
Performance Scalability Analysis of
JavaScript Applications with Web Workers

Javier Verd́u∗ and Alex Pajuelo†

Department of Computer Architecture, BarcelonaTECH (UPC)
Barcelona, Spain

Email: ∗jverdu@ac.upc.edu,†mpajuelo@ac.upc.edu

Abstract—Web applications are getting closer to the performance of
native applications taking advantage of new standard–based technologies.
The recent HTML5 standard includes, among others, the Web Workers
API that allows executing JavaScript applications on multiple threads,
or workers. However, the internals of the browser’s JavaScript virtual
machine does not expose direct relation between workers and running
threads in the browser and the utilization of logical cores in the processor.
As a result, developers do not know how performance actually scales
on different environments and therefore what is the optimal number
of workers on parallel JavaScript codes. This paper presents the first
performance scalability analysis of parallel web apps with multiple
workers. We focus on two case studies representative of different worker
execution models. Our analyses show performance scaling on different
parallel processor microarchitectures and on three major web browsers in
the market. Besides, we study the impact of co–running applications on the
web app performance. The results provide insights for future approaches
to automatically find out the optimal number of workers that provide
the best tradeoff between performance and resource usage to preserve
system responsiveness and user experience, especially on environments
with unexpected changes on system workload.

Index Terms—HTML5, Web Workers, JavaScript, web apps, paral-
lelism, multithreading.

I. I NTRODUCTION

Web applications follow the new HTML5 standard developed by
the World Wide Web Consortium [4] to address the requirements
of current and future platforms, web contents, and cloud services.
HTML5 provides new HTML elements, libraries extensions, and APIs
to take further advantage of the underlying hardware, as well as
reducing the need to install third–party plugins. Hence, current web
apps show similar performance to native applications.

Some programming languages exploit parallelism by the use of
specific APIs for multithreading (e.g.CUDA, OpenMP) with a perfor-
mance scaling closely related to the underlying hardware resources.
Other parallel programming languages, that require virtual machines
(e.g. Erlang, Java), increase deviations of performance scalability,
since it is not only related to hardware resources, but also to
the internals of the virtual machine [1, 2]. This paper focuses on
JavaScript, an interpreted language, largely employed to develop web
apps executed in web browsers. HTML5 pays special attention to the
support of JavaScript and brings, among others, a new mechanism
and the API called Web Workers [6]. Even though JavaScript follows
a single–thread execution model, Web Workers API allows multiple
JavaScript codes to concurrently run in background threads, from now
on workers, communicated by message passing with the main thread.
As JavaScript web apps run on top of a web browser’s virtual machine,
it increases the unpredictability of performance scaling of languages
that run on virtual machines.

By the use of Web Workers API, the developers are responsible
of extracting the parallelism and properly express it in the web

J. Verd́u and A. Pajuelo are with the Universitat Politècnica de Catalunya,
Spain. email:{jverdu,mpajuelo}@ac.upc.edu

apps, unlike Thread–Level–Speculation techniques of JavaScript en-
gines that automatically extract parallelism from sequential codes [5].
Programmers currently use the processor resources availability as
heuristic to find out how many workers should be spawned to
get the highest performance. Although HTML5 provides support
to take advantage of hardware acceleration and better use of re-
sources, JavaScript is not able to retrieve the underlying hardware
specifications, such as the number of logical cores, aka hardware
threads, comprised in the CPU. Major browser vendors address this
constraint in different manner [12]. Google Chrome, Safari, and Opera
implement a new attribute on the browser’s navigator object, called
navigator.hardwareConcurrencyto obtain the number of hardware
threads, regardless of the system workload. Other web browsers, such
as Internet Explorer and FireFox, do not support it yet and users
have to develop a benchmark to estimate the number of logical
cores available. But, this estimation is sensitive to both system
workload variations, since other co–running applications can deviate
the performance of the benchmark, and optimizations of JavaScript
engines, since a particular benchmark can be highly optimized by
some browsers, but badly interpreted by others. Thus, both approaches
provide biased information to developers to determine what is the
optimal number of web workers for any particular web app.

