

Degree's Final Project

Bachelor's Degree in Industrial Technology
Engineering

Development of a Python application for

monitoring RF messages using one NRF24L01

board and a USB-MPSSE cable

REPORT

 Author: Joan Ràfols Bellés
 Directors/s: Juan Manuel Moreno Eguilaz
 Call: June 2016

School of Industrial Engineering of

Barcelona

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 1

Summary

The objective of this project is to build a python application to monitor radiofrequency (RF) packets

on a personal computer (PC). In order to do this, a NRF24L01 board will be used together with a

USB-MPSSE cable to connect the board with the PC. This system attempts to replicate a sniffer

functionality, capable of receiving packets from different transmitters with very little information

from their configuration. This functionality, which goes beyond regular packet reception, allows

the user not only to catch messages from transmitters with little information of their configurations

but also to provide message monitoring from devices with different configurations at the same

time.

This report attempts to give the reader a progressive introduction to RF communications starting

from a basic communication mode in which regular messages are sent and received throughout

the NRF24L01 and ending with a far more complex mode where the application catches the

packets just by knowing the first 3 bytes from their address, no matter how long it is and also

without knowing the CRC length. Then it will not only extract the message from the unknown

packet but also predict the transmitters configuration and configure the receiver accordingly to

optimize the reception of the following packets.

None of these latter functionalities are provided by the NRF24L01 itself. Therefore, this project

presents a software based enhancement of the NRF24L01 possibilities, extending these chip

processing capabilities to the PC processor.

In addition, a deep insight into the Graphic User Interface creation is given coupled with the

interaction of some basic libraries that have been adapted to meet these project necessities.

Two examples of these functionality extensions have been implemented in the application and

are detailed in this report. These are: Fast file download and Focus.

Finally, this report explains the conversion of the python application into an executable file for

Windows, meaning that this application can be executed in every Microsoft Windows OS without

requiring neither python or any of its modules installation.

