a state configuration:

Definition 5.1 A state configuration is an E-graph with two types of hyperedges:

• Hyperedges that represent components with a positive number of
nodes, an attribute with the name of the component and a set of
attributes of the component. We will refer to them as component
hyperedges.

• Hyperedges that represent events connected with just one node,
an attribute with the name of the event, another with the type of
the event and a set of attributes of the event. We will refer to
them as event hyperedges.

There are also two types of nodes: internal and interface nodes. Both types of
nodes can be part of different component hyperedges and a set of event hyperedges.
The main difference between these two types of nodes is that interface nodes are the
ones with which subsystem binding is performed.

8

Next, we present the concept of business configuration:

Definition 5.2 A business configuration is a 2-level graph where the top level is a
graph without cycles such that:

• each hyperedge encapsulates one state configuration.

• the top level nodes can also optionally have a set of event hypered-
ges. If they are not connected to another node they are referred
to as interface nodes. When these nodes have an event hype-
redge, they triggered a process of selection of a reconfiguration
rule package.

For example, if a customer has developed an activity module that requests a booking
agent to book a hotel and a flight, the 2-level symbolic graph that represents the
initial business configuration with an instance of this activity module will consist
of a hyperedge that represents the activity, and inside this hyperedge, another
hyperedge that represents the customer component with a set of attributes for the
flight and hotel reservation. The 2-level symbolic graph will also have a request
specification in the with clause. A graphical representation is in figure 5 .

Figure 5: Business configuration with just a customer activity

Additionally, in figures 7 and 9 we have two different stages of the initial business
configuration of figure 5. In 7 we have a hyperedge encapsulating a customer
subsystem with a set of attributes (from, to, in, out, ...). The hyperedge has an
interface node with an event hyperedge. After triggering a process of selection of a
reconfiguration rule package, the business configuration evolves to the one in figure
9, binding the interface node with an hyperedge with a booking agent subsystem
inside. This new hyperedge has also two additional interface hierarchical nodes.

5.2 Transformation systems for business configurations
In this subsection we present first the two kinds of rules that we have in transfor-
mation systems for business configurations: state transformation rules and recon-
figuration rules. After that we present reconfiguration rule packages that combine
both kind of rules.

Definition 5.3 A state transformation rule is a rule that can make the following
transformations in one activity:

9

• process an event eliminating this event from a node of an hype-
redge component;

• transform the values of the attributes of a component hyperedge
using information of the processed events of its nodes;

• pend an event in the node of a hyperedge component.

An example of state transformation rule is in figure 6: it pends an event in the
hyperedge component of the customer.

Figure 6: Rule initr associated to the customer activity

Other possible rules are a rule for processing the information of the reply-event
of the booking agent or a rule to start the payment.When the rule initr is ap-
plied to the business configuration, the initiating event is added to the business
configuration. The resulting new business configuration is in figure 7.

Figure 7: New business configuration with a trigger event

Definition 5.4 A reconfiguration rule connects one business configuration with
another.

An example of a reconfiguration rule is in figure 8: it binds a business configuration
with a customer component with a business configuration with a booking agent
component. In the with clause we have the specification of what the booking agent

10

provides (Φprov), and the specifications of what the booking agent requires of an
hotel and a flight agent (Φreqha and Φreqfa).

Definition 5.5 A reconfiguration rule package contains one distinguished recon-
figuration rule, and it additionally has an associated set of state transformation
rules.

The event in figure 7 triggers a process of selection of a reconfiguration rule
together with a set of state transformation rules. The selected reconfiguration rule
is in figure 8. After applying the reconfiguration rule, an instance of a booking

Figure 8: A reconfiguration rule

agent module is connected to the instance of the customer activity module that is
represented in figure 9.

Figure 9: Updated business configuration with a booking agent

A business repository contains all the possible services that are available at a
certain time to make a binding in a process of selection of a reconfiguration rule
package.

Definition 5.6 A business repository is a set of reconfiguration rule packs.

Now we present the concept of transformation systems for business configurati-
ons:

11

Definition 5.7 A transformation system for business configurations consists of:

• a business configuration
• a business repository
• a set of state transformation rules.

Finally we present the two different ways through which we can transform a
transformation system for business configurations:

Definition 5.8 A transformation step in a transformation system for business con-
figuration can be one of the following:

• An application of a state transformation rule to the current busi-
ness configuration. The result updates the business configuration.

• After a process of selection of a reconfiguration rule package by an
interface node of an activity and at least an event hyperedge, the
application of the distinguished rule of the selected reconfiguration
package to the current business configuration. In this case we
update again the subsystem configuration. The rest of the rules
of the reconfiguration rule package are added to the current set of
state transformation rules.