This paper presents the first performance scalability analysis of
JavaScript web apps that comprise multiple workers. We introduce a
classification of web apps according to the worker execution models
and focus specifically on two representative case studies. We compare
performance scalability between parallel microarchitectures, single–
threaded and multi–threaded multi–cores, as well as between Chrome
and other two major web browsers. Besides, this work also analyzes
the impact of co–running applications on the performance of highly
parallel JavaScript web apps. The results offer insights towards future
approaches to find out the optimal number of workers to exploit
parallelism.

II. RELATED WORK

Some studies characterize JavaScript programs using single–
threaded benchmarks [10, 7]. Other authors propose fine grain
parallelization of JavaScript codes. Fortuna et al. [3] analyze the
potential speedup limit of parallelizing tasks and events. Martin-
sen et al. [5] implement and analyze Thread–Level–Speculation for
browsers’ JavaScript engines to take advantage of parallel processors.
Finally, Watanabe et al. [11] describes a technique to parallelize
interactive animation JavaScript using Web Workers, but the authors
do not study its scalability.

None of these works are focused on either analyze the performance
scalability of workers based web apps or related differences among
major web browsers.

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
DOI 10.1109/LCA.2015.2494585

III. C LASSIFICATION OF WORKER EXECUTION MODELS

Parallel JavaScript web apps comprise the main thread, responsible
of the UI, since workers cannot do it due to access constraints [6], and
background threads for Web Workers aimed at computing intensive
tasks to preserve responsiveness and enhance user experience.Al-
though communication channels can be created among Web Workers,
in this paper we focus on the default message passing between
workers and the parent thread. Besides, workers are classified into two
categories: dedicated workers, aka standard workers, only accessible
by the script that spawned it; and shared workers, accessible from any
script running in the same domain. Other emerging types of workers
are still experimental [6].

We introduce a classification of parallel web apps based on worker
execution models, regardless of worker origins. In fact, this work
is focused on the web app code behavior and how parallelism is
exploited:

• Single worker: all computing intensive tasks are done by a
single worker. Videogames, for example, offload CPU intensive
tasks, like AI and physics, to sustain responsiveness and frame
rate. Web apps that comprise multiple computing intensive tasks
suitable to run in several threads are conveyed to one of the other
categories.

• Multiple asynchronous workers: large/continuous workload is
distributed among available workers to be processed in parallel,
like spell checking. These applications have no synchronization
points among workers. As soon as a given worker notifies to the
parent thread that the task is done, a new workload is delivered
to the worker thread for processing.

• Multiple synchronous workers: inherent parallel codes, such
as image/video processing, use to have a synchronization point
among workers, like the presentation of a new frame. Every new
workload, a frame, can be split into multiple jobs, slices, to be
processed by different workers. However, workers cannot directly
start processing new frames until all workers have finished their
work. Thus, these applications can present periods of time with
idle workers, even having pending frames.

IV. FRAMEWORK

We use a personal computer with an IntelR© Core
TM

i7-3960X
processor at 3.3GHz with 6 hyperthreaded cores, for a total of
12 logical cores, with 16GB DDRAM-III and a NvidiaR© GTX560
videocard, running MicrosoftR© Windows

TM
Server 2008 R2. We use

Windows since it is the operating system most widely used by end–
users that run web applications in desktop computers [9]. All non–
critical services and applications have been disabled to prevent as
much as possible any deviation in the measurements.

We use Process Explorer v15.21 [8] to select, by the use of Set
Affinity, the available logical cores used in the experiments to mimic
different parallel processor architectures.

Web apps run in updated releases of the three major web
browsers [9]: Google Chrome v42.0.2311.90m (the default browser
in our experiments), Mozilla Firefox v37.0.2, and Microsoft Internet
Explorer v11.0.9600.16476, IE from now on.

There are no standard JavaScript benchmarks comprising workers.
Several well known web apps and web browser portals though
provide parallel JavaScript demos. Most of them are implemented with
dedicated workers. Actually our analysis is independent of whether
workers are dedicated or shared, but it is focused on the execution
model of web apps with multiple workers, see Section III. We have
run several web apps that have no human interaction requirements.

