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Abstract—In this extended abstract a large-scale analysis of 4-
way Arbiter PUFs is performed with measurement results from
1000 RFID tags. Arbiter PUFs are one of the most important
building blocks in PUF-based protocols and have been the
subject of many papers. However, in the past often only software
simulations or a limited number of test chips were available for
analysis. Therefore, the goal of this work is to verify earlier
findings in regard to the uniqueness and reliability of Arbiter
PUFs by using a much larger measurement set. Furthermore, we
used machine learning algorithms to approximate and compare
the internal delay differences of the employed PUF. One of the
main research questions in this paper is to examine if any
“outliers” occurred, i.e., if some tags performed considerably
different. This might for example happen due to some unusual
manufacturing variations or faults. However, our findings are that
for all of the analyzed tags the parameters fell within the range
of a Gaussian distribution without significant outliers. Hence, our
results are indeed in line with the results of prior work.

I. INTRODUCTION

Physical Unclonable Functions (PUFs) are a hardware
primitive with a variety of interesting use cases, e.g., secure
key storage or authentication without the need for secure
non-volatile memory. The first proposed PUF was the optical
PUF in 2001 [1] followed by the first electrical PUF, the
Arbiter PUF, in 2002 [2]. The principle behind the Arbiter
PUF is to let two signals traverse a certain number of delay
stages and output which one was faster. Arbiter PUFs have
an exponential number of challenge-and-response pairs and
can therefore be used in challenge-and-response protocols
for authentication purposes. However, research has shown
that Arbiter PUFs can easily be cloned in software using
machine learning techniques. To prevent such attacks, several
more complex schemes based on Arbiter PUFs have been
proposed. The most prominent example is the XOR Arbiter
PUF, in which the outputs of individual Arbiter PUFs are
XORed to yield the final response [3]. While this construction
increases the machine learning complexity, it cannot prevent
these attacks [4], especially if reliability information is taken
into consideration as well [5]. Machine learning attacks have
been demonstrated on simulated data, but have also been
repeatedly verified using data acquired from ASICs [6], [7],
[8], [5].

Currently, new protocols such as the one by Yu et al. [9]
are being developed to overcome the problems of machine
learning attacks and the reliability-based machine learning
attack in particular. But this increased machine learning re-
sistance usually comes at the cost of a restricted number of
authentications or the need for a secret software model. All
in all, despite powerful attacks against Arbiter PUFs, there is
still a lot of interest in this type of PUF.

There have been several academic test chips featuring
Arbiter PUFs which were used to examine the reliability and

uniqueness of the Arbiter PUF [6], [10], [11], [12], [13]. Many
of these were only manufactured in relatively low number of
chips, with the notable exception of [11] which used 192 test
chips. We wanted to complement the previous work on ASIC
PUFs by performing a large-scale analysis of 998 RFID tags
equipped with a 64-stage 4-way PUF that we were able to
buy from a commercial supplier1. All previous results suggest
that the delay values of the Arbiter PUFs as well as their
reliability follow a Gaussian distribution. We wanted to verify
this earlier finding by testing a large set of Arbiter PUFs for
“outliers”, i.e., a potentially rare behavior that falls outside
the assumed Gaussian distribution. In order to do so, we used
these 1000 RFID tags equipped with a 64-stage 4-way PUF and
analyzed their reliability and uniqueness. Furthermore, we used
machine learning algorithms to approximate the internal delay
distribution of the individual stages to check if these values
are also Gaussian distributed. Unfortunately, the nature of the
examined 4-way PUF is not ideal for such an analysis and it
would be interesting to see such an analysis for other test chips
in the future. Nevertheless, the results of our analysis clearly
support the assumption that the internal delay differences per
stage are Gaussian-distributed without any outliers that fall
outside this distribution.

In the next section we will give a brief description of the
analyzed 4-way PUF and how an Arbiter PUF can be modeled.
After that we present the results of our analysis and end the
paper with a brief conclusion.

II. THE PUF-BASED RFID TAGS

The RFID tags examined in this paper are the same as
the ones used in [5]. The main feature of these PUF-based
RFID tags is that each tag can be authenticated based on a
built-in 4-way Arbiter PUF. The structure of this 4-way PUF
is depicted in Figure 1. A 64-bit master challenge is sent
from the reader to the tag. This master challenge is fed into
a 64-bit Linear-Feedback Shift Register (LFSR) that generates
subsequent challenges. Each 64-bit challenge is then sent to
what we call the mixer function. The mixer function generates
four sub-challenges by shuffling the 64-bit challenge similar to
a Lightweight PUF [14]. Each of these four sub-challenges is
fed to the same 64-bit Arbiter PUF. The resulting four response
bits are XORed with each other to form a single response bit.
Such a PUF, in which a single Arbiter PUF is used and n
response bits are XORed, is called an n-way PUF. In the PUF
protocol, 256 response bits are generated for each 64-bit master
challenge.