In our running example, the initial business configuration of figure 5 has been
transformed to the the business configuration of figure 7 by first applying the state
transformation rule of figure 6. In a second step, after applying the distinguished
rule of figure 8 of a reconfiguration rule pack to 7, we obtain the business configu-
ration of figure 9. In order to successfully apply the rule one must prove that the
specification of what the booking agent provides (Φprov) implies the specification
of what the customer requires (Φreq). The set of state transformation rules is then
updated with the set of state transformation rules associated with the reconfigura-
tion rule. These new set of rules will include rules to process the initiating event
of the customer and generate two new initiating events to book a flight by a Flight
Agent and to book a hotel by an Hotel Agent.

6 Conclusion and Related Work
In this paper we have presented a new framework for dealing with hierarchical
graphs and hierarchical graph transformation, showing that this framework is m-
adhesive. Moreover we have shown how this approach can be used to define part
of the semantics of the service modeling language SRML.

Our notion of hierarchical graph, as said in the previous section, is inspired by
the notion of Petri net refinement in [13]. It is also inspired by the notion of hierarc-
hical graph presented in [5]. However, in that notion the graphs inside a hyperedge
cannot be connected to nodes outside the hyperedge. Moreover, their graphs are
just labeled and do not support arbitrary attributes and attribute computation.
Palacz, in [14], defines a much more general framework, where a hierarchical graph
is a standard (non-attributed) graph plus a predecessor function that implicitly
represents the hierarchy. In that way any element in the graph can be connect to
any other element in the graph, independently of the hierarchy of the elements.
Unfortunately, the approach is too general for DPO graph transformation. So the

12

author restricts to certain classes of morphisms to ensure the existence of pushouts
and the uniqueness of pushout complements. In both cases the main constructions
(pushouts, pushout complements) are defined in an ad-hoc way for the specific class
of graphs considered. Finally, in [4], the authors also propose a very general notion
of hierarchical, without any restriction on the kinds of connections. However, they
do not study graph transformation. Instead, they define a family of operations for
building them, with the aim of using them for giving semantics to some process
algebras.

The semantics of SRML has been addressed in several papers (e.g. see [8, 10,
11, 9]). In this paper we replace the explicit ad-hoc computation associated with
the semantics of interactions by hierarchical symbolic graph transformation. The
main difference of SRML with respect to other approaches in the area of service
oriented is that the language supports service binding at run time, in contrast with
approaches like [16, 3, 1, 15].

In future work, we plan to study how to define more flexible notions of hierarc-
hical graph morphisms so that we it is possible to perform transformations that
change the hierarchical structure of a graph. In addition, we also plan to study
how we can extend our semantics to cover service binding.

References
[1] B. Benatallah, F. Casati, and F. Toumani. Web service conver-

sation modeling: a cornerstone for e-business automation. IEEE
Internet Computing, 8(1):46–54, 2004.

[2] Artur Boronat and José Meseguer. An algebraic semantics for
mof. In José Luiz Fiadeiro and Paola Inverardi, editors, FASE,
volume 4961 of Lecture Notes in Computer Science, pages 377–
391. Springer, 2008.

[3] M. Broy, I. H. Krüger, and M. Meisinger. A formal model of
services. ACM Trans Softw Eng Methodol, 16(1), 2007.

[4] R. Bruni, F. Gadducci, and A. Lluch-Lafuente. An algebra of
hierarchical graphs. In M. Wirsing, M. Hofmann, and A. Rausch-
mayer, editors, TGC, volume 6084 of Lecture Notes in Computer
Science, pages 205–221. Springer, 2010.

[5] F. Drewes, B. Hoffmann, and D. Plump. Hierarchical graph trans-
formation. Journal of Computer and System Sciences, 64:249–283,
2002.

[6] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamental the-
ory of typed attributed graph transformation based on adhesive
HLR-categories. Fundamenta Informaticae, 74(1):31–61, 2006.

[7] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals
of Algebraic Graph Transformation. EATCS Monographs of The-
oretical Computer Science. Springer, 2006.

[8] J. L. Fiadeiro and A. Lopes. An algebraic semantics of event-
based architectures. Mathematical Structures in Computer Sci-
ence, 17(5):1029–1073, 2007.

13

[9] J. L. Fiadeiro and A. Lopes. A model for dynamic reconfiguration
in service-oriented architectures. Softw Syst Model, pages 12:349–
367, 2013.

[10] J. L. Fiadeiro, A. Lopes, and L. Bocchi. Algebraic semantics of
service component modules. In WADT, pages 37–55, 2006.

[11] J. L. Fiadeiro, A. Lopes, and L. Bocchi. An abstract model of
service discovery and binding. Formal Asp. Comput., 23(4):433–
463, 2011.

[12] F. Orejas and L. Lambers. Symbolic attributed graphs for attri-
buted graph transformation. In Int. Coll. on Graph and Model
Transformation. On the occasion of the 65th birthday of Hartmut
Ehrig, 2010.