This paper delves into the analysis of two case studies and, due to
space limitations, we use one representative benchmark for each. Even
though particular performance numbers of other web apps may differ,
the trends shown in this paper are the same:

• Multiple asynchronous workers: Hash Bruteforcer [13],
HashApp, is a web app with dedicated workers that computes
MD5 hashes. We use the default configuration and data sets.
From a given 128-bit MD5 encoded input, the application uses a
brute force attack to decode the string. Thus, the workers perform
continuous CPU intensive workload.

• Multiple synchronous workers: The raytracer web app [12],
RayApp, performs highly CPU intensive mathematical calcula-
tions to simulate components of a scene, like ambient lights and
shadows, to render every frame. We use the default configuration,
but enlarging the default canvas size up to 300x300 pixels. The
scene is split into a number of slices that depends on the canvas
size. Thus, in our experiments every frame rendering consists of
15 slices distributed along a configurable pool size of dedicated
workers. We have done experiments with other canvas sizes,
showing different performance numbers, but with similar trends.

Both benchmarks have been slightly modified to do experiments
from 1 to 20 Web Workers. We fix this limit since it is the maximal
number of workers that Firefox supports. We prevent measurement
deviations due to previous experiments, mainly due to internal opti-
mizations and garbage collector issues, by closing and restarting the
web browser after every experiment. Finally, we take average results
from ten runs of every experiment running 30 seconds each, time
enough to reach steady performance.

V. EXPERIMENTAL RESULTS

A. Microarchitectural Impact

Figures 1(a) and 1(b) depict the performance of HashApp and
RayApp, respectively, running in Chrome on two different microarchi-
tectures. That is, multi–threaded (n Cores MT) and single–threaded (n
Cores ST) multi–core processor, beingn the number of cores available
in the CPU. Y–axes denote performance measurements in terms of
Strings per Second, SPS, for HashApp and Frames per Second, FPS,
for RayApp. X–axes indicate the number of Web Workers.

Figure 1(a) plots higher performance running HashApp on multiple
single–threaded cores (solid circle line) than using a multi–threaded
multi–core architecture (open circle line), due to lower contention on
shared hardware resources. The execution on a processor with single–
threaded cores shows roughly double performance compared to multi–
threaded multi–core architecture. In both cases, performance linearly
scales up until there is a worker running on every core. Using more
workers shows marginal or non performance improvement. Contention
in hardware resources is sustained, since there are no synchronization
barriers among threads and therefore Web Workers constantly demand
shared hardware resources. Nevertheless, running more workers than
logical cores in both microarchitectures does not degrade performance.

In contrast RayApp presents similar performance scalability on both
microarchitectures as seen in Figure 1(b). Performance increments
are limited by the inherent barriers, at every render frame, of the
synchronous workers execution model, as explained in Section III.
That is, since Web Workers are idle during periods of time, there
is lower contention on shared hardware resources and therefore
the performance difference among microarchitectures is lower. The
single–threaded multi–core CPU presents up to 2.85x of speedup,
using 5 Web Workers, whereas the multi–threaded architecture shows
up to 2.22x of speedup, running the same number of workers. Unlike

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
tr

in
g

s
 p

e
r

 S
e

co
n

d

(S

P
S

)

Workers

3 Cores MT 6 Cores ST

(a) HashApp

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F
ra

m
e

s
 p

e
r

 S
e

co
n

d

(F

P
S

)

Workers

(b) RayApp

Fig. 1: Performance scalability on architectures with 6 logical cores

the asynchronous workers, running more Web Workers than logical
cores slightly degrades performance.

This analysis suggests to JavaScript developers that they have to
consider not only the number of logical cores, but also specifications of
the processor architecture to estimate the optimal number of workers
taking into account potential contention on shared hardware resources.

In addition, we use Chrome’s memory profiling tools to analyze
memory management, that is garbage collector behavior. HashApp has
sustained memory consumption with reduced memory areas, few KBs,
regularly cleaned during the execution, whereas RayApp presents
larger memory sizes, tens of MBs, recurrently released. Nevertheless,
due to space limitations, it is out of scope of this paper, but addressed
in our future work, to analyze the garbage collector impact isolated
from the impact of contention on shared hardware resources.