Traditionally, the authentication process of an Arbiter PUF
is based on a setup stage in which responses for randomly
generated challenges are collected and stored in a database.

1The PUF-based RFID tags have been recalled by the manufacturer and are
no longer available.
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Fig. 1. Internal structure of the PUF tag. A 64-bit Galois LFSR is used
to generate challenges from a master challenge. Each challenge is fed into
the mixer function which, generates four sub-challenges by permuting the
input challenge. These four sub-challenges are successively fed into the 64-
stage Arbiter PUF. The four responses of the Arbiter PUF are then XORed to
provide a response bit that is sent to the reader.

During the authentication step, challenges from this database
are selected and sent to the tag. The responses of the tag under
test are then compared to the responses stored in the database.
If the responses match, the tag is authenticated. The RFID tags
can be used with such a protocol although they also allow for
an offline authentication based on encrypted PUF parameters.
For more details about this offline authentication protocol we
would like to refer the reader to [5]. For the purpose of this
paper, only the architecture of the PUF is relevant and not the
authentication protocol.

III. MODEL OF THE ARBITER PUF

In an Arbiter PUF, two race signals are fed through a series
of multiplexer stages and their final arrival time is measured
using an arbiter. This arbiter either responds with a ’0’ if the
top signal is faster or a ’1’ if the bottom signal is faster. The
exact path the race signals take is determined by a challenge
that is applied at the multiplexer stages. A challenge signal of
’1’ switches the top and bottom signals while a ’0’ does not
switch the signals. This way 2n challenges can be applied to
an n-stage Arbiter PUF.

A delay stage i (consisting of two multiplexers) can be
modeled by two parameters, the delay differences δ0,i and
δ1,i, corresponding to the delay difference added when the
challenge bit is ’0’ and ’1’, respectively. If these two parame-
ters are known for every delay stage, the final delay difference
for every challenge can be computed by taking the switching
into account: A ’1’ switches the top and bottom signal, which
is equivalent to changing the sign of the delay difference.
The delay difference ∆Di after the i-th stage can therefore
be computed recursively according to the following equation,
where ci denotes the i-th challenge bit:

∆Di = ∆Di−1 · (−1)ci + δci,i (1)

The final response r is determined simply by the sign of ∆Dn,
a positive delay difference results in a ’1’, a negative in a
’0’. This recursive model requires 2 ·n parameters to describe
an Arbiter PUF, however, there is a more efficient method to

model an Arbiter PUF with only n+ 1 parameters.

w1 = δ0,1 − δ1,1
wi = δ0,i−1 + δ1,i−1 + δ0,i − δ1,i

wn+1 = δ0,n + δ1,n

(2)

Additionally, the challenge vector ~c = c1, ..., cn has to be
transformed into the feature vector ~Φ = (Φ1, ..,Φn+1) ∈
{−1, 1}n+1:

Φi =
n∏
l=i

(−1)cl for 1 ≤ i ≤ n

Φn+1 = 1

(3)

These transformations allow us to compute the delay difference
∆Dn with a simple scalar multiplication:

∆Dn = ~wᵀ~Φ (4)

This method is the common way to model an Arbiter PUF.
We also used it in our experiments when performing machine
learning attacks.

IV. ANALYSIS

Previous research based on academic test chips and simu-
lations showed that the delay distribution of an Arbiter PUF
follows a Gaussian distribution. Similarly, the observed noise
also seems to be Gaussian-distributed (e.g., see [15]). The main
purpose of this paper is to verify the previous findings using a
larger data set of PUF responses. In particular, we wanted to
check if there are any “outliers” within this data set that deviate
from this Gaussian model. Most of the analysis was performed
on the raw response bits to determine the PUF’s reliability, bias
and uniqueness. We additionally performed machine learning
attacks on all of the 998 tags. The goal of this analysis was
to verify that all internal stage delays are independently and
identically distributed with a Gaussian distribution. We wanted
to determine if some stages dominate the response more than
others or if single stages possibly dominate the PUF response.

