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Summary 

The objective of this project is to build a python application to monitor radiofrequency (RF) packets 

on a personal computer (PC). In order to do this, a NRF24L01 board will be used together with a 

USB-MPSSE cable to connect the board with the PC. This system attempts to replicate a sniffer 

functionality, capable of receiving packets from different transmitters with very little information 

from their configuration. This functionality, which goes beyond regular packet reception, allows 

the user not only to catch messages from transmitters with little information of their configurations 

but also to provide message monitoring from devices with different configurations at the same 

time.  

This report attempts to give the reader a progressive introduction to RF communications starting 

from a basic communication mode in which regular messages are sent and received throughout 

the NRF24L01 and ending with a far more complex mode where the application catches the 

packets just by knowing the first 3 bytes from their address, no matter how long it is and also 

without knowing the CRC length. Then it will not only extract the message from the unknown 

packet but also predict the transmitters configuration and configure the receiver accordingly to 

optimize the reception of the following packets. 

None of these latter functionalities are provided by the NRF24L01 itself. Therefore, this project 

presents a software based enhancement of the NRF24L01 possibilities, extending these chip 

processing capabilities to the PC processor.   

In addition, a deep insight into the Graphic User Interface creation is given coupled with the 

interaction of some basic libraries that have been adapted to meet these project necessities. 

Two examples of these functionality extensions have been implemented in the application and 

are detailed in this report. These are: Fast file download and Focus. 

Finally, this report explains the conversion of the python application into an executable file for 

Windows, meaning that this application can be executed in every Microsoft Windows OS without 

requiring neither python or any of its modules installation. 
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1. Glossary 

DI/DO: Data In/Out. 

C232HM-DDHSL-0:  USB Hi-Speed – MPSSE Cable’s reference. 

CE: Chip enable. 

CSN: Chip Select (active low). 

GND: Ground. 

GPIOL: General Purpose Input/Output. 

GUI:  Graphic User Interface. 

JTAG: Joint Test Action Group. 

MCU:  Microcontroller Unit. 

MISO: Master In Slave Out. 

MOSI: Master Out Slave In. 

MPSSE:  Multi-Protocol Synchronous Serial Engine. 

RF:  Radio Frequency. 

SCK/SK: Serial Clock. 

SPI: Serial Peripheral Interface. 

VCC: Collector to Collector Voltage. 

CRC: Circuit redundancy check. 

SAR: Specific energy absorption rate. 
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2. Introduction 

This project arises from the necessity of the Electronic Engineering Department from ETSEIB – 

UPC to have a low cost device to monitor RF communications. This device permits to catch 

packets with different configurations and provide feedback in order to fix any problem that may 

occur. Moreover, this project can be used as a learning tool for the students to understand how 

the communication works and what is the roll of every part of the packet structure. 

2.1. Objectives 

Although there are some inevitable hardware items inherent to the project that need to be tackled, 

fundamentally, this is a software development based project. The main objective is to develop a 

GUI application which, together with a couple of low cost devices, can replicate the functionality 

of a RF sniffer. In order to achieve that goal, the project needs to get through several stages 

including: 

 The development of a python library to access SPI hardware. 

 The development of a python library to communicate with a nRF24L01 board, that means, 

being able to configure the chip as well as to send and receive data. 

 The manual implementation of a “Promiscuous reception” mode, which provides the 

sniffer with the possibility of tracking several addresses at a time. 

 Take profit of this “Promiscuous reception” and the Enhanced Shockburst packet to use 

the CRC in order to get the message with no more information from the transmitted packet 

than the first 3 bytes of the address and the working frequency. 

 Upon these libraries, build a python GUI application which prevents the user from any 

contact with neither the python code nor the python terminal (that means, no programming 

notions required) as well as providing a windows .exe file so that the user can use this 

app in almost any computer. 

 Keep record of the device configuration and all the packet transaction done in the last use 

of the application and save it in a text file. 
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2.2. Scope 

This project does not contain a detailed explanation of all the characteristics of the hardware 

devices. As mentioned before, this is a software development based project. Therefore, only the 

necessary information to understand how the program works will be covered. 

This project contains a detailed insight into programing procedures and the RF package 

communication. 

 

2.3. Overview 

This project consists in the development of GUI (Graphic User Interface) application to control a 

NRF24L01 board. This board is capable of both receiving and transmitting RF (Radiofrequency) 

packets from other boards and is connected to the PC via USB cable. The whole system will be 

named sniffer, which is able to catch and analyse packets sent by other NRF24L01 boards.  

The application is divided in three different modes. Three different ways of configuring the board 

in order to obtain different functionalities. Their sequential development permits the following 

mode to soak up all the experience acquired in the previous one.  

The first one is called Manual mode and it could be seen as an introduction to the NRF24L01 

basic procedures such as changing registers and sending/receiving messages. 

The second one, Multireceiving mode, is a previous stage before moving on to the complexity of 

the last mode. It allows the sniffer to receive packets from different addresses, which typically 

corresponds to different transmitters. Moreover, this mode gives information about the address 

from which every message comes from.  

Up to this point, it can be easily noticed that it is all about changing registers. Nevertheless, the 

third mode, Automatic mode, takes this project into a whole new level of complexity where the 

NRF24L01 functionalities are insufficient and a few smart plays are needed so that the board can 

do the trick. The chief aim of this mode is to implement the so called “Promiscuous reading”, which 

means receiving packets without knowing the last bytes of the address. However, it was 

acknowledged that this mode did not deserve its name, since the user should still introduce some 

NRF24L01 parameters (apart from a partial address and the frequency) that made this mode not 

even close to being automatic. Not before acquiring a deep knowledge of the packet structure, a 

solution to this problem could be found. A glimmer of hope was delivered to this mode when the 
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enormous potential of the CRC was discovered. The CRC is a one or two bytes’ code, located at 

the very end of the packet, that is calculated over the whole packet. Although it could seem a 

minor element within the packet structure, it provided a lot of room for improvement allowing this 

mode to just give as parameters the first 3 bytes from the address (no matter its total length) and 

the working frequency in order to extract the message and important information about the 

transmitters configuration. It should be noted that the board is incapable of processing a packet 

in that way, therefore it has been configured to just store as much bytes as possible in its FIFO 

(First In First Out) after receiving the first 3 bytes from the address. This permitted catching 

packets and being able to process them (this is message, CRC length, PID and full address 

extraction) out of the NRF24L01 which gives the application free rein to work with that bunch of 

bits. Obviously, this enhancement of capabilities did not come at any cost. Reducing the address 

length results in more noise being captured which couple with a slower message extraction 

became a problem when sending large packets. Many measures were taken in that sense, such 

as the CRC calculation function optimization and a multithreading programming structure. Both 

actions increased considerably the processing speed. Not satisfied with that, two more 

functionalities were implemented taking the flexibility of an Automatic mode, and the processing 

speed of a standard packet reception. How this is achieved will be explained at length in this 

report. 

It is also worth mentioning that great efforts have been devoted into GUI development in an 

attempt to stand out among the basic Window’s window giving this app a personalised and 

professional outfit. 

Finally, the reader can complement this report with an exhaustive documentation over all the 

classes and methods that this application contains which is available on the CD and in many links 

within this report. This documentation has been built with sphinx. Annex B provides screenshots 

regarding the first_level_class.py file as an example. 
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3. Hardware 

There are 3 devices involving this project which allow the design of a radio system through which 

communication with other devices can be established. These are the followings: 

 The nRF24L01+ Single Chip 2.4GHz Transceiver (NRF24L01 board) [1] 

 A USB Hi-Speed – MPSSE Cable (C232HM-DDHSL-0) [2] 

 A personal computer 

 

3.1. nRF24L01+ board 

This NRF24L01 board is able to both transmit and receive RF data. It simply needs an MCU to 

start working. The communication between the computer and the nRF24L01 board is established 

through a Serial Peripheral interface (SPI). This chip is compatible with Enhanced ShockBurst, 

which is, according to the datasheet [1], “a packet based data link layer that features automatic 

packet assembly and timing, automatic acknowledgement and retransmissions of packets”. All 

the content the reader needs to know in order to understand this project is fully covered in the 

datasheet mentioned before. 

 

 

3.2. USB Hi-Speed – MPSSE Cable (C232HM-DDHSL-0) 

This cable is able to transmit the data sent by the computer through a USB port into the 

Fig. 3.1  nRF24L01 RF Board (B). Source: http://www.waveshare.com 

dshttp://www.waveshare.com/product/nrf24l01-rf-board-b.htm 

http://www.waveshare.com/product/nrf24l01-rf-board-b.htm 

http://www.waveshare.com/product/nrf24l01-rf-board-b.htm 

http://www.waveshare.com/product/nrf24l01-rf-board-b.htm 
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nRF24L01+ and vice versa, acting as a link between them. Although it is not of paramount 

importance for this project, the datasheet [2] covers every characteristic and functionality 

regarding this device. 