B. Web Browser Impact

Every web browser includes its own implementations and optimiza-
tions of the JavaScript virtual machine. This Section delves into the
repercussion of using other web browsers, Firefox (FF) and Internet
Explorer (IE), on the performance scalability. Figures 2 also present
measurements using the same 6 logical core microarchitectures than
Figure 1. Square lines stand for Firefox performance, whereas triangle
lines denote IE performance. Besides, open and solid shape lines
refer to multi–threaded and single–threaded multi–core architectures,
respectively.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
tr

in
g

s
 p

e
r

 S
e

co
n

d

(S

P
S

)

Workers

FF 3 Cores MT FF 6 Cores ST

IE 3 Cores MT IE 6 Cores ST

(a) HashApp

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F
ra

m
e

s
 p

e
r

 S
e

co
n

d

(F

P
S

)

Workers

(b) RayApp

Fig. 2: Performance scalability on different web browsers

The impact of using single–threaded versus multi–threaded cores on
the performance scalability of HashApp (Figure 2(a)) is much smaller
in both Firefox and IE than in Chrome. Nevertheless, single–threaded
multi–core CPU increases the performance of HashApp compared
to multi–threaded cores up to 8% and 28% for Firefox and IE,
respectively.

In spite of absolute performance differences among web browsers,
Figure 2(b) indicates that multiple synchronous workers present sim-
ilar performance scalability running in the three web browsers on
both assessed architectures. That is, single–threaded multicores show
a speedup of 3.07x (FF) and 2.91x (IE), while multi–threaded cores
present a speedup of 2.47x (FF) and 2.17x (IE). All of them similar
to the speedups obtained from Chrome on respective architectures.

C. Co–Running Applications Impact

Scaling the number of Web Workers without having into account
system workload variations due to co–running applications can either
overload the machine or increase contention on shared hardware
resources leading the system to a performance degradation phase.

Figures 3(a) and 3(b) depict the results of running HashApp and
RayApp, respectively, in Chrome in conjunction with co–running
applications using a CPU with 6 single–threaded cores. Each bench-
mark is setup to comprise 6 Web Workers. Vertical axes indicate
performance and the X–axes denote the timeline in seconds. We
present results of the benchmarks when the web browser’s window

0

200

400

600

800

1000

1200

1400
1

0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

P
e

rf
o

rm
a

n
ce

 (
S

P
S

)

Time (sec)

No Focus With Focus

A B C D

(a) HashApp

0

2

4

6

8

10

12

14

16

18

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

P
e

rf
o

rm
a

n
ce

 (
F

P
S

)

Time (sec)

No Focus With Focus

A B C D

(b) RayApp

Fig. 3: Performance impact of co–running applications

has the focus (solid lines) and without the focus (dashed lines), that
is a co–running application’s window is selected.

The co–running applications are two different web browsers execut-
ing HashApp with 3 Web Workers each, that is half of the total avail-
able logical cores in the CPU. We use these co–running applications
as representative multithreaded CPU intensive applications, especially
parallel JavaScript web apps, that demand nearly 100% of the CPU
when both run at the same time. As Chrome is the browser under
study, the co–running applications are Firefox and IE to simulate a
real system workload with multiple independent applications.

The timeline is divided into four stages labeled asA, B, C, and
D. Every phase takes 30 seconds and denotes a particular status of
the system workload. During the first period,A, there is a single co–
running application that requires half of the resources. The second co–
running application starts off execution at stageB. During this phase
the CPU suffers the highest contention. The OS has to manage both
co–running applications, that ask for the total number of logical cores,
in addition to the benchmark, which also demands all logical cores.
At the beginning of the periodC the second co–running application
finishes and thus there is theoretically similar resource contention than
the stepA. The other co–running application stops when the stage
D starts. From then on, all hardware resources are available to the
benchmark, since the web app is running alone, its performance is
similar to the one shown in Figure 1.