[13] J. Padberg. Categorical approach to horizontal structuring and
refinement of high-level replacement systems. Applied Categorical
Structures, 7(4):371–403, 1999.

[14] W. Palacz. Algebraic hierarchical graph transformation. J. Com-
put. Syst. Sci., 68(3):497–520, 2004.

[15] W. Reisig. Modeling and analysis techniques for web services and
business processes. In FMOODS, volume 3535 of Lecture Notes
in Computer Science, pages 243–258. Springer, 2005.

[16] W.M.P. van der Aalst, M. Beisiegel, K. M. van Hee, D. König,
and C. Stahl. A soa-based architecture framework. In The role of
business processes in service oriented architectures, volume 06291
of Dagstuhl seminar proceedings. Schloss Dagstuhl, 2006.

A Proofs
In this appendix we prove that 2SymbGraphsD is M-adhesive.

Proposition A.1 M-morphisms in 2SymbGraphsD are closed under isomorp-
hism, composition and decomposition

Proof
If h is anM-morphism and g is an isomorphism, then all the morphisms inside h are
symbolicM-morphisms and all the morphisms inside g are symbolic isomorphisms.
Since symbolic M-morphisms are closed under isomorphism, all the morphisms
inside the composition of h and g are symbolic M-morphisms, which means that
this composition is also anM-morphism.

To prove thatM-morphisms are closed under composition, let h : TG0 → TG1,
g : TG1 → TG2 be 2-level M-morphisms, then htop : TGtop

0 → TGtop
1 and gtop :

TGtop
1 → TGtop

2 are symbolic graph M-morphisms and, for all edges e0 in TGtop
0

and e1 in TGtop
1 , he0 and ge1 are also a symbolic graph M-morphisms. But this

means that gtop ◦ htop is a symbolic graph M-morphism and for every edge e0
in TGtop

0 , ge1 ◦ he0 is also a symbolic graph M-morphism, where e1 = htop(e0).
Therefore, g ◦ h is a 2-levelM-morphism.

Finally, we can see thatM-morphisms are closed under decomposition, meaning
that if g and g ◦h areM-morphisms, then h is also anM-morphism. Given 2-level

14

morphisms h : TG0 → TG1, g : TG1 → TG2, such that g and g ◦ h are M-
morphisms, we have that gtop and gtop ◦htop are symbolic graphM-morphisms, for
every edge e1 in TGtop

1 , ge1 is a symbolic graphM-morphism, and for every edge
e0 in TGtop

0 , gh
top(e0) ◦he0 is also a symbolic graphM-morphism. On the one hand,

by the decomposition property of symbolic M-morphisms, we have that htop is a
symbolicM-morphism. On the other hand, he have that for every e0 ∈ TGtop

0 , he0
is a symbolic graphM-morphism. Therefore, h is a 2-levelM-morphism.

Let us now see that 2SymbGraphsD has pushouts and pullbacks.
2SymbGraphsD has pushouts.

Proof

Given a diagram D consisting of a family of 2-level morphisms {hi : TGi1 →
TGi2}i∈D, we define its colimit by induction:

• If all the graphs involved are in T G0, the colimit in 2SymbGraphsD
essentially coincides with the colimit in SymbGraphsD .

• If each graph involved TGj is in T Gij , with ij ≤ k+1, the colimit
of the diagram TG and the corresponding morphisms gj : TGj →
TG are defined as follows:

– TGtop and gtopj are given by the colimit of the diagram
{htopi }i∈I in SymbGraphsD:

– For every edge e in TGtop, ctsTG(e) is the colimit of the dia-
gram including all the graphs ctsTGj (e′), where e = gtopj (e′),
and all the morphisms he

′

m : ctsTGm1 (e′) → ctsTGm2 (e′′) ,
where e′′ = htopm (e′) and e = gtopm2

(e′′). By induction, we may
assume that this colimit exists.

– For every edge ej in TG
top
j , gejj is the canonical morphism de-

fined by the colimit associated to the edge gtopj (ej) in TGtop

defined in the item above.

It is routine to prove that this construction is indeed a colimit.

As a consequence, we have:

Proposition A.2 2SymbGraphsD has pushouts.

Proof
The pushout of the diagram:

TG0
h1 //

h2

��

TG1

g1

��
TG2 g2

// TG3

is defined as follows:

15

• TGtop
3 , gtop1 and gtop2 are given by the pushout in SymbGraphsD:

TGtop
0

htop
1 //

htop
2

��

TGtop
1

gtop
1

��
TGtop

2
gtop
2

// TGtop
3

• For every edge e3 in TG
top
3 , we have that ctsTG3(e3) is the colimit

in SymbGraphsD of the diagram including all the graphs:

– ctsTGtop
0 (e0), where e0 is an edge in TG0 and e3 = htop1 (gtop1 (e0))

– ctsTGtop
1 (e1), where e1 is an edge in TG1 and e3 = gtop1 (e1)

– ctsTGtop
2 (e2), where e0 is an edge in TG2 and e3 = gtop2 (e2)

and all the morphisms he01 and he02 , where e0 is an edge in TG0

and e3 = htop1 (gtop1 (e0)).