 

                     

3.3. Connections 

NRF24L01 pins: 

 

 

 

MPSSE Cable Connections: 

Fig. 3.2    USB Hi-Speed – MPSSE Cable. Source: www.ftdichip.com. 

 

 

 

 

 

 

 

Fig. 3.3 NRF24L01 RF Board (B) Pin Definition. Source: www.waveshare.com. 
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The cable description as shown in Fig. 3.4 can be found in this cable datasheet [2]. It is important 

to draw attention to the fact that although the figure uses JTAG nomenclature, the SPI interface 

will be used for this project, which is displayed in the datasheet [2] as well. 

Table 3.1 represents the connections that will be used over the whole project: 

 

NRF24L01 MPSSE Cable 

CE GPIOL1 - Purple 

SCK SK - Orange 

CSN CS - Brown 

MOSI DO - Yellow 

MISO DI - Green 

GND GND – Black 

VCC VCC – Red 

    

Fig 3.4    C232HM MPSSE Cable Connections (JTAG nomenclature). Source: www.ftdichip.com. 

 

 

 

 

 

 

 

Table 3.1    NRF24L01 – MPSSE Cable connections. Own source. 
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Figure 3.5 shows these connections: 

 

 

 

 

 

On the other side of the cable there is a USB Hi-Speed connection which is going to be connected 

to the PC. 

 

 

 

 

Fig. 3.5 NRF24L01 – MPSSE Cable connections. Own source 
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Fig. 3.7 shows the whole sniffer (NRF24L01 + USB Hi-Speed – MPSSE cable + PC): 

 

 

Fig. 3.6    USB Hi-Speed - PC connection. Own source. 

 

 

 

 

 

 

 

Fig. 3.7    Sniffer hardware. Own source 
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4. Software structure 

This project has been designed with a structure based on software layers, as shown in Fig. 3.8. 

It covers from the libraries upon which the whole program is sustained to the GUI and all of its 

elements that allow eventually the interaction between the user and the NRF24L01. 

The whole project consists of 7 python files. The following diagram provides a clear vision of the 

relationships between this files and its classes: 

 

           

         

Note there are a few files which support the app.py file such as the GUI and the CRC files, that 

do not inherit from the first or second level classes. This report will cover from the base to the top 

of the shown software pyramid. 

3 main

classes

Total: 11 classes

NRF24L01

SPI

ftdi

Fig. 3.8 Software structure. Own source. 

 

 

 

 

 

 

 

first_level_class.py 

second_level_class.py 

GUI files: 

manual_mode.py 

automatic_mode.py 

multireceiving_mode.py 

CRC file: CRC.py 

app.py 

ManualMode 

AutomaticMode 

MultireceivingMode 
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5. Libraries 

This section presents the libraries that have been taken from other authors [3, 4] and have been 

modified and optimized to fit the needs of this project. 

5.1. First level classes: ftdi and SPI 

These two classes [3], once have been adequately modified (annex A.1), are able to transmit and 

receive data through the FTDI cable. However, it is important to take into account that these 

classes were not built to support communication with a NRF24L01. In fact, they were only able to 

detect the cable and read registers. Moreover, module d2xx needs to be installed. 

The most important elements of these classes are the read and write methods from SPI class. 

Almost every method in this file lives to eventually support these two functions. Therefore, it is 

necessary to understand how they work. 

write() method 

In order to write (actually overwrite) a register, first thing to do is to tell the NRF24L01 (SPI Slave) 

that it has to be prepared to receive data. This is achieved by activating the Chip Select pin, which 

means setting CSN low (note this is an active low signal). Then, the chip wants to know what it is 

supposed to do, that is why a one-byte command must be sent through the MOSI pin (DO from 

the ftdi cable). In this case, the command is “001AAAAA” in binary code, where “AAAAA” is the 

5-bit Register from the map address [1]. This command is represented in Fig. 5.1 from bit C7 to 

C0. While this command is sent, status information is received from the chip (S7 to S0), which is 

most of the times ignored. Afterwards, the information that will be overwritten on the register must 

be sent (note that CSN keeps low during all this process as it will be of paramount importance 

later on). Finally, CSN is set high, which is understood by the chip as an end of the transaction. 

 

 

read() method 

It is basically the same process although the command that needs to be sent is “000AAAAA” in 

Fig. 5.1    SPI write operation. Source: SparkFun Electronics. 
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order to read the register “AAAAA”. After that, register information is sent through the MISO 

connection from the NRF24L01. 

 

 

 

If these two methods work properly it can be assured that both ftdi and SPI classes work just fine. 

Unfortunately, this was not the case as mentioned before. The reason was found after a thorough 

learning of the classes and how the NRF24L01 board needs to receive the information. The 

original write() method allowed sending one byte to the chip and this method included setting the 

CSN low at the beginning and high at the end of the process. This detail is not easy to 

acknowledge as the method does not directly specify it. Therefore, it was impossible to write a 

register because at least two bytes need to be sent with CSN set low. The following chart shows 

a write and read process using the original classes: 

 

 

 

Fig. 5.3    Reading process using the original library. Source: Electronic Engineering 

Department ETSEIB – UPC. 

 

 

 

 

Fig. 5.2    SPI read operation. Source: SparkFun Electronics. 

 

 

 

 

 

 

 

SCK 

CSN 

reading writing 
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Fig. 5.3 shows the SCK output of the FTDI cable, which is the SPI Clock signal, and the SPI Chip 

Select signal CSN. The reason for choosing the SCK to show the two processes is simply 

because this signal shows when communication is taking place so that both writing and reading 

processes can be seen. Every peak level represents a byte sent or received regarding the write 

and read methods explained before. It is easy to see that the CSN signal is not working properly. 

Here is how it performs once the original library has been modified:  

 

Once the problem was identified, the next step was to decide how to modify these methods in 

order to optimize their utility. Since the number of bytes written and read could vary depending on 

what was read or written (not only one byte registers), the decision of removing CSN actions was 

taken. Thus, the function of these methods has been limited to reading and writing one byte. This 

allows great flexibility when building upper level classes. Moreover, the classes have been 

modified in terms of removing useless methods and duplicities, in order to adapt the code to meet 

this project needs. A full description of the methods regarding these classes can be found here. 

Annex A.1 provides the python file containing both classes. 

 

5.2. Second level class NRF24L01 

Although first_level_class.py provides basic communication with the chip, a more complex 

communication process is needed as the main objective is to be able to receive and send data 

from and to another device. A micropython NRF24L01 class [4] has been used for this purpose. 

Since this project does not operate with micropython it is necessary to adapt the code in that 

sense. In addition, it is especially important to fully understand the methods of the NRF24L01 

class in order to link successfully this class with the first level classes. A full description of the file 

Fig. 5.4    Reading process with the modified library. Source: Electronic 

Engineering Department ETSEIB – UPC. 

 

 

 

 

 

u 

file:///C:/Users/Usuario/Downloads/TFG/Codigo_Final/_build/html/first_level_class.html


 20  Report 

 

that contains this class is available here. The full code is available in annex A.2. These are the 

main characteristics regarding this class. 

Resetting and initializing 

SPI class must be initialized so that all of its methods are available and ready to use. After 

initialization, every relevant register is set to a default value. 

Low(pin) and high(pin) methods 

Set CSN or CE (Chip Enable) into a low or high level. These methods, coupled with the read and 

write from the SPI class, give free rein to the other methods to perform any communication 

process with total flexibility. 

Reg_read() and reg_write() methods 

These functions were specially built to read and write registers because of its use all over the 

code. With these methods the NRF24L01 device can be freely configured. The class contains a 

bunch of methods which permit a direct and intuitive configuration of the most important registers 

such as flush_rx(), flush_tx(), set_power_speed(), setcrc(),... 

Listening methods 

This class also contains methods that will be used in a listening process such as: 

 open_rx_pipe: enables the pipe and the autoacknowledgement feature for that pipe 

(which will be explained later) after writing the address in the correct pipe. In case the 

pipe number is 2 or more, the last 4 bytes will be stored in pipe 1 address register and 

the first one (in case the address is 5 bytes long) is stored in the respective pipe. Note 

that all the pipes must have the same length. 

 

 

            
Fig. 5.5    addressing data pipes. Source: SparkFun Electronics. 

 

 

 

 

file:///C:/Users/Usuario/Downloads/TFG/Codigo_Final/_build/html/second_level_class.html
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  start_listening(): it sets the chip in a RX mode, which means that the device is listening 

from this point on. Besides, the FIFOs are cleaned to ensure that new data can be stored. 

 

  stop_listening(): sets the chip back to a standby mode which prevents the NRF24L01 

from capturing more packets. 

 

 start_sending(msg): sends a packet containing the message “msg” according to the 

configuration that has been applied to the chip. 
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6. GUI 

Before reaching the top of the pyramid, it makes sense to explain how the Graphic User Interface 

has been built as in the next section everything will be put together. 