On the one hand, when the benchmark has the focus it suffers slight
performance impact running with one co–running application, nearly

15% for HashApp and 17% for RayApp, whereas the impact is more
significant when there are two co–running applications, about 37% and
49% for HashApp and RayApp, respectively. On the other hand, when
a co–running application has the focus instead of the benchmark’s
window, performance is significantly reduced. In fact, HashApp shows
constant performance reduction, about 55% on average, while RayApp
shows nearly 45% and 73% slowdown when there are one and two
co–running applications, respectively. Besides, the performance of
executions without focus, during stageA, is considerably reduced after
5 and 20 seconds on HashApp and RayApp, respectively, but sustained
from then, including stageC.

VI. CONCLUSION

We presented the first performance scalability analysis of JavaScript
web apps consisted of multiple workers classified according to their
execution model. Our results demonstrated that current approaches to
estimate the number of Web Workers of highly parallel web apps do
not provide enough information to developers. An optimal worker
pool size depends on the worker execution model, the underlying
CPU architecture, and even web browser internals. In most cases
few workers show similar or even slightly higher performance than
spawning larger number of workers. Besides, co–running applications
may significantly impact on the web app performance.

From the results of this paper we can conclude that dynamic
mechanisms, such as performance monitoring based, are suitable
to determine the optimal number of Web Workers. These type of
approaches can detect at runtime performance scalability variations
and contention on shared hardware resources due to co–running
applications or workers overloading.

ACKNOWLEDGMENTS

This work has been supported by the Spanish Ministry of Economy
and Competitiveness (MINECO) under contract TIN2012–34557.

REFERENCES

[1] S. Aronis, N. Papaspyrou, K. Roukounaki, K. Sagonas, Y. Tsiouris, and
I. E. Venetis. A Scalability Benchmark Suite for Erlang/OTP.In Procs.
of the Eleventh ACM SIGPLAN Workshop on Erlang Workshop, Erlang
’12, pages 33–42, New York, NY, USA, 2012.

[2] K.Y. Chen, J.M. Chang, and T.W. Hou. Multithreading in Java: Per-
formance and Scalability on Multicore Systems.IEEE Trans. Comput.,
60(11):1521–1534, November 2011.

[3] E. Fortuna, O. Anderson, L. Ceze, and S. Eggers. A Limit Study of
JavaScript Parallelism. InProcs. of IISWC, pages 1–10, Dec 2010.

[4] Hickson, I. et al. HTML5 Specification.http://www.w3.org/TR/html5.
[5] J. Martinsen, H. Grahn, and A. Isberg. Using Speculationto Enhance

JavaScript Performance in Web Applications.IEEE Internet Computing,
17(2):10–19, March 2013.

[6] Mozilla Developer Network. Web Workers API. https://developer.
mozilla.org/en-US/docs/Web/API/WebWorkers API, March 2015.

[7] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An Analysis of the
Dynamic Behavior of JavaScript Programs.SIGPLAN Not., 45(6):1–12,
June 2010.

[8] M. Russinovich.http://technet.microsoft.com/sysinternals/bb896653.aspx.
[9] StatCounter Global Stats.http://gs.statcounter.com/.

[10] D. Tiwari and Y. Solihin. Architectural Characterization and Similarity
Analysis of Sunspider and Google’s V8 Javascript Benchmarks. In Procs.
of ISPASS, pages 221–232, Washington, DC, USA, April 2012.

[11] Y. Watanabe, S. Okamoto, M. Kohana, M. Kamada, and T. Yonekura. A
Parallelization of Interactive Animation Software with WebWorkers. In
Procs. of NBiS, pages 448–452, September 2013.

[12] Web Hypertext Application Technology Working Group
(WHATWG) Wiki. Navigator Hardware Concurrency.
https://wiki.whatwg.org/wiki/NavigatorHW Concurrency, July 2014.

[13] O. Zára. Hash Bruteforcer. Demo Studio Mozilla Developer
Network, https://developer.mozilla.org/es/demos/ detail/hash-bruteforcer,
April 2013.