In the first step we measured 51, 200 challenge and re-
sponse pairs (CRPs) for functional 998 PUF tags (the com-
munication with two tags did not work) twice and computed
the reliability and uniqueness for each PUF tag. Histograms
of the distribution of these values are depicted in Figure 2,
with a fitted Gaussian distribution. Both the uniqueness as well
as the reliability are Gaussian-distributed without any unusual
outliers. Therefore our results clearly support earlier findings
and no PUF instances with an unusually low uniqueness or
reliability were found. The mean uniqueness these tags offered
was very close to the ideal with 49.92% and a standard
derivation of 0.234%. The mean reliability of the tags under
nominal conditions was 86.7% with a standard derivation of
1.08% (temperature or voltage variations were not possible
with our setup). Note that the low reliability stems from the
fact that four bits are XORed in a 4-way PUF. If one considers
the four XORs, the reliability of 86.7% for the 4-way PUF
is equivalent to 96.3% reliability for a single Arbiter PUF
response.

In the next experiment we investigated the internal delay
differences of the PUF. The question we wanted to answer was
whether some stages dominate the PUF responses more than



Fig. 2. Top: Histogram of the uniqueness values of the 998 PUF tags
when compared with each other. The overlay is the corresponding Gaussian
distribution (µ = 49.92%, σ = 0.234%). Bottom: Histogram of the reliability
values of the 998 PUF tags, overlaid with the corresponding Gaussian
distribution (µ = 86.7%, σ = 1.08%).

others and if there are outliers within their internal distribution.
Measuring the internal delays of the PUFs on the RFID tags
was not possible. Hence, we tried to approximate these internal
delays using machine learning algorithms instead. Essentially,
what we were doing is performing machine learning attacks to
determine the delay vector ~w. Attacking a 64-stage 4-way PUF
using machine learning is relatively easy and many different
machine learning algorithms can be used for this purpose,
e.g. Logistic Regression, SVM or Evolution Strategies. We
used CMA-ES machine learning as it was also used in [5]
to learn each PUF instance, but other algorithms would have
worked as well. It is important to note that these machine
learning algorithms do not actually learn the exact internal
delay differences but only their ratio. If we take a look at
Equation 4, one can see that multiplying the vector ~w with
a constant does not change the sign of the delay difference
Dn and therefore neither that of the response. Since CMA-ES
is non-deterministic, running the machine learning algorithms
multiple times will therefore result in different vectors ~w.
However, the ratio of these vectors will be (nearly) identical.

Multiplying the vector ~w with −1 flips the sign of the delay
difference and hence also the response bit. However, since four
responses are XORed in a 4-way PUF, multiplying the vector
~w with −1 actually does not change the response bit: All four
response bits that are XORed are flipped, but these flips cancel
each other out. Therefore the CMA-ES algorithm is as likely
to converge to −~w as to ~w.

Hence we only learn the ratio of the delay parameter ~w and
we also cannot distinguish between ~w and −~w in a 4-way PUF.
Unfortunately the specific 4-way PUF used in the PUF tags fur-
ther hampers our analysis: In the specific mixer function used
in these tags, the first challenge ~C1 = c1,1, c1,2, c1,3, .., c1,n
is the same as the second challenge in reverse order, i.e.,
~C2 = c1,n, c1,n−1, .., c1,2, c1,1. Similarly, the third challenge

is identical to the fourth challenge in reverse order. For our

machine learning algorithm, this has the peculiar effect that
inverting the ordering of ~w results in the same response for
the 4-way PUF.

All of this hampers our efforts to determine the internal
delay differences of the individual PUFs since for the same
PUF and the same measurements the non-deterministic ma-
chine learning attacks will result in a multitude of possible
delay vectors ~w that are all equally likely to be correct. We
therefore applied a post-processing to the delay vectors. In
the first step we normalized each delay vector ~w found, i.e.,
we computed w̃i = wi/

∑n
j=1 |wi|. After normalization, the

machine learning algorithm can converge to four different
solutions:

W1 = w̃1, w̃2, .., w̃n

W2 = −w̃1,−w̃2, ..,−w̃n

W3 = w̃n, ˜wn−1, .., w̃1

W4 = −w̃n,− ˜wn−1, ..,−w̃1

(5)