PyQt4 [4,5], a python module from Riverbank computing (www.riverbankcomputing.com), has 

been used for this purpose. According to Riverbank computing [5], PyQt is a set of Python v2 and 

v3 bindings for The Qt Company's Qt application framework and runs on all platforms supported 

by Qt including Windows, MacOS/X and Linux. The bindings are implemented as a set of Python 

modules and contain over 1,000 classes. Although it provides a handful of components, only 

QtGui and QtCore will be used for this project. 

Besides, the GUI has been developed using Qt Designer, which is a Qt’s tool that helps building 

a GUI. It basically consists on dragging and dropping elements onto a window until you got 

everything you need. Then, it just needs to be saved and converted to a py file format. It is worth 

mentioning that although this is a useful tool, the result is a really basic GUI, which makes almost 

inevitable the manual modifications of the given class. 

 

 

 

The developed application is formed by three GUI classes according to each mode available in 

the app. Every class is contained in a different file, so that the reader can quickly distinguish 

between interfaces. These files are manual_mode.py, automatic_mode.py and 

multireceiving_mode.py. It is important to draw attention to the fact that the classes that are going 

Fig. 6.1 Qt Designer interface. Shaping the GUI. Own Source. 

 

 

 

 

 

 

 

http://www.qt.io/
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to be explained here are the final result from a series of intermediate steps which goes from the 

most basic GUI developed with Qt Designer to a more complex layout (manually modified). Here 

is a before/after layout: 

 

 

 

 

Fig 6.2    First basic layout made with Qt Designer. Own source. 

 

 

 

 

 

 

 

Fig 6.3    Final layout (manually modified). Own source. 
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It is easy to notice that lots of components have been “faked” to meet professional layout 

expectations. This means more complexity and accuracy. 

In an attempt of trying to avoid a detailed explanation of every component of the layout (which the 

reader can find in the bibliography [6] and the component’s code in annex A.4, A.5 and A.6), this 

section will present the most significant characteristics of the final GUI. 

6.1. Title bar 

As the reader might have noticed, no title bar is displayed on the final layout. The reason for this 

is just esthetical. An effort to build the GUI as a unique unit has been made.  Therefore, a 

completely customized title bar has been created. Although this could seem straightforward, there 

is more work behind it than the reader might expect. PyQt4 does not provide the kind of title that 

meets this project expectation. Therefore, a bit of imagination was needed in order to build the 

functions that are usually found in a title bar. These are: window movement, minimize, maximize 

and close window. Maximize is useless in this case, as the app uses just the necessary space for 

the app. 

6.2. Minimize and close buttons 

The two functions that provide functionality to these buttons are app.quit() and 

myapp.minimized(). There is something important to draw attention on which applies to every 

button. They are there, but the user is not able to see them. Knowing this may be difficult to 

understand and that a picture is worth a thousand words: 

 

 
Fig. 6.4    Real buttons in the app’s layout. Own source. 
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These buttons are set transparent so that the more stylish button’s images can be visible.  

6.3. Labels, input fields and output fields 

This application contains no labels (or at least, no visible ones). This decision was taken to provide 

the professional appearance this project is looking for coupled with the fact that it is easier to deal 

with an image than with the rigid layout that PyQt4 offers. 

Input fields have been kept untouched. There are input lines, picklists and a text browser which 

displays all the information. Each of them serves a specific purpose. 

6.4. Status bar 

It indicates the user whether the Device is connected or not. Therefore, there will always be a 

QThread class method running periodically to update the connection state. 
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7. app.py file 

Once all the necessary tools to build this application have been exposed, it is time to put 

everything together and make it work. Since the app will display three configuration modes, it has 

been considered sensible to maintain the same structure in the code as well. Therefore, in the 

app.py file, three main classes (ManualMode, AutomaticMode and MultireceivingMode) can be 

found corresponding to each mode. The other classes support these latter ones. This file acts as 

a controller which manages the input parameters and actions that the user displays through the 

GUI and translate these inputs into actions that the NRF24L01 class can understand and vice 

versa. Detailed documentation about this file can be found here. The full code is available in annex 

A.3. This is how this section will be structure: 

 GeneralModeFunctions class 

 QThread classes 

 Manual mode 

 Multireceiving mode 

 Automatic mode 

 Tests 

7.1. GeneralModeFunctions class 

Since most of the methods and attributes are similar in every mode class (if not equal), the 

decision of joining all these methods and attributes together in one single class was taken. This 

class was named GeneralModeFunctions.  

7.1.1. Inheritance 

Because these mode classes inherit from QtGui.QMainWindow, GeneralModeFunctions 

needs to inherit this class to actually be able to execute the methods and attributes from the mode 

classes without problems. This is the inheritance structure: 

 

 

QtGui.QMainWindow()

GeneralModeFunctions()

ManualMode() AutomaticMode() MultireceivingMode

Fig 7.1    Mode classes’ Inheritance structure. Own source. 

 

 

 

 

file:///C:/Users/Usuario/Downloads/TFG/Codigo_Final/_build/html/app.html
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7.1.2. Methods 

These methods are available to every mode class. 

7.1.2.1. listening() 

It is triggered when clicking the “Listen” button. This function is a very important one not only 

because it sets the NRF24L01 in a listening state but also because in order to do that, it has to 

call another class named ListeningLoop which is a thread. The reason of being of this thread is 

the need of a loop when listening. If the loop was written in this method, the app would get stuck 

and would not respond. Therefore, the loop must be executed in another class that runs 

simultaneously together with one of the mode classes. If the method fails execution, a message 

will let the user know whether it is due to a loss of connection or because the parameters have 

not been applied yet. If it is owing to a loss of connection by popping up a message box informing 

the user about the problem. 

 
 
 

7.1.2.2. stop_listening() 

It runs when the “Stop” button is clicked. It makes the NRF24L01 stop listening, which means 

returning to a standby state (which also consumes less energy). A message confirming the 

execution of this method is shown on the text browser. If the method fails, it will proceed as in the 

listening() method. 

 

7.1.2.3. end_Get_CheckConnection() 

It is executed when a signal is received from GetConnection or CheckConnection class. 

That is, when connection is established or lost. It just updates the status bar, terminates the thread 

from which the signal comes from and starts the other one. Note that there is always one thread 

running, GetConnection or CheckConnection. 

 

7.1.2.4. add_to_record(s) 

Normally, displays information to the user via the text browser. It also saves the displayed 

information in a text file named as the mode that is currently running. This information is 

overwritten every time the app is executed. This avoids deluging the folder with hundreds of files. 

Nevertheless, if Focus or Fast file download modes are enabled it plays a whole different role 
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which is explained in detail on the sphinx documentation available here.  

 

7.1.2.5. Change_mode() 

This method is executed when the user presses the “Manual mode”, “Automatic mode” or 

“Multireceiving mode” button. It closes the current GUI and opens a new one according to the 

mode that the user chose. It also terminates the threads if they were running and passes the new 

window's position. 

 

7.2. QThread classes 

All the classes that are presented in this section inherit from QtCore.QThread and are isolated 

from the main classes for one of two reasons. A huge number of calculations take place in their 

run() method which prevents the app from running correctly, which is the case of 

packet_validation(), or because these classes’ run() method contain a loop that needs to be 

executed simultaneously together with the current mode class. Note that all these classes 

automatically execute its run method (where all the code is located) when the class is started. 

These classes are: 

7.2.1. Intro class 

This class is only initialized and started by ManualMode class. It is only executed the first time 

that ManualMode is called. It provides a 3 seconds Introduction image to the app and its owner 

which is the following.  

 

 

file:///C:/Users/Usuario/Downloads/TFG/Codigo_Final/_build/html/app.html
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7.2.2. Move class 

Since this app has an especial title bar and the function of dragging the window is executed when 

pressing long invisible button at the top of the window, this functionality is carried out by this class. 

Whenever the button is “pressed” (not clicked), the run() method from this class is executed. This 

method consists of a loop which maintains the relative distance (and angle, of course) between 

the mouse and the window while the button is pressed. Nevertheless, it is possible that the loop 

does not update fast enough the relative distance which causes the mouse being outside the 

button which stopped the loop because the mouse was no longer pressing the button but another 

part of the screen. This problem was tackled by focusing on the on the mouse state (left click 

pressed or not pressed) instead of focusing on the button once the button was pressed.  

 

7.2.3. GetConnection class 

This class is triggered every time the device is disconnected. Therefore, it will run at least one 

time, right at the beginning. It basically consists of a loop that is constantly trying to stablish 

communication with the device. If it can, the state of the status bar will change to “Connected” in 

green and a message confirming this connection is displayed in the text browser. 

 

 

 

Fig. 7.2    Introduction image to the app. Own source. 
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7.2.3.1. Checkconnection class 

Whenever the GetConnection loop stops running, the Checkconnection loop does. In this 

case, this loop does not check the device connection, as this would mean sending information 

through the FTDI cable and expecting something in return. This is not good practice since the app 

could be applying parameters or be in the listening loop while this happens which would turn out 

badly due to the fact that both signals would be sent through the cable simultaneously. 