 2 Report

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 3

Index

SUMMARY __ 0

INDEX __ 3

ANNEX ___ 6

1. GLOSSARY ___ 7

2. INTRODUCTION ___ 8

2.1. Objectives ...8

2.2. Scope ..9

2.3. Overview ...9

3. HARDWARE ___ 11

3.1. nRF24L01+ board ... 11

3.2. USB Hi-Speed – MPSSE Cable (C232HM-DDHSL-0) 11

3.3. Connections ... 12

4. SOFTWARE STRUCTURE __________________________________ 16

5. LIBRARIES __ 17

5.1. First level classes: ftdi and SPI ... 17

5.2. Second level class NRF24L01 ... 19

6. GUI ___ 22

6.1. Title bar .. 24

6.2. Minimize and close buttons... 24

6.3. Labels, input fields and output fields .. 25

6.4. Status bar ... 25

7. APP.PY FILE ___ 26

7.1. GeneralModeFunctions class ... 26

7.1.1. Inheritance... 26

7.1.2. Methods ... 27

7.1.2.1. listening() ... 27

7.1.2.2. stop_listening() .. 27

7.1.2.3. end_Get_CheckConnection() ... 27

7.1.2.4. add_to_record(s) ... 27

7.1.2.5. Change_mode() .. 28

7.2. QThread classes ... 28

 4 Report

7.2.1. Intro class ... 28

7.2.2. Move class ... 29

7.2.3. GetConnection class ... 29

7.2.3.1. Checkconnection class .. 30

7.2.4. ListeningLoop class ... 30

7.2.5. PacketValidation class ... 31

7.3. Manual mode ... 31

7.3.1. ManualMode class ... 34

7.3.1.1. The constructor .. 34

7.3.1.2. apply_new_parameters() method ... 35

7.3.1.3. read() method .. 35

7.3.1.4. tx_message() method .. 35

7.3.1.5. sending() method ... 35

7.3.2. Example ... 35

7.4. Multireceiving mode .. 41

7.4.1. Multireceiving_mode class .. 41

7.4.1.1. apply_new_parameters() ... 41

7.4.1.2. read() .. 43

7.4.2. Example ... 44

7.5. Automatic mode ... 47

7.5.1. Enhanced ShockBurst packet ... 48

7.5.2. Receiving process ... 48

7.5.3. CRC .. 50

7.5.3.1. CRC manual calculation .. 51

7.5.4. Message extraction.. 53

7.5.5. PID. Avoiding retransmissions .. 54

7.5.6. First try-outs ... 55

7.5.7. Automatic_mode class .. 57

7.5.7.1. apply_new_parameters ... 57

7.5.7.2. read() .. 59

7.5.7.3. packet_validation class .. 59

7.5.7.4. filter_duplicities() .. 59

7.5.8. Example ... 59

7.5.9. Extra functionalities .. 61

7.5.9.1. Fast file download .. 61

7.5.9.2. Focus.. 63

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 5

7.6. Tests... 64

7.6.1. Manual mode .. 64

7.6.2. Multireceiving mode: ... 67

7.6.3. Automatic mode .. 69

8. COMPATIBILITY __ 72

9. FUTURE WORKS ___ 73

10. ENVIRONMENTAL FOOTPRINT _____________________________ 74

11. COSTS AND TIME PLANNING ______________________________ 75

CONCLUSIONS ___ 76

BIBLIOGRAPHY __ 77

Figures ... 78

 6 Report

Annexes

A. APPLICATION’S CODE _____________________________________ 1

A.1. first_level_class.py ... 1

A.2. second_level_class.py... 7

A.3. app.py ... 14

A.4. manual_mode.py ... 30

A.5. multireceiving_mode.py ... 38

A.6. automatic_mode.py ... 46

A.7. CRC.py ... 54

B. FIRST_LEVEL_CLASS.PY DOCUMENTATION SCREENSHOTS ___ 57

C. PACKET SENDING - MANUAL MODE CODE___________________ 59

D. PACKET SENDING – AUTOMATIC/MULTIRECEIVING MODE

CODE ___ 81

E. FILE SENDING CODE ______________________________________ 85

E.1. File converter ... 85

E.2. C files to send the file .. 85

F. KEYBOARD SENDING CODE _______________________________ 91

G. CRC FULL CALCULATION _________________________________ 98

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 7

1. Glossary

DI/DO: Data In/Out.

C232HM-DDHSL-0: USB Hi-Speed – MPSSE Cable’s reference.

CE: Chip enable.

CSN: Chip Select (active low).

GND: Ground.

GPIOL: General Purpose Input/Output.

GUI: Graphic User Interface.

JTAG: Joint Test Action Group.

MCU: Microcontroller Unit.

MISO: Master In Slave Out.

MOSI: Master Out Slave In.

MPSSE: Multi-Protocol Synchronous Serial Engine.

RF: Radio Frequency.

SCK/SK: Serial Clock.

SPI: Serial Peripheral Interface.

VCC: Collector to Collector Voltage.

CRC: Circuit redundancy check.

SAR: Specific energy absorption rate.

 8 Report

2. Introduction

This project arises from the necessity of the Electronic Engineering Department from ETSEIB –

UPC to have a low cost device to monitor RF communications. This device permits to catch

packets with different configurations and provide feedback in order to fix any problem that may

occur. Moreover, this project can be used as a learning tool for the students to understand how

the communication works and what is the roll of every part of the packet structure.

2.1. Objectives

Although there are some inevitable hardware items inherent to the project that need to be tackled,

fundamentally, this is a software development based project. The main objective is to develop a

GUI application which, together with a couple of low cost devices, can replicate the functionality

of a RF sniffer. In order to achieve that goal, the project needs to get through several stages

including:

 The development of a python library to access SPI hardware.

 The development of a python library to communicate with a nRF24L01 board, that means,

being able to configure the chip as well as to send and receive data.

 The manual implementation of a “Promiscuous reception” mode, which provides the

sniffer with the possibility of tracking several addresses at a time.

 Take profit of this “Promiscuous reception” and the Enhanced Shockburst packet to use

the CRC in order to get the message with no more information from the transmitted packet

than the first 3 bytes of the address and the working frequency.

 Upon these libraries, build a python GUI application which prevents the user from any

contact with neither the python code nor the python terminal (that means, no programming

notions required) as well as providing a windows .exe file so that the user can use this

app in almost any computer.

 Keep record of the device configuration and all the packet transaction done in the last use

of the application and save it in a text file.

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 9

2.2. Scope

This project does not contain a detailed explanation of all the characteristics of the hardware

devices. As mentioned before, this is a software development based project. Therefore, only the

necessary information to understand how the program works will be covered.

This project contains a detailed insight into programing procedures and the RF package

communication.

2.3. Overview

This project consists in the development of GUI (Graphic User Interface) application to control a

NRF24L01 board. This board is capable of both receiving and transmitting RF (Radiofrequency)

packets from other boards and is connected to the PC via USB cable. The whole system will be

named sniffer, which is able to catch and analyse packets sent by other NRF24L01 boards.

The application is divided in three different modes. Three different ways of configuring the board

in order to obtain different functionalities. Their sequential development permits the following

mode to soak up all the experience acquired in the previous one.

The first one is called Manual mode and it could be seen as an introduction to the NRF24L01

basic procedures such as changing registers and sending/receiving messages.

The second one, Multireceiving mode, is a previous stage before moving on to the complexity of

the last mode. It allows the sniffer to receive packets from different addresses, which typically

corresponds to different transmitters. Moreover, this mode gives information about the address

from which every message comes from.