It is routine to prove that this construction is indeed a pushout.

Now, we show the existence of pullbacks:

Proposition A.3 2SymbGraphsD has pullbacks.

Proof
The pullback of the diagram:

TG0
h1 //

h2

��

TG1

g1

��
TG2 g2

// TG3

is defined as follows:

• TGtop
0 , htop1 and htop2 are given by the pullback in SymbGraphsD:

TGtop
0

htop
1 //

htop
2

��

TGtop
1

gtop
1

��
TGtop

2
gtop
2

// TGtop
3

• For every edge e0 in TGtop
0 , we have that ctsTG0(e0) and he01 and

he02 are given by the pullback in SymbGraphsD:

ctsTG0(e0)
h
e0
1 //

h
e0
2

��

ctsTG1(e1)

g
e1
1

��
ctsTG2(e2)

ce2
// ctsTG3(e3)

where e1 = htop1 (e0), e2 = htop2 (e0) and e3 = gtop1 (e1) = gtop2 (e2).

16

Again, it is routine to prove that this construction is indeed a pullback.

Pushouts and pullbacks preserveM-morphisms:

Proposition A.4 If the diagram below is a pushout and h1 is an M-morphism
then g2 is also an M-morphism. Similarly, if the diagram below is a pullback and
g2 is an M-morphism then h1 is also anM-morphism.

TG0
h1 //

h2

��

TG1

g1

��
TG2 g2

// TG3

Proof
For pullbacks, it is enough to notice that the pullback of the top level morphisms and
the pullbacks of the down level morphisms preserveM-morphisms. For pushouts,
it is slightly more involved. First, as before, we know that the pushout of the top
level morphisms preserve symbolic graph M-morphisms. Then, considering that
our graphs are assumed to be finite, it is enough to notice that each colimit of the
down level morphisms can be defined as a combination of pushouts and pullbacks
overM-morphisms. Then, by induction we know that each of these pushouts and
pullbacks preserve M-morphisms and we also know that the composition of the
resultingM-morphisms is also anM-morphism.

Proposition A.5 Pushouts along 2-level M-morphisms are weak van Kampen
squares.

Proof
Let us consider the following commutative cube, where h1, h′1, g2, g′2, f1, f2, f3 are
M-morphisms, the bottom square is a pushout and the back faces are pullbacks.
We have to show that the top square is a pushout if and only if the front faces are
pullbacks.

TH0

h1
kkkkkkk

uukkkkkkk

h2

4444444

��4444444f0

��

TH1

g1
44444444

��44444444f1

��

TG0

h′
1

llllllll

uullllllll

h′
2

3333333

��3333333

TH2

f2

��

g2llllllll

uullllllll

TG1

g′
1

4444444

��4444444

TH3

f3

��

(1)

TG2

g′
2

kkkkkkkk

uukkkkkkkk

TG3

17

Let us suppose that the top square is a pushout and let us show that the two
front faces are pullbacks. We know that the corresponding cube in terms of the top
graphs and the top morphisms:

THtop
0

htop
1

kkkkkkkk

uukkkkkkkk

htop
2

5555555

��5555555ftop
0

��

THtop
1

gtop
1

5555555

��5555555ftop
1

��

TGtop
0

(h′
1)

top
kkkkkkk

uukkkkkkk

(h′
2)

top

55555555

��55555555

THtop
2

ftop
2

��

gtop
2

kkkkkkkk

uukkkkkkkk

TGtop
1

(g′
1)

top

55555555

��55555555

THtop
3

ftop
3

��

(2)

TGtop
2

(g′
2)

top
kkkkkkk

uukkkkkkk

TGtop
3

is a weak van Kampen square in SymbGraphsD, therefore its front faces are
pullbacks in that category. Hence, we have to show that for every edge e1 in THtop

1 ,
ctsTH1(e1) is the pullback of fe33 and (g′1)e

′
1 , where e3 = gtop1 (e1) and e′1 = f top1 (e1).

Now, let e′3 = f top3 (e3). We have two cases:

• If there is no edge e0 in THtop
0 , such that e1 = htop1 (e0) then we

know that there is also no edge e′0 in TGtop
0 , such that f top1 (e1) =

(h′1)top(e0), since THtop
0 is the pullback of the back left square

in (2). In addition, we know that there is also no edge e2 in
THtop

2 such that e3 = gtop2 (e2) since the top diagram in (2) is a
pushout. Moreover, for similar reasons, we may also be sure that
there is no edge e′2 in TGtop

2 such that f top3 (e3) = (g′2)top(e′2).
This means, by the definition of pushouts of 2-level graphs, that
ctsTH1(e1) = ctsTH3(e3) and ctsTG1(e′1) = ctsTG3(e′3) and the
morphisms ge11 and (g′1)e

′
1 are identities.