Notwithstanding this, it is possible to check the cable’s connection without interfering with the 

device and this is what this class actually does. 

 

7.2.4. ListeningLoop class 

It runs a loop in which it checks if the any() method from the NRF24L01 class returns True and, if 

so, sends a signal to the current mode class when something is received. If the device is 

disconnected while running this loop, a signal is sent to the current mode class which triggers a 

method that pops up a message on the screen informing of this unexpected disconnection. 

 

 

 

 

Fig. 7.3    Status bar states. Own source. 

 

 

 

 

 

 

 

Fig. 7.4    Error message box due to an unexpected device disconnection. Own source. 
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7.2.5. PacketValidation class 

This class is of paramount importance not only for its complexity but also because it to catch a 

packet without knowing almost anything about it. The process regarding this class will be tackled 

in section 7.5.4. 

 

7.3. Manual mode 

The purpose of this mode is to establish communication either with a transmitter and a receiver. 

As the title of this mode reveals, all the relevant parameters regarding this communication will be 

modifiable by the user. These are the relevant settings that must be taken into account when 

receiving and sending packets: 

 Air data rate [1 Mbps, 2 Mbps, 250 Kbps] – input value 

According to the NRF24L01 datasheet [1], “Using lower air data rate gives better receiver 

sensitivity than higher air data rate. But, high air data rate gives lower average current 

consumption and reduced probability of on-air collisions. [...] A transmitter and receiver 

must be programmed with the same air data rate to communicate with each other”. 

 Channel [0 to 125] – input value 

According to the NRF24L01 datasheet [1], “You must program a transmitter and a receiver 

with the same RF channel frequency to communicate with each other”. 

 Static payload length [1 to 32 Bytes] - input value (only for receiver mode) 

Must be the same length as the sent message, otherwise the chip will not get the correct 

CRC (as it sent right after the message) causing a CRC failure and discarding the packet.  

 Enable CRC (although is forced to be enabled when Auto Acknowledgement is enabled.) 

[1]: “The CRC is the mandatory error detection mechanism in the packet. It is either 1 or 

2 bytes and is calculated over the address, Packet Control Field and Payload”. 

 CRC [1 or 2 bytes] - input value 

Must be the same as the transmitter, otherwise will cause a CRC failure and the packet 

will be automatically rejected unless it is deactivated from the receiver side. 

 Pipe enabled [pipe 0 to 5] – input value (only for receiver mode) 

Only one pipe needs to be enabled in this mode. 
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 Enhanced ShockBurst enabled for the chosen pipe 

Normally, messages are sent with Enhanced ShockBurst enabled. 

 Pipe address – input value 

Must be the same as the transmitter address and set in the pipe address that has been 

enabled 

 

 PWR_UP, PRIM_RX registers and CE must be set high to enter in RX mode 

PWR_UP -   if set high, the NRF24L01 enters standby-I mode. 

CE          -   if set high, the NRF24L01 enters standby-II mode. 

RIM_RX -   if set high, the device enters in RX mode. 

 

 Dynamic Payload – This feature permits automatic payload detection for the receiver 

only if Dynamic Payload has been enabled from the transmitter, otherwise the payload 
length will not be set in the transmitted packet 

The following table shows how both the receiver and the transmitter should be configured to be 

able to communicate with each other: 

Input Settings 

Air rate Same for the receiver and the transmitter 

Channel Same for the receiver and the transmitter 

CRC Same for the receiver and the transmitter 

Pipe Not relevant 

Pipe address Same for the receiver and the transmitter 

Registers’ configuration 

Register Receiver Transmitter 

00 

0b1001 (1 byte CRC) 

0b1101 (2 bytes CRC) 

0b1000 (1 byte CRC) 

0b1100 (2 bytes CRC)  

01 

0b111111 – Enhanced 

ShockBurst enabled in all 

pipes 

Not relevant 
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02 0b111111 – Enable all pipes Not relevant 

03 Address width for all pipes 
Address width (related to 

register 10) 

04 Not relevant Not relevant 

05 
Same for the receiver and the 

transmitter 

Same for the receiver and 

the transmitter 

06 
Same for the receiver and the 

transmitter 

Same for the receiver and 

the transmitter 

07 Not relevant Not relevant 

08 Not relevant Not relevant 

09 Default Default 

0A 

One of these registers must fit 

the TX address sent by the 

transmitter (notice LSB is 

written first) 

Not relevant 

0B The register that corresponds 

to the chosen pipe to receive 

the information must have the 

same length as the TX 

address from the transmitter 

Not relevant 

0C Not relevant 

0D Not relevant 

0E Not relevant 

0F Not relevant 

10 

Not relevant The introduced address 

must equal the chosen RX 

pipe address (notice LSB is 

written first) 

11 

Choose the desired payload 

width for the chosen pipe 

Not relevant 

12 Not relevant 

13 Not relevant 
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14 Not relevant 

15 Not relevant 

16 Not relevant 

17 Default Not relevant 

1C Not relevant Not relevant 

1D Not relevant Not relevant 

 

If all these registers were overwritten in both the transmitter and the receiver and CE signal was 

set high in both chips (first on the receiver and then the transmitter so that the message can be 

received before being sent and not after), the message should be saved in the RX FIFO from the 

receiver which can be easily accessed with the R_RX_PAYLOAD command as will be shown in 

the following section. 

 

7.3.1. ManualMode class 

The mode classes contain the specific attributes and methods regarding the mode (annex A.3). 

 

7.3.1.1. The constructor 

As this class inherits from GeneralModeFunctions, two parameters must be passed to the 

inherited class which are: an instance of the GUI class from the corresponding mode and the 

name of the text file that is going to be used as a record. 

This class needs no other attribute to run properly (apart from the ones inherited). However, there 

is a short presentation which turns up every time the program is executed where the logo of the 

app appears together with the owner’s name. 

It is actually very basic. There is a global variable which is True by default so that the first time the 

if statement is executed, it initializes an Intro() instance and then starts the QThread class. This 

QThread class (Intro()) runs automatically its method run(), which makes the program wait for 

3 seconds before hiding the intro and letting the user see the Manual mode interface. 

Table 7.1 Registers’ configuration. Own source. 
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7.3.1.2. apply_new_parameters() method 

It tries to apply the input parameters chosen by the user into the NRF24L01. If it fails a message 

box will tell the user whether is it due to an unacceptable input or because the app lost connection 

with the chip (if this is the case, GetConnection class will be started, which will wait for the device 

to be connected). If it succeeds, parameters will appear on the text browser together with a 

message confirming the success. It also checks if the user has clicked on stop_listening() after 

clicking on listening. If not, stop_listening() method is executed before applying the parameters. 

 

7.3.1.3. read() method 

It gets the message by calling the recv() method from the NRF24L01 class and prints it on the 

text browser 

7.3.1.4. tx_message() method 

Opens an input window were the user can write the message that wants to send. The message 

must be written as in the Address input field. When the user clicks the “OK” button this method 

calls the sending()  method. 

7.3.1.5. sending() method 

This method actually sends the packet by calling start_sending() from the NRF24L01 class. After 

that, it checks whether the message was correctly sent. Then it waits for the acknowledgement 

packet in case that option was checked by the user. When the acknowledgement packet has 

been received, a message informs the user about that fact. 

7.3.2. Example  

In this example, both the transmitter and the receiver can be configured with this application as 

will be shown. 

The transmitter and the receiver will have the following characteristics: 

 Address: 0xB2B3B4 

 Message (transmitter): 0x01 

 Air rate: 1Mbps 

 Power (transmitter): 0 dBm 

 CRC: 1 byte 

 Pipe number used (receiver): 0 
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Using the app, the chip configuration is as follows: 

Register Map configuration 

Register Receiver Transmitter 

00 0x09 0x08 

01 0x01 0x3F 

02 0x01 0x3F 

03 0x01 0x02 

04 0x68 0x0A 

05 0x40 0x40 

06 0x7 0x07 

07 0x0E 0x0E 

08 0x00 0x1A 

09 0x00 0x00 

0A 0xB4 0xB3 0xB2 0x01 0x04 0xB3 

0B 0x00 0xC2 

0C 0x00 0xC3 

0D 0x00 0xC4 

0E 0x00 0xC5 

0F 0x00 0xC6 

10 0x00 0xB4 0xB3 0xB2 

11 0x01 0x05 

12 0x00 0x00 

13 0x00 0x00 

14 0x00 0x00 
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15 0x00 0x00 

16 0x00 0x00 

17 0x11 0x01 

1C 0x3F 0x3F 

1D 0x3F 0x3F 

 

Now, let’s see how easy it is to configure both the receiver and the transmitter with this app.  