Up to this point, it can be easily noticed that it is all about changing registers. Nevertheless, the

third mode, Automatic mode, takes this project into a whole new level of complexity where the

NRF24L01 functionalities are insufficient and a few smart plays are needed so that the board can

do the trick. The chief aim of this mode is to implement the so called “Promiscuous reading”, which

means receiving packets without knowing the last bytes of the address. However, it was

acknowledged that this mode did not deserve its name, since the user should still introduce some

NRF24L01 parameters (apart from a partial address and the frequency) that made this mode not

even close to being automatic. Not before acquiring a deep knowledge of the packet structure, a

solution to this problem could be found. A glimmer of hope was delivered to this mode when the

 10 Report

enormous potential of the CRC was discovered. The CRC is a one or two bytes’ code, located at

the very end of the packet, that is calculated over the whole packet. Although it could seem a

minor element within the packet structure, it provided a lot of room for improvement allowing this

mode to just give as parameters the first 3 bytes from the address (no matter its total length) and

the working frequency in order to extract the message and important information about the

transmitters configuration. It should be noted that the board is incapable of processing a packet

in that way, therefore it has been configured to just store as much bytes as possible in its FIFO

(First In First Out) after receiving the first 3 bytes from the address. This permitted catching

packets and being able to process them (this is message, CRC length, PID and full address

extraction) out of the NRF24L01 which gives the application free rein to work with that bunch of

bits. Obviously, this enhancement of capabilities did not come at any cost. Reducing the address

length results in more noise being captured which couple with a slower message extraction

became a problem when sending large packets. Many measures were taken in that sense, such

as the CRC calculation function optimization and a multithreading programming structure. Both

actions increased considerably the processing speed. Not satisfied with that, two more

functionalities were implemented taking the flexibility of an Automatic mode, and the processing

speed of a standard packet reception. How this is achieved will be explained at length in this

report.

It is also worth mentioning that great efforts have been devoted into GUI development in an

attempt to stand out among the basic Window’s window giving this app a personalised and

professional outfit.

Finally, the reader can complement this report with an exhaustive documentation over all the

classes and methods that this application contains which is available on the CD and in many links

within this report. This documentation has been built with sphinx. Annex B provides screenshots

regarding the first_level_class.py file as an example.

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 11

3. Hardware

There are 3 devices involving this project which allow the design of a radio system through which

communication with other devices can be established. These are the followings:

 The nRF24L01+ Single Chip 2.4GHz Transceiver (NRF24L01 board) [1]

 A USB Hi-Speed – MPSSE Cable (C232HM-DDHSL-0) [2]

 A personal computer

3.1. nRF24L01+ board

This NRF24L01 board is able to both transmit and receive RF data. It simply needs an MCU to

start working. The communication between the computer and the nRF24L01 board is established

through a Serial Peripheral interface (SPI). This chip is compatible with Enhanced ShockBurst,

which is, according to the datasheet [1], “a packet based data link layer that features automatic

packet assembly and timing, automatic acknowledgement and retransmissions of packets”. All

the content the reader needs to know in order to understand this project is fully covered in the

datasheet mentioned before.

3.2. USB Hi-Speed – MPSSE Cable (C232HM-DDHSL-0)

This cable is able to transmit the data sent by the computer through a USB port into the

Fig. 3.1 nRF24L01 RF Board (B). Source: http://www.waveshare.com

dshttp://www.waveshare.com/product/nrf24l01-rf-board-b.htm

http://www.waveshare.com/product/nrf24l01-rf-board-b.htm

http://www.waveshare.com/product/nrf24l01-rf-board-b.htm

http://www.waveshare.com/product/nrf24l01-rf-board-b.htm

 12 Report

nRF24L01+ and vice versa, acting as a link between them. Although it is not of paramount

importance for this project, the datasheet [2] covers every characteristic and functionality

regarding this device.

3.3. Connections

NRF24L01 pins:

MPSSE Cable Connections:

Fig. 3.2 USB Hi-Speed – MPSSE Cable. Source: www.ftdichip.com.

Fig. 3.3 NRF24L01 RF Board (B) Pin Definition. Source: www.waveshare.com.

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 13

The cable description as shown in Fig. 3.4 can be found in this cable datasheet [2]. It is important

to draw attention to the fact that although the figure uses JTAG nomenclature, the SPI interface

will be used for this project, which is displayed in the datasheet [2] as well.

Table 3.1 represents the connections that will be used over the whole project:

NRF24L01 MPSSE Cable

CE GPIOL1 - Purple

SCK SK - Orange

CSN CS - Brown

MOSI DO - Yellow

MISO DI - Green

GND GND – Black

VCC VCC – Red

Fig 3.4 C232HM MPSSE Cable Connections (JTAG nomenclature). Source: www.ftdichip.com.

Table 3.1 NRF24L01 – MPSSE Cable connections. Own source.

 14 Report

Figure 3.5 shows these connections:

On the other side of the cable there is a USB Hi-Speed connection which is going to be connected

to the PC.

Fig. 3.5 NRF24L01 – MPSSE Cable connections. Own source

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 15

Fig. 3.7 shows the whole sniffer (NRF24L01 + USB Hi-Speed – MPSSE cable + PC):

Fig. 3.6 USB Hi-Speed - PC connection. Own source.

Fig. 3.7 Sniffer hardware. Own source

 16 Report

4. Software structure

This project has been designed with a structure based on software layers, as shown in Fig. 3.8.

It covers from the libraries upon which the whole program is sustained to the GUI and all of its

elements that allow eventually the interaction between the user and the NRF24L01.

The whole project consists of 7 python files. The following diagram provides a clear vision of the

relationships between this files and its classes:

Note there are a few files which support the app.py file such as the GUI and the CRC files, that

do not inherit from the first or second level classes. This report will cover from the base to the top

of the shown software