Now, let us consider the diagram below:

18

∅

∅iiiiiiiiiiiii

ttiiiiiiii

∅

��-------∅

��

ctsTH1(e1)

g
e1
1

>>>>>>>>

��>>>>>>>>f1
e1

��

∅

∅iiiiiiiiiiiii

ttiiiiiiii

∅

��-------

∅

∅

��

∅mmmmmmmmm

vvmmmmmm

ctsTG1(e′1)

(g′
1)

e′1

>>>>>>>>

��>>>>>>>>

ctsTH3(e3)

f
e3
3

��

∅

∅mmmmmmmmm

vvmmmmmm

ctsTG3(e′3)

where ∅ denotes the empty graph or the empty morphism, de-
pending on the context. Now, by construction, we may see that,
in the above diagram, the bottom face and the top face are pus-
houts and the back faces are pullbacks. Therefore, by induction,
the front left face is a pullback.

• If there is an edge e0 in THtop
0 such that e1 = htop1 (e0), then

this edge must be unique, since h1 is anM-morphism. However,
there may be several edges d1 in THtop

1 such that e3 = gtop1 (d1).
Moreover, for each d1 there must be exactly an edge d0 such
that htop1 (d0) = d1, since h1 is an M-morphism and the top
face diagram of (2) is a pushout. And for the same reasons, for
all these edges d0, h

top
2 (e0) = htop2 (d0). Let us call e2 the edge

in THtop
2 such that e2 = htop2 (e0). This means that, in general,

ctsTH3(e3) is not the result of the pushout of he01 and he02 , but it is
the result of the colimit involving all the morphisms hd0

1 and hd0
2 .

Similarly, if we call e′i = f topi (ei), for each such edges d0 and d1
there would be exactly two edges d′0 and d′1 in TGtop

0 and TGtop
1 ,

where (g′1)top(d′1) = e′3 and (h′1)top(d′0) = d′1. In particular, d′0 =
f top0 (d0) and d′1 = f top1 (d1). Moreover, ctsTG3(e′3) is the result of
the colimit involving all the morphisms (h′1)d

′
0 and (h′2)d

′
0 .

Now, we proceed by induction on the number of these edges,
proving that for any number n of such edges d01, d0n, we can
build a weak van Kampen square:

19

H0

a1
kkkkkkkkk

uukkkkkk

a2

77777777

��77777777a

��

ctsTH1(e1)

g1
tttt

yyttttt

f1
e1

��

TH ′

g2
TTTTTTTTTT

**TTTTTTTTTT

f ′

��

G0

a′
1

kkkkkkkkk

uukkkkkk

a′
2

66666666

��66666666

ctsTH2(e2)

f2
e2

��

b2
llllll

uulllllllll

ctsTG1(e′1)

g′
1

tttt

yyttttt

TH

f

��

TG′

g′
2

UUUUUUUUUU

**UUUUUUUUUU

ctsTG2(e′2)

b′2
kkkkkk

uukkkkkkkkk

TG

where a1, a′1, g1, and g′1 areM-morphisms, the top face and bot-
tom face diagrams are pushouts (i.e. the top face is a pushout of
the morphisms g1 ◦ a1 and a2 and the bottom face is a pushout
of the morphism g′1 ◦ a′1 and a′2), where all the vertical squares
are pullbacks and where TH is the colimit of all the morphisms
hd0
1 and fd0

0 and TG is the colimit of all the morphisms hd
′
0

1 and
f
d′
0

0 and f, g2 ◦ g1, and g′2 ◦ g′1 are morphisms induced by these
colimits.

– If there is only one edge d1 in THtop
1 such that e3 = gtop1 (d1),

i.e. e1 = d1, then we have that the cube below, by induction
on the depth of the graphs, is a weak van Kampen square,
where the top square is a pushout:

20

H0

h
e0
1

mmmmmm

vvmmmmmm

h
e0
2

1111111

��1111111f
e0
0

��

H1

g
e1
1

1111111

��1111111f1
e1

��

G0

(h′
1)

e′0
mmmmm

vvmmmmm

(h′
2)

e′0

1111111

��1111111

H2

f2
e2

��

g
e2
2

mmmmmm

vvmmmmmm

G1

(g′
1)

e′1

1111111

��1111111

H3

f
e3
3

��

G2

(g′
2)

e′2
mmmmm

vvmmmmm

G3

where, e2 = htop2 (e0) and, for every 0 ≤ i ≤ 3, e′i = fi(ei),
Hi = ctsTHi(ei) and Gi = ctsTGi(e′i). Therefore, this cube
satisfies the induction hypothesis when g1 and g′1 are the
identity morphisms.