It is not important to have the device connected when starting the app, although it will be 

necessary when applying the parameters. A message will turn up on the text browser if the 

connection has been successful. Moreover, we can quickly check the state of our connection in 

the status bar, which, if the device has been connected properly, will display “Connected” in green.  

 

 

Then we can proceed to introduce the input parameters as the app opens Manual mode by 

default. There are a couple of things that must be taken into account when introducing the 

parameters. 

Table 7.2 Registers’ configuration example. Own source. 

 

 

 

 

 

 

 

Fig. 7.5    Manual mode interface. Own source. 
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 All numbers must be written as in hexadecimal format separating every byte with a space. 

For example: b1 b3 c5 01 

 The address can be of 3, 4 or 5 bytes long 

 The address is written in reverse to the register it is written from the Least Significant Byte 

(LSB) to the Most Significant Byte (MSB). That is because it is easier to understand the 

address writing first the MSB (this will be of paramount importance in the Automatic 

mode). 

 

Receiver: 

The transmitters code for this example is available in annex C. This configuration can be easily 

set throughout the app by fulfilling the parameters and clicking on “Apply parameters”. 

 

 

Now we just need to click on “Listen” to start receiving packets: 

Fig. 7.6    Screenshot after clicking on “Apply parameters”. Own source. 
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When the packet is sent from the transmitter, the receiver catches that packet and shows its 

message on the text browser: 

 

 

Transmitter: 

Similarly, we can configure the transmitter: 

Fig. 7.7    Screenshot after clicking on “Listen”. Own source. 

 

 

 

 

 

 

 

Fig. 7.8    Screenshot after receiving the packet. Own source. 
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As we want to send a message, we just need to click on “Send” and the following window will pop 

up: 

 

 

 

 

The message must be written in the same way as the address. After clicking “OK”, the message 

will be sent and a message confirming this fact is displayed on the text browser. 

 

Fig. 7.9    Screenshot after clicking on “Apply parameters”. Own source. 

 

 

 

 

 

 

 

Fig. 7.10    Screenshot after clicking on “Send”. Own source. 
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7.4. Multireceiving mode 

Once all the problems from the Manual mode have been overcome, this mode turns out really 

simple (annex A.3). The strong point of it is the capacity of receiving messages from different 

addresses, this is, the possibility to communicate among different devices at the same time. This 

can be achieved thanks to the 6 receiving pipes integrated in the NRF24L01.  

7.4.1. Multireceiving_mode class 

The methods that make this class work are the followings. 

 

7.4.1.1. apply_new_parameters() 

This method configures the NRF24L01 to be ready for listening. Notice that this method leaves 

the chip in a low energy consumption state. This means, it is not “listening” yet. Here is the 

configuration table where the reader can see which fields are required and how they must be 

fulfilled. 

 

Fig. 7.11    Screenshot after clicking on “OK”. Own source. 
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Input Settings 

Air rate Same for the receiver and the transmitter 

Channel Same for the receiver and the transmitter 

CRC Same for the receiver and the transmitter 

Pipe Not relevant 

Pipe address Same first three bytes for the receiver and the transmitter 

Register Map configuration 

Register Receiver Transmitter 

00 0b1000 (1 byte CRC) 

0b1100 (2 bytes CRC) 

0x0C 

01 0b111111 – Enhanced 

ShockBurst enabled in all 

pipes 

Not relevant 

02 0b111111 – Enable all pipes Not relevant 

03 Address width for all pipes Address width (related to 

register 10) 

04 Not relevant Not relevant 

05 Same for the receiver and the 

transmitter 

Same for the receiver and 

the transmitter 

06 Same for the receiver and the 

transmitter 

Same for the receiver and 

the transmitter 

07 Not relevant Not relevant 

08 Not relevant Not relevant 

09 Default Default 

0A One of these registers must fit Not relevant 
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0B 
the TX address sent by the 

transmitter (notice LSB is 

written first) 

Not relevant 

0C Not relevant 

0D Not relevant 

0E Not relevant 

0F Not relevant 

10 Not relevant The introduced address 

must equal one enabled 

RX pipe address (notice 

LSB is written first) 

11 The pipe that is going to be 

used must have a 32 bytes 

payload width 

Not relevant 

12 Not relevant Not relevant 

13 Not relevant Not relevant 

14 Not relevant Not relevant 

15 Not relevant Not relevant 

16 Not relevant Not relevant 

17 Default Default 

1C Not relevant Not relevant 

1D Not relevant Dynamic Payload Length 

Enabled 

 

 

7.4.1.2. read() 

This method is similar to the read() from Manual mode. Nevertheless, it also prints the pipe from 

where the message has been caught on the screen so that the user can easily tell which 

Table 7.3    Registers’ configuration. Own source. 
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transmitter is sending the information by checking the address of the pipe. 

 

7.4.2. Example 

Transmitter’s code for this example is available in annex D. To perform this example and actually 

use the functionality that this mode provides, several transmitters are needed. For this example, 

3 transmitters were used: 

 

 

 

These transmitters have been configured as follows (annex D): 

Transmitters’ packet characteristics 

Addresses 0xB1 0xB2 0xB3 0xB4 0x01/02/03 

Channel 64 (2464 [MHz]) 

Air rate 1Mbps 

Power 0 dBm 

Fig. 7.12    Receiver (left hand) connected to the laptop and 3 transmitters connected to 

Open18F4520 boards. Own source. 
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CRC 2 Bytes 

Dynamic Payload Enabled 

Message 1 2 4 8 15 

 

 

In order to receive all the packets sent by the transmitter, the following parameters must be set 

within the app to configure the receiver accordingly. 

 

 

 

 

After applying the parameters, the user just needs to click on “Listen” to be ready to receive 

packets. The following image shows the messages that have been received coupled with the pipe 

that contains the address from which the messages have been sent. This means that the user 

can easily recognise the transmitter that sent the message. 

 

Table 7.4 Transmitters’ packet characteristics. Own source. 

 

 

 

 

 

 

 

Fig. 7.13    Example parameters. Transmitters’ addresses are set in pipes 0, 2 and 4. Own 

source. 
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Fig. 7.14    Screenshot of the messages that have been received from different pipes. Own 

source. 
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7.5. Automatic mode 

This is probably the most complex mode in this application. Its aim is to get the message from a 

3, 4 or 5 bytes address packet, knowing only the first 4 or even 3 bytes and nothing else (it also 

works with 5). This “nothing else” has important consequences. It allows the receiver to extract 

the message sent by different transmitters regardless of their configurations (address length, 

payload length and the CRC length). It basically reads every message contained in a packet that 

starts with the first 3 chosen bytes. The implications are impressive, however, this adds a lot of 

complexity to the message extraction, problems that will need to be tackled. 

This mode is an enhanced variant of the so called Promiscuous Reading [10], which is the ability 

to receive a packet by knowing just a part of its address. It allows the receiver to get messages 

from up to 65793 different transmitters in contrast with the 6 different pipes that the device 

provides thanks to the Multireceiver functionality. Unfortunately, this Promiscuous Reading is not 

available in the NRF24L01, therefore, it will be applied manually using software. 

This is achieved by configuring the receiver to receive a 3 or 4 bytes address with Enhanced 

Shockburst disabled. By doing so, the device will not check anything that comes after the address 

(mainly the CRC) and will just pass as much data to RX FIFO (first in, first out) as it can store (32 

bytes).  

Up to this point, the device is able to capture the packet, which contains the message. 

Nevertheless, this packet is hidden among many other bits. This means that the chip will not know 

either where the message exactly begins or where it ends. This makes it almost impossible to 

extract the correct message, even knowing it is among this large row of ones and zeros that the 

device has captured. Here are a few samples to exemplify this point: 

1 

 

The answer to this problem lies in the Enhanced ShockBurst packet structure. Messages are 

                                                

1 PCF (Packet Control Field) include the payload length, the PID and the no acknowledgement bit. 

Fig. 7.15    This figure shows that it is not possible (a priori) to know for sure where the 

message begins and where it ends. Own source. 
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usually wrapped up in an Enhanced ShockBurst packet format. This packet contains (apart from 

the message) metadata such as the length of the message, the PID (Packet Identity), the No 

Acknowledgement bit and a CRC validation. These parts of the packet will not only help in the 

message extraction, but also provide important information about the transmitters configuration 

such as the CRC length and the full address which will be very useful in future sections. 

 

7.5.1. Enhanced ShockBurst packet 

As mentioned before, there are a bunch of elements wrapping up the message. Their distribution 

and length within the packet are: 

 

 

A detailed explanation of these elements, which is strongly recommended, can be found in the 

bibliography [1]. 

 

7.5.2. Receiving process 

The receiver has the Enhanced ShockBurst mode disabled, this means that it is expecting a 

packet format like this: 

 

 

We want no CRC to be verified from the receiver side, as we still don’t know where this CRC is 

located. Instead the NRF24L01 will store the maximum data that the FIFO can keep to ensure 

that the entire packet is in between these 32 bytes 

Fig. 7.16    Enhanced ShockBurst packet distribution. 