To perform our machine learning attack we used all of
the collected 51, 200 CRPs for each PUF. Note that even
1024 CRPs are enough to model the 4-way PUF with good
accuracy [5]. We purposely used many more CRPs than
necessary to obtain a very high accuracy and convergence
rate in our machine learning runs. For every PUF we ran the
CMA-ES algorithms until we had 50 successful attacks, each
yielding a delay vector ~wi. A successful attack was defined
by an accuracy larger than 80%. Once such a high accuracy
is reached in a CMA-ES attack on an Arbiter PUF, the run
usually converges close to the optimal solution. Hence, for this
experiment we conducted nearly 50, 000 runs of the machine
learning algorithm. In the first post-processing step these delay
vector were normalized as described above. Figure 3 shows
the 50 delay vectors ~wi for one PUF as an example before
normalization and after normalization was applied. One can
clearly see that the machine learning runs converged to the
four different solutions W1, ..,W4 that are mirrored vertically
at the x-axis and horizontally at stage 33. To get a single delay
vector for each PUF, we performed another post-processing
step: The result of the first machine learning run was chosen
as the reference solution for each PUF and every other vector,
if necessary, was reflected around the x-axis and vertically
about stage 33. The result of this process is shown on the
right of Figure 3. As one can see, after these post-processing
steps there is only negligible variance in these vectors since
the machine learning algorithm always converged to a near
optimal solution. By computing the average of these 50 vectors
we then derived the final delay vector for each PUF instance.

The reason why we computed these delay vectors was to
determine if they indeed follow a Gaussian distribution or if
some stages or PUFs exhibit unusual behavior that does not
comply with the Gaussian assumption. For this we made a
histogram of the delay distribution of this delay vector. Recall
that we do not know if a delay value w̃i is indeed the delay
for stage i or the mirrored solution, i.e., stage n + 1 − i. We
therefore combined stage i and stage n+1−i in the histogram
depicted in Figure 4. All stage delays seem to indeed follow a
Gaussian distribution centered around zero. Hence, our results
clearly support earlier experimental and theoretical results. Not
a single large outlier was detected among the 998 tags. The
only stage with a different delay distribution than the other
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Fig. 3. The delay vectors of 50 successful CMA-ES machine learning runs for one PUF instance. On the left, the 50 delay vectors before normalization are
plotted. In the middle, normalization of these 50 vectors was performed, resulting in four clearly visible solutions. On the right, mirroring was performed with
the result that all 50 delay vectors are (nearly) identical.

stages is w1/w65. While this stage seems to also be Gaussian-
distributed with a mean of 0, it clearly has a much smaller
variance than the other stages.
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Fig. 4. Top: Histogram of the distribution of the normalized stage delays.
Bottom: The same analysis repeated with simulated ideal PUF parameters that
follow a Gaussian distribution.

However, this is to be expected: A closer look at Equation 2
reveals that w2, .., wn−1 consists of the sum of four (Gaussian-
distributed) random variables, while w1 and w65 only consist
of the sum of two random values. Since the assumption is that
all of these random values are independently and identically
distributed (i.i.d.), the variance in w1 and w65 is expected to

be smaller than in the other stages. To verify this observation
and our analysis in general, we generated 998 random PUFs
in Matlab using an ideal i.i.d. Gaussian distribution. Using
this software model, we generated 51, 200 CRPs and then
performed the same machine learning analysis as with the
real measurements. The result of this analysis is depicted in
Figure 4 as a reference. As one can see, the distribution looks
nearly identical to the one from the measurements. Only the
variance of stage (1, 65) is actually smaller than what was
observed in the measurement. One possible explanation for this
is that in the delay differences in the last stage (δ0,65, δ1,65) the
delay difference caused by the arbiter is included in addition to
the delay difference of the multiplexer. This might explain why
the variance is slightly higher than in the ideal model which
does not consider delay differences caused by the arbiter. But
the overall conclusion is that even in this large-scale analysis,
the internal delay differences are Gaussian-distributed without
any obvious outliers that do not comply with the Gaussian and
i.i.d. assumption.

V. CONCLUSION

The main conclusion of this paper is simple: Even in a
large-scale analysis based on 998 PUF tags, unusual outliers
were observed in neither the reliability, uniqueness, nor the
internal stage delay distributions. All results confirm the as-
sumption that the stage delay values are Gaussian-distributed
with approximately the same mean and variance (besides
the last stage). We did not find any PUF instance that was
significantly weaker than the others. This shows that — besides
the problem of machine learning attacks — the Arbiter PUF
has indeed very good characteristics when implemented with
care.

As a second conclusion, we would like to note that
the machine learning based analysis to determine the delay
distribution of the PUF is a very useful tool that should be
considered in future work when analyzing strong PUFs. A
simple uniqueness and reliability analysis might not reveal if,
for example, due to implementation issues, some stages are
biased or effects exist that cause deviation from the Gaussian
behavior. Therefore we encourage researchers to also include
such a machine learning based analysis when examining PUF
test chips.
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