– If there are n + 1 such edges, by induction we know that
there is a weak van Kampen square associated to n edges:

H0

a1
kkkkkkkkk

uukkkkkk

a2

77777777

��77777777a

��

ctsTH1(e1)

g1
tttt

yyttttt

f1
e1

��

TH ′

g2
TTTTTTTTTT

**TTTTTTTTTT

f ′

��

G0

a′
1

kkkkkkkkk

uukkkkkk

a′
2

66666666

��66666666

ctsTH2(e2)

f2
e2

��

b2
llllll

uulllllllll

ctsTG1(e′1)

g′
1

tttt

yyttttt

TH

f

��

TG′

g′
2

UUUUUUUUUU

**UUUUUUUUUU

ctsTG2(e′2)

b′2
kkkkkk

uukkkkkkkkk

TG

where the top face is a pushout and TH and TG are the
colimit of the morphisms associated to the given edges. Let
d1 be the remaining edge and let us consider the following
diagram:

21

ctsTH0(d0)

h
d0
2

jjjjjjj

ttjjjjjjj

h
d0
1

========

��========f
d0
0

��

ctsTH2(d2)

��66666666666666666

f2
d2

��

ctsTG0(d′0)

(h′
2)

d′0
jjjjj

ttjjjjj

(h′
1)

d′0

========

��========

ctsTH1(e1)

f1
e1

��

ttiiiiiiiiiiiiiiiiiiiiii

ctsTG2(d′2)

��77777777777777777
H ′3

��

ctsTG1(e′1)

ttiiiiiiiiiiiiiiiiiiiiii

G′3

where, d0 is the only edge in THtop
0 such that d1 = htop1 (d0),

for every i = 0, 1, d′i = f topi (di), the top and bottom squares
are pushouts and the (unnamed) morphism from H ′3 to G′3 is
the universal morphism associated to the top face pushout.
By induction on the depth of the graphs, this diagram is a
weak van Kampen square where the top and bottom faces
are pushouts and the rest of faces are pullbacks. Let us now
put together (and extend) the two diagrams above, skipping
some arrows which are not important now:

22

H ′0

~~||||||||

**VVVVVVVVVVVVVVVVVVVVV

��

H0

a2
RRRRRRRRR

))RRRRRRa1
ttttt

zztttt

a

��

ctsTH0(d0)

h
d0
2

pppp

xxpppp h
d0
2

NNNN

&&NNNN

f
d0
0

��

ctsTH1(e1)

g1
tttt

yyttttt

f1
e1

��

G′0

~~||||||||

**UUUUUUUUUUUUUUUUUUUUUU ctsTH2(e2)

f2
e2

��

ctsTH1(d1)

f1
d1

��

���������������������������

TH ′

g2
TTTTTTTTTT

**TTTTTTTTTT

f ′

��

G0

a′
2

RRRRRRRRR

))RRRRRRa′
1

ttttt

zztttt

ctsTG0(d′0)

(h′
2)

d′0
pppp

xxpppp (h′
2)

d′0

NNNN

&&NNNN

ctsTG1(e′1)

g′
1

tttt

yyttttt

TH

f

�� ##GGGGGGGGGGGGGGGGGGGGGG ctsTG2(e′2) ctsTG1(d′1)

��

TG′

g′
2

UUUUUUUUUU

**UUUUUUUUUU

H ′3

wwooooooooooooo

��

TG

##GGGGGGGGGGGGGGGGGGGGGG TH ′′

��

G′3

wwooooooooooooo

TG′′

where H ′0 and G′0 are, respectively, the pullbacks of a2 and
hd0
2 , and of a′2 and (h′2)d

′
0 , TH ′′ is the pushout of the compo-

sed morphisms H ′0 → TH and H ′0 → H ′3, similarly, TG′′ is
the pushout of the morphisms G′0 → TG and G′0 → G′3, and
the rest of the arrows are part of or induced by these pus-
houts and pullbacks. Now, by induction of the depth of the
graphs, this diagram is again a weak van Kampen square,
where all the vertical diagrams are pullbacks by composition
and decomposition of pullbacks and the top and bottom di-
agrams are pushouts by construction. Therefore, the front
faces are also pullbacks. Moreover, by construction, TH ′′
and TG′′ are the colimit of the morphisms associated to the
given edges.

The proof that the front right face is also a pullback is similar to the previous
proof.

Finally, we have to show that if the two front faces are pullbacks then the top
face is a pushout. Again, we know that the corresponding cube in terms of the
top graphs and the top morphisms is a van Kampen square in SymbGraphsD,
therefore its top face is a pushout in that category. Hence, we have to show that
for every edge e3 in THtop

3 ctsTH3(e3) is the colimit of all the morphisms of he01
and he02 for all edges e0 such that e3 = gtop1 (e1), where e1 = htop1 (e0). We proceed
by induction on the number of edges e0 such that e3 = gtop1 (e1) = gtop2 (e2), where
e1 = htop1 (e0) and e2 = htop2 (e0). Notice that, for all these edges e0, e2 = htop2 (e0) is
always the same edge, since gtop2 is a monomorphism. In particular we prove that
for any number n of such edges, given graphs H3 and G3, if G3 is the colimit of all

23

the morphisms (h′1)e
′
0 and (h′2)e

′
0 , where e′0 = f top0 (e0), and for each diagram:

ctsTH0(e0)

h
e0
1

jjjjjjj

uujjjjjjj

h
e0
2

========

��========f
e0
0

��

ctsTH1(e1)

��66666666666666666

f1
e1

��

ctsTG0(e′0)

(h′
1)

e′0
jjjjj

uujjjjj

(h′
2)

e′0

========

��========

ctsTH2(e2)

f2
e2

��

ttiiiiiiiiiiiiiiiiiiiiii

ctsTG1(e′1)

��77777777777777777
H3

��

(3)

ctsTG2(e′2)

tthhhhhhhhhhhhhhhhhhhhh

G3

where for every i = 0, 2, e′i = f topi (ei), all the vertical faces are pullbacks, then we
have that H3 is the colimit of all the morphisms of he01 and he02 for all these edges e0.
In particular, since we assume that ctsTG3(e′3) is the colimit of all the morphisms
(h′1)e

′
0 and (h′2)e0 , and if we replace H3 and G3 in diagram (3) by ctsTH3(e3) and

ctsTG3(e′3), respectively, then all the vertical faces are pullbacks, this would imply
that ctsTH3(e3) is the colimit of all the morphisms of he01 and he02 , as we want to
prove.

• If there are no edges e0 such that e3 = gtop1 (e1), where e1 =
htop1 (e0), this means that there must be either an edge e1 in TH

top
1

or an edge e2 in THtop
2 such that e3 = gtop1 (e1) or e3 = gtop2 (e2).

Let us assume that the existing edge is e1 (in the case of e2 the
proof is similar). In this case, we have to prove that ctsTH3(e3) =
ctsTH1(e1), since this is equivalent to show that that the diagram
below is a colimit:

∅
∅ //

∅
��

ctsTH1(e1)

g1
e1

��
∅ ∅

// ctsTH3(e3)

Now, we can see that there is no edge e′0 in TGtop
0 such that

(h′1)top(e′0) = f top1 (e1), since we know that diagram (2) above is a
weak van Kampen square, where the back left face is a pullback,
and this would have implied that there would have been an edge
e0 in THtop

0 such that htop2 (e0) = e2. For similar reasons, i.e. the
front right face of (2) is a pullback, we know that there does not

24

exist an edge e′2 in TGtop
2 such that (g′2)top(e′2) = f top3 (e3). Then,

let us now consider the following diagram:

∅

∅iiiiiiiiiiiii

ttiiiiiiii

∅

��-------∅

��

ctsTH1(e1)

g
e1
1

>>>>>>>>

��>>>>>>>>f1
e1

��

∅

∅iiiiiiiiiiiii

ttiiiiiiii

∅

��-------

∅

∅

��

∅mmmmmmmmm

vvmmmmmm

ctsTG1(e′1)

(g′
1)

e′1

>>>>>>>>

��>>>>>>>>

ctsTH3(e3)

f
e3
3

��

∅

∅mmmmmmmmm

vvmmmmmm

ctsTG3(e′3)

where e′1 = f top1 (e1) and e′3 = f top3 (e3). By construction and
knowing that diagram (1) is a weak van Kampen square where
the front faces are pullbacks, the above diagram would also be
a weak van Kampen square where the front faces are pullbacks.
Hence, by induction, the top face would be a pushout, i.e. a
colimit.

• Assume that there are n+ 1 edges e0 and H3 and G3 are graphs
such that G3 is the colimit of all the morphisms (h′1)e

′
0 and (h′2)e

′
0 ,

where e′0 = f top0 (e0), and for each diagram:

ctsTH0(e0)

h
e0
1

jjjjjjj

uujjjjjjj

h
e0
2

========

��========f
e0
0

��

ctsTH1(e1)

��66666666666666666

f1
e1

��

ctsTG0(e′0)

(h′
1)

e′0
jjjjj

uujjjjj

(h′
2)

e′0

========

��========

ctsTH2(e2)

f2
e2

��

ttiiiiiiiiiiiiiiiiiiiiii

ctsTG1(e′1)

��77777777777777777
H3

f

��

(4)

ctsTG2(e′2)

tthhhhhhhhhhhhhhhhhhhhh

G3

25

where for every i = 0, 2, e′i = f topi (ei), all the vertical faces are
pullbacks. Then, we have to prove that H3 is the colimit of all
the morphisms he01 and he02 for the n+ 1 edges e0. Let d0 be one
of these n + 1 edges, let d′0 = f top0 (d0) and G′3 be the colimit of
all the morphisms (h′1)e

′
0 and (h′2)e

′
0 for the n remaining e′0 edges.

We define the graph H ′3 as the pullback of the diagram below:

H ′3
g //

f ′

��

H3

f

��

(5)

G′3
g′

// G3

where g′ is the universal morphism given by the colimit property
of G′3. We can see that H ′3 satisfies that for each edge e0 different
from d′0 we can build a diagram:

ctsTH0(e0)

h
e0
1

jjjjjjj

uujjjjjjj

h
e0
2

========

��========f
e0
0

��

ctsTH1(e1)

��66666666666666666

f1
e1

��

ctsTG0(e′0)

(h′
1)

e′0
jjjjj

uujjjjj

(h′
2)

e′0

========

��========

ctsTH2(e2)

f2
e2

��

ttiiiiiiiiiiiiiiiiiiiiii

ctsTG1(e′1)

��6666666666666666
H ′3

f ′

��

(6)

ctsTG2(e′2)

ttiiiiiiiiiiiiiiiiiiiiii

G′3

where all its vertical faces are pullbacks. In particular, the back
faces of diagram (6) coincide with the back faces of diagram (4)
which are assumed to be pullbacks, therefore it is enough to build
the front faces by pullback decomposition of the front faces of
diagram (4) and diagram (5). This means that, by induction, H ′3
is the colimit of all the morphisms he01 and he02 for all these edges
e0 different from d0.
Similarly, if G′′3 is defined by the pushout below and H ′′3 is the
defined by the pullback below:

26

ctsTG0(d′0)

(PO)

(h′
1)

d′0 //

(h′
2)

d′0

��

ctsTG1(d′1)

c′1
��

H ′′3

(PB)

h //

f ′′

��

H3

f

��
ctsTG2(e′2)

c′2

// G′′3 G′′3
h′

// G3

where g′′ is the universal morphism given by the colimit property
of G′3. Then, again, H ′′3 satisfies that we can build a diagram:

ctsTH0(d0)

h
d0
1

jjjjjjj

ttjjjjjjj

h
d0
2

========

��========f
d0
0

��

ctsTH1(d1)

��77777777777777777

f1
d1

��

ctsTG0(d′0)

(h′
1)

d′0
jjjjjj

ttjjjjjj

(h′
2)

d′0

========

��========

ctsTH2(e2)

f2
e2

��

b3
iiiiiiiii

ttiiiiiiiiiiii

ctsTG1(d′1)

��77777777777777777
H ′′3

f ′′

��

(6)

ctsTG2(e′2)

b′3
hhhhhhhhh

tthhhhhhhhhhhh

G′′3

where all its vertical faces are pullbacks. Moreover, by construc-
tion or by assumption, all the vertical arrows areM-morphisms
and so is hd0

1 , and also by construction the bottom diagram is a
pushout. Therefore, the diagram is a weak van Kampen square
and, so, the top diagram is a pushout.
Finally, consider the following diagram:

27

ctsTH2(e2)

b2
llllll

uulllllllll

b3

77777777

��77777777f2
e2

��

H ′3

g
0000000

��00000000f ′

��

ctsTG2(e′2)

b′2
llllll

uulllllllll

b′3

7777777

��77777777

H ′′3

f ′′

��

hjjjjjjjjjjj

ttjjjjjjjjjjj

G′3

g′
0000000

��0000000

H3

f

��

G′′3

h′iiiiiiiiii

ttiiiiiiiiii

G3

In this diagram all the vertical faces are pullbacks by construction
and it is routine to prove that the bottom diagram is a pushout,
since G3 is the colimit of all the morphisms (h′1)e

′
0 and (h′2)e

′
0 , G′3

is the colimit of all these morphisms except (h′1)d
′
0 and (h′2)d

′
0 ,

and G”3 is the pushout of (h′1)d
′
0 and (h′2)d

′
0 . This means that

the above diagram is a weak van Kampen square and, as a con-
sequence, the top diagram is a pushout. But this means that H3

is the colimit of all the morphisms (h1)e0 and (h2)e0

So, as a consequence of Propositions A.1, ??, A.3, A.4, and A.5 we have:

Theorem A.6 2SymbGraphsD is anM-adhesive category.

28

	Introduction
	Introduction to SRML
	Symbolic graphs and symbolic graph transformation
	2-level symbolic graphs
	A graph-semantics for business configurations
	Business configurations
	Transformation systems for business configurations

	Conclusion and Related Work
	Proofs