Source: http://yveaux.blogspot.com.es/2014/07/nrf24l01-sniffer-part-1.html 

 

 

 

 

 

 

 

Fig. 7.17 Packet distribution with Enhanced Shockburst disabled. Source: SparkFun 

Electronics.  
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From now on, fixed lengths for the different fields will be provided to simplify the explanation as it 

can be easily extrapolated to different lengths. Let’s say we have a 5 bytes message and we want 

the device to read the message with just the first 4 bytes of that address. The aim is that once the 

first 4 bytes of the address are checked, everything else passes to the RX FIFO in order to have 

free access to it. 

 

 

 

 

As can be seen in figure 7.13, the receiver (with Enhanced Shockburst disabled) checks the first 

4 bytes of the received packet and stores the rest into the RX FIFO as if it was the message. The 

CRC must be disabled as the device does not know where the CRC is located. That is not a free 

of charge as when using a 3 bytes’ address from the receiver side, some noise is captured by the 

device since just 3 bytes from the address must fit to capture the packet. This problem will be 

tackled later on. 

Fig. 7.18 The upper side packet represents a standard packet sent to the receiver. The 

other packet represents how the receiver sees the upper packet.  

Source: http://yveaux.blogspot.com.es/2014/07/nrf24l01-sniffer-part-1.html 
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Now, almost all the packet (except the first 4 bytes from the address that has been checked) can 

be accessed with the command R_RX_PAYLOAD.  

In order to split the different sections of the packet, the information will be processed at a bit level 

rather than at a byte level due to the 9 bits of the Packet Control Field. The Bitstring module will 

be used for this purpose. 

With all the packet information available in the RX FIFO a way needs to be found to locate every 

section of the packet in order to locate the message and the full address from where the message 

has been sent.  

First thing to do is to delimitate the packet. Note that if the CRC is found, the packet will be 

delimited since it is located right at the end of the packet. However, that is only one advantage of 

finding the CRC. As we are going to see in the next section, finding the CRC will necessarily 

validate the message. 

 

 

7.5.3. CRC 

This section explains the importance of calculating the CRC [7, 8, 9] and the process that has 

Fig. 7.19    Noise detected knowing the first 3 bytes from the address. Own source. 
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been followed in order to manually get it. The CRC manual calculation is important for the 

following reasons: 

 Packet validation: The CRC is calculated over the whole packet (excluding, of course, 

the CRC itself) to ensure that the receiver receives the right information from the 

transmitter. This is very helpful when receiving with a 3 bytes’ address as it is easy to 

receive dummy data. 

 

 Guessing packets’ payload length: if payload length is unknown, it can be derived (as 

will be explained) once the CRC is located. This means knowing exactly where the 

message is located (because the end of the payload is the beginning of the CRC) and 

being able to extract it, which is the main aim of all these calculations. 

Since the payload length is normally contained in the Packet Control Field (unless it is disabled), 

this mode will “guess” the packets’ address length. 

The consequence of using the CRC are impressive. Just by knowing the first 3 bytes of a 

message’s address, this mode is able to present the message without errors.  

But before delving into how to extract the message from a completely unknown packet, the CRC 

needs to be correctly calculated. 

 

7.5.3.1. CRC manual calculation 

According to the datasheet [1]:  

“The CRC is the mandatory error detection mechanism in the packet. It is either 1 or 2 bytes and 

is calculated over the address, Packet Control Field and Payload. 

The polynomial for 1 byte CRC is X8 + X2 + X + 1. Initial value 0xFF. 

The polynomial for 2 byte CRC is X16 + X12 + X5 + 1. Initial value 0xFFFF.” 

As it has been said before, CRC is calculated over a bit string which is not multiple of 8 (due to 

the Packet Control Field). This is unfortunate not only because it makes it compulsory to work at 

a bit level (which consume more resources) but because CRC functions available on the internet 

work at a byte level which compels this project to have its own CRC calculation function. 

This function has the following characteristics: 

Arguments:  

 The bit string from which the CRC will be derived. 
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 An integer regarding the CRC’s length. 

Return: 

 The resulting CRC’s bit string. 

The CRC’s calculation procedure has been deeply analysed and can be found in the bibliography. 

Although some modifications can be added to this procedure, it basically consists on performing 

an XOR operation between the message and the polynomial in every iteration until you get the 

desired CRC length. The polynomial degree must equal the desired CRC bit length. In this case, 

an initial step is added to this process, which is performing an XOR operation between the 

message and an initial bit string which is going to be 0xFF for the one-byte CRC and 0xFFFF for 

the two-bytes CRC. The following example will provide a better understanding of how the function 

works. 

This is a real packet sent by a transmitter: 

1011001010110011101101000000011100000000101101000 

                        3-bytes address                  Packet Control Field    Message            CRC 

Since the CRC is one-byte length, the polynomial X8 + X2 + X + 1 (100000111 converted to bit 

code) will be used coupled with an initial value of 0xFF (11111111 converted to bit code) as it has 

been mentioned before. The CRC is calculated over the whole packed (excluding the CRC itself), 

therefore, the CRC is calculated over the bit string: 

10110010101100111011010000000111000000001. In order to perform the calculations 

correctly, eight “0” bits need to be appended to the end of this bit string which will end up being 

the CRC.  Taking all these into account, the next steps need to be followed in order to obtain the 

CRC: 

1. Align the initial value with the first bit of the given bit string and so on. Perform an XOR 

operation between the bits in the same column. The rest remains the same. 

1011001010110011101101000000011100000000100000000 

 11111111 
 ------------------------------------------------------------------------------------- 
 0100110110110011101101000000011100000000100000000 
 

2. Align the first bit of the polynomial bit string with the first “1” of the resulting bit string and 
perform the same XOR operation as in step one. 

 
0100110110110011101101000000011100000000100000000 
  100000111 
------------------------------------------------------------------------------------- 
0000110001110011101101000000011100000000100000000 
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3. Iterate over step 2 until all the bits from the resulting bit string are “0” excluding the last 8 
bits. These are the last two iterations. 
 
0000000000000000000000000000000000001100000100000 
                                                                          100000111 
0000000000000000000000000000000000000100001010000 
                                                                            100000111 
0000000000000000000000000000000000000000001101000 

 
 
The full CRC calculation is available in annex G and the CRC function in annex A.7. 

 
 

 

7.5.4. Message extraction 

Since there is no information about the incoming packets apart from the packet structure and the 

first three bytes of the address, a smart play is needed in order to finally get the correct message. 

Firstly, the packet must be located among the large string of bits that have been recorded in the 

FIFO. Since the FIFO will start with the fifth byte of the packet (In this example the first four refer 

to the firsts address’ bytes), the problem lies in finding the end of the packet. As has been 

explained before, the CRC occupies the last bits of the packet, therefore, if the CRC is found, the 

packet will be located. Unfortunately, the CRC is unknown and it cannot be calculated since the 

packet has not been delimited yet. Besides, the CRC length is also unknown. 

On the bright side, there is only one combination of packet length and CRC length that would 

make the CRC from the packet be equal to the CRC calculation over the packet (excluding the 

CRC). It would be a hard work to try all the combinations manually, fortunately it is easy for a 

computer to do this task. 

Now that the Packet has been delimited, it is easy to locate the end of the message (where the 

CRC begins). Nevertheless, the beginning of it is not that simple to find. The reader might think 

that the beginning of the message can be derived since the length of the message is contained 

in the Packet Control Field. However, this section of the packet cannot be located since the 

address length is still unknown. Notwithstanding this fact, the length of the message is still there, 

somewhere inside the packet, and it has a fixed length of 6 bits. At this point, it is easy to notice 

that the same procedure used in the preceding paragraphs can also be applied in this case. 

The process would be the following: 

 Choose a payload length between 1 and 29 

 Locate the position where the payload length should be (inside the Packet Control Field). 

 Compare the chosen length with the bits where the payload length should be. 

 If both numbers are the same, the payload length has been found. Otherwise, choose 
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the following number and restart the process. 

With the payload length we can easily assign every bit to its corresponding section. Now, not only 

the message can be extracted but also the whole address so that the user can distinguish the 

messages by its transmitters. Moreover, the PID (contained in the Packet Control Field) is also 

available and its use will be explained in the following section. 

 

7.5.5. PID. Avoiding retransmissions 

In a normal transaction, the transmitter sends the same message several times and then changes 

to the receiving mode and waits for an acknowledgement packet from the receiver. If no 

acknowledgement is received, the transmitter restarts the process again and again until it receives 

the acknowledgement packet. The receiver waits for the message, and only when it is validated, 

changes to the transmitter mode and sends the acknowledgement packet to the transmitter and 

then turns back to the receiving mode. Since the receiver can easily receive another retransmitted 

package with exactly the same information as the one that has been already received, the packet 

must have something to differentiate a new packet from a retransmission. Comparing the 

message is not an option as some transmitters may be sending the same message over and over 

again until something changes. The solution in this case lies in the two PID bits. Every 

retransmission has the same combination of this two bits. The chip keeps the combination of the 

last message received. However, this is not enough to discard a packet since other devices could 

be sending different information with the same PID as another couple of packets that are being 

retransmitted. Therefore, not only the PID is compared with the new incoming message but also 

the CRC. That ensures that every new message is adequately handled and no duplicated 

messages are captured by the NRF24L01. 

 

 This packet transaction handling is automatic when enabling Enhanced ShockBurst. 

Unfortunately, this feature must be disabled to provide this chip with a Promiscuous Reading 

mode. Nevertheless, this automatic handling can also be manually applied (with software) since 

in this mode the PID is available as well as the CRC. In order to do this, the following process has 

been applied: 

 Once the packet sections have been determined, the PID and the CRC from the packet 

are compared with the corresponding ones from the last packet received. In case they are 

different, the packet is automatically accepted. 

 If the packet is accepted, its PID and CRC are recorded to be compared with the following 

packet. 
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7.5.6. First try-outs 

This section is going to tackle all the problems encountered when putting all the previous points 

into practice. This is, explaining the problem and providing the solution that has been 

implemented. 

Problem: 

The first time it ran, the program stopped working when validating the message. This was due to 

the large amount of calculations that the main thread had to do when validating the message. 

 

 

Solution: 

The development of a new thread that executes these calculations simultaneously. This thread 

named packet_validation, is called every time the the FIFO receives something and, the main aim 

of this thread is to determine if the bitstring that the FIFO has captured is a real packet or just 

noise. This thread calls the crc_() function several times so it has to performe a large number of 

operations. 

Problem: 

The new thread is not fast enough to tackle all the noise. The thread is reinstanciated before it 

actually finishes executing the code. 

Solution 1: 

Fig. 7.20    Frozen screen when trying to validate the packets. Own source. 
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Up to 10 threads are instanciated to deal with all the noise. This threads are instanciated inside a 

list so that its elements are constantly recycled. This gives the threads enough time to perform its 

calculations before they are recycled. 

Solution 2: 

This mode was consuming a great deal of resources which lead this project to an optimization 

process. Since the crc_ () is the function that more times is executed by far and the one that takes 

more time to be executed, it is sensible to try to enhance its efficiency. 

Luckly, there was a lot of room for improvement since the function was developed, in such a way 

that the steps in between the calculations could be easily printed to fix any possible error. Both 

the old and the new function are available in annex A.7. 

This functions’ performance was evaluated in terms of timing. Since the packet_validation() thread 

will normally be executed because of the noise, the function will run all the loops till the end. As 

will be explained later, validating a noise packet would be equivalent to running 58 times (29 times 

every CRC length) a 17 bytes packet. The reason why this test has not been performed within 

the application is because it was considered necessary to isolate the problem so that non external 

influences could afect the final results. The test was performed 10 times to ensure the reliability 

of the results. 

 

 

 

 

RESULTS 

crc_func  (old version) average 
6,624 s 

 

crc_  (optimized version) average 
1,0428 s 

Time improvement (%) 84,26% 

 

 

Table 7.5 Time test results. Own source. 
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7.5.7. Automatic_mode class 

This section gives an insight over the methods that make this mode do the trick. The code 

regarding this class is available in annex A.3. 

7.5.7.1. apply_new_parameters 

Since this method has been explained in other modes and no further information is necessary, 

here is the NRF24L01 configuration for both the transmitter and the receiver. Note the flexibility 

from the transmitter’s side. 

 

Input Settings 

Air rate Same for the receiver and the transmitter 

Channel Same for the receiver and the transmitter 

Pipe Not relevant 

Pipe address Same first three bytes for the receiver and the transmitter 

Register Map configuration 

Register Receiver Transmitter 

00 0b0 - (CRC disabled) 0x0C 

01 0b0 – Enhanced ShockBurst 

disabled 

Not relevant 

02 Enabled at least 1 pipe Not relevant 

03 0b11 – 3 bytes long Address width (related to 

register 10) 

04 Not relevant Not relevant 

05 Same for the receiver and the 

transmitter 

Same for the receiver and 

the transmitter 

06 Same for the receiver and the 

transmitter 

Same for the receiver and 

the transmitter 
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07 Not relevant Not relevant 

08 Not relevant Not relevant 

09 Default Default 

0A 

One of these registers must fit 

the last 3 bytes introduced in 

the transmitter register 10 

Not relevant 

0B Not relevant 

0C Not relevant 

0D Not relevant 

0E Not relevant 

0F Not relevant 

10 Not relevant Last 3 bytes introduced 

must equal one enabled RX 

pipe address (notice LSB is 

written first) 

11 

The pipe that is going to be 

used must have a 32 bytes 

payload width 

Not relevant 

12 Not relevant 

13 Not relevant 

14 Not relevant 

15 Not relevant 

16 Not relevant 

17 Default Default 

1C Not relevant Not relevant 

1D Not relevant Dynamic Payload Length 

Enabled 

 
Table 7.6 Registers’ configuration. Own source. 
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7.5.7.2. read() 

Once the RX FIFO captures a possible packet, this method is called. If Focus or File download 

mode are disabled, the data is manipulated in order to obtain the full packet. This means joining 

the first 3 bytes from the address to the rest of the packet. Then, the packet validation thread is 

called. In future sections will be explained what happens when those modes are enabled. 

7.5.7.3. packet_validation class 

Although this is not a method of the AutomaticMode class, it is worth explaining this thread in 

order to follow a logic sequence of actions. 

This class is eventually called by read() and automatically executes its run method. This method 

validates the packet as has been explained in the preceding sections. This means trying different 

packet length and CRC length until one of them fits with the calculated CRC. It also goes through 

a similar process in order to find the payload length and therefore, the address length. It finally 

sends back all the extracted information from the packet and presents it to the filter_duplicities() 

method from AutomaticMode class. 

 

7.5.7.4. filter_duplicities() 

As obvious as it seems, this method filters the retransmission packets so that no duplicated 

messages are displayed in the text browser. This is done by comparing the PID and the CRC 

from the last message with the PID and CRC from the current packet. 

If the message passes this filter, it will be sent to add_to_record(), which will display the message 

on the screen. 

 

7.5.8. Example 

Transmitter’s code for this example is available in annex D. Let’s take a look at the final Automatic 

mode layout: 



 60  Report 

 

 

           

Only 3 parameters are to be set in order to receive the desired packets. In fact, not even the full 

length of the address needs to be provided. Just the first 3 bytes are necessary (although more 

bytes can be provided). In this example, packets starting with the b3 b2 b2 are going to be caught. 

As always, parameters need to be applied by clicking on “Apply new parameters” before clicking 

on the “Listen” button. 

 

 

Fig. 7.21    Final Automatic mode layout. Own source. 

 

 

 

 

 

 

 

Fig. 7.22    Message reception. Own source. 
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7.5.9. Extra functionalities 

The testing of this mode revealed that when using a high payload length (near 29 bytes), the app 

needs up to 10 seconds to process all the packet. This is due to the fact that a great deal of 

calculations need to be performed before reaching the correct combination of CRC length, 

payload length and address length coupled with the fact that other validations can be running at 

the same time. The following functionalities have been implemented in order to give an optimised 

solution to this problem. These functionalities, although spread over the whole code, do not affect 

other methods behaviour unless certain conditions are met or the user specifies it as will be 

shown. 

A new method has been created to provide what is going to be called from this point onwards as 

“fast reception”: 

fast_reception() 

This method takes the configuration information from the transmitter’s packet and configures the 

receiver accordingly so that all the packet extraction can be processed by the NRF24L01 which 

is going to be way faster than keeping the Automatic Mode on. It is important to draw attention to 

the fact that this change of configuration prevents the receiver from receiving information from 

other devices but just for a brief period of time, in which the great majority if not all the packets 

will be sent by the transmitter. 

These method is the base upon which the following features will be built. 

7.5.9.1. Fast file download 

This functionality is automatically enabled when the receiver receives a file. Every file sent to the 

receiver must be encapsulated in between two messages: “text fileXXXX” and “end file”, where 

“XXXX” is the size of the file. When a text file is being received, fast_reception() method is called. 

While the file is being downloaded, the app pops up a saving file window where the user will be 

able to select the file location as well as its name. At the same time, the text file will periodically 

provide information about the percentage of file that has been downloaded. Once the file has 

been downloaded, the app will change back to the Automatic mode and will show a message 

confirming this fact. The download will be available for the user to be accessed. add_to_record() 

method is in charge of storing the file in this case. read() method translates the bytes of the 

message into letters and symbols using ascii decoding. The files and functions that have been 

used to translate the text file into bytes and to send the packets are available in the bibliography[ 

 

Example: 

Figure 7.23 shows the saving window that pops up when a file is received. 
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The main window shows the progression of the download in real time. 

 

   

The process finishes when the end file message is received. 

Fig. 7.23    Window opened when a file is received. Own source. 

 

 

 

 

 

 

 

Fig. 7.24    Downloading file. Own source. 
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7.5.9.2. Focus 

By clicking the “Focus” button, the app will focus its attention on the transmitter that sent the last 

packet using fast reception. This allows almost instantaneous message reception taking profit of 

the already built fast_reception() method. The messages will appear one after the other since 

there is no point in providing information about the address as will be the same for every message 

received.This feature is disabled when clicking “Focus” again. It is worth mentioning that this 

feature has been adapted to be compatible with a wireless keyboard. Therefore, the messages 

that will appear on screen after clicking on focus will be converted regarding the keyboard code. 

Example: 

Once the first message is received the user can click on “Focus” to focus on the last address 

received. Then the application is going to translate every byte received from that address and 

concatenate the messages. Every letter that the user types with the keyboard will appear on the 

screen almost instantly. 

Fig. 7.25    Downloading file. Own source. 

 

 

 

 

 

 

 

Fig. 7.26    Downloaded file. Own source. 
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7.6. Tests 

These are the tests that have been performed to ensure the well-functioning of these modes. 

7.6.1. Manual mode 

Checking all the parameters available in the user interface. Payload limits (32 bytes) will also be 

checked. Since this implementation is identical in every mode, this test will not be applied in the 

other modes: 

Fig. 7.27    Downloading file. Own source. 
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Fig. 7.28    Message reception. Own source. 

 

 

 

 

 

 

 

Fig. 7.29    Checking receiver parameters. Own source. 
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Fig. 7.30    Checking transmitter parameters. Own source. 
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7.6.2. Multireceiving mode: 

Checking all pipes and sending two messages at the same time. 
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Fig. 7.31    Checking multireceiver parameters. Own source. 
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7.6.3. Automatic mode 

Checking all address length possibilities from the transmitter and the receiver side. At the same 

time, the CRC has been changed as well. Also check that messages are also received when 

sending at the same time: 

 

 

 

 

Fig. 7.32    Receiver address length: 3 bytes – Transmitter address length: 3 bytes – CRC: 2. 

Own Source. 

 

 

 

 

 

 

 

Fig. 7.33    Receiver address length: 3 bytes – Transmitter address length: 4 bytes – CRC: 1. 

Own Source. 
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Fig. 7.34    Receiver address length: 3 bytes – Transmitter address length: 5 bytes – CRC: 2. 

Own Source. 

 

 

 

 

 

 

 

Fig. 7.35    Receiver address length: 4 bytes – Transmitter address length: 4 bytes – CRC: 1. 

Own Source. 
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Fig. 7.36    Receiver address length: 4 bytes – Transmitter address length: 5 bytes – CRC: 2. 

Own Source. 

 

 

 

 

 

 

 

Fig. 7.37    Receiver address length: 5 bytes – Transmitter address length: 5 bytes – CRC: 1. 

Own Source. 
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8. Compatibility 

The aim of this project is to create a python application. Nevertheless, this leads to a compatibility 

problem when someone tries to run the app in Microsoft Windows OS and does not have python, 

or has python but does not have the required modules. Therefore, some efforts have been made 

in the direction of finding a tool to convert the python application into an exe file that can be directly 

executed from any Microsoft Windows OS. The reason for doing this is to accomplish one of the 

main objectives of this project, which is, preventing the user from any contact with programming, 

and that includes downloading python and its modules. 

After some research a tool was found to convert python files into a Windows executable. This 

tool, named py2exe, permits this conversion [11]. It includes all the necessary modules in a folder 

together with other necessary files that support this executable file. More information about how 

this conversion is performed can be found in the bibliography. 

 

 

  

Fig. 8.1    Folder where the .exe file is located and the direct access to the app on the 

Desktop. Own Source. 
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9. Future Works 

Since this project has focused its efforts on how this sniffer can receive information, there are a 

few aspects that have not been tackled and would be worth of further study. These are some 

examples: 

 This sniffer can, with the app, get the configuration settings from packets sent by different 

devices. It would be interesting to give the app the possibility to configure itself based on 

received messages. Then, it could reconfigure different devices with different 

configurations that are not receiving each other’s packets, into one single configuration 

and allow these devices to catch each other’s packets. 

 

 The acknowledgement packet has not been tackled in depth since this project, although 

includes a message sending feature, is mainly focused on the reception side. Therefore, 

it would be interesting to send several packets waiting for the acknowledgement packet 

each time so that no errors could arise in the communication process. 

 

 Other platforms and programming languages could be used in order to give this sniffer 

more flexibility. For instance, with the development of an app for android, the user could 

even send pictures or recordings through these devices. 

 

 Delving into the last point, it would be interesting to connect somehow this boards to the 

speakers’ cable and try to send music through a smartphone or tablet. 

 

 The NRF24L01 can be used in the development of a wireless peripheral such as a mouse, 

a playstation controller or even the smartphone could be used to control certain actions 

on the computer. 
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10. Environmental footprint 

Although this is a software development project, hardware parts of this project need to be 

analysed in terms of recycling and in the case of the NRF24L01, RF consequences on humans 

must also be taken into account. 

According to Electronics TakeBack Coalition [12], “Over 1,000 materials, including chlorinated 

solvents, brominated flame retardants, PVC, heavy metals, plastics and gases, are used to make 

electronic products and their components—semiconductor chips, circuit boards, display panels, 

and disk drives. […] About 40% of the heavy metals in landfills, including lead, mercury and 

cadmium, comes from electronic equipment discards”. These products are very damaging for the 

environment and need to be properly recycled. Therefore, once the user has exploded the first 

two ‘R’s (Reduce and Reuse) [13], the recycling process takes place. In order to do so, the user 

must find a “Punto limpio”. Ecolec foundation has all these points mapped over the whole country 

[14]. 

According to the “Real Decreto 1066/2001” [15], There is mainly 1 restriction for the frequency 

range between 10 MHz and 10 GHz (in which our sniffer works). The average body SAR must 

not be greater than 0,08 W/Kg. Considering a person whose total body mass is below average 

(~50 Kg) and assuming this person is absorbing all the RF waves, if the NRF24L01 was working 

in a transmitter mode at maximum power (1 mW) the SAR would be 0,00002 W/Kg. Therefore, it 

can be assured that this device will never be harmful to humans in terms of RF. 
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11. Costs and time planning 

 

COSTS 

 
Quantity Cost/Unit (€/u) 

Total item 

cost(€) 

C232HM-DDHSL-0 1 41,31 41,31 

NRF24L01+ 1 3,99 3,99 

Pack Open18F4520 Package B 

(board, PIC18F4520, nRF24L01+ 

module, connexion cables, peripherals) 

3 73,75 221,25 

  TOTAL 266,55 € 

 

TIME PLANNING 

 Hours Cost/hour (€/h) Total cost (€) 

Previous study 75 60 4500 

GUI building 50 60 3000 

Manual mode 25 60 1500 

Multireceiving mode 5 60 300 

Automatic mode 50 60 3000 

Trials and testing 75 60 4500 

Documentation 100 60 6000 

TOTAL 380 TOTAL 22800 € 
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Conclusions 

The aim of this project was to build a python application capable of interacting with a NRF24L01 

to act as a sniffer, providing feedback from RF communications between different devices. This 

main objective has been successfully achieved and other objectives focused on that direction 

have also been successfully implemented within the app. Here is an overview of the relevant 

points regarding this project coupled with some problems or difficulties that have been 

encountered and how they have been tackled: 

 Standard communication between several boards have been stablished (Manual and 

Multireceiving mode). 

 The chip allows to catch packets that match their first 3 bytes and saves almost the whole 

packet inside the RX FIFO which gives free rein to packet manipulation. This operation 

has a 28 bytes’ payload limitation as opposed to the 32 bytes in a regular communication. 

This is because almost the whole packet is saved in the RX FIFO rather than just the 

message. 

 Packet treatment procedures such as CRC calculation, message extraction and 

retransmissions removal can be processed by the PC. 

 These latter points allow this application to abuse from the CRC packet validation and 

extract the message from that packet together with some relevant information about the 

transmitters configuration.  

 The last point has been proved to be a bit slow when trying to extract long messages 

(near to 29 bytes). 

 This problem has triggered the creation of 2 functionalities (Fast file download and Focus) 

that have appeared to be way faster, losing very little flexibility thanks to the fast reception 

function. 

 The system NRF24L01 - USB/MPSSE cable – computer can properly work as a sniffer. 

 A completely customized GUI has been built with python modules and has been 

converted into an executable file for Microsoft Windows OS. This provides easy access 

to the application without having to download either python or any of its modules. 

To conclude, it is worth mentioning that this application exploits all the resources that this board 

provides, taking it to whole new level where not only the message can be acquired from almost 

any packet, with no more information than the first 3 bytes, but also relevant information about 

the transmitters configuration, which is of paramount importance for the purpose of this 

application. 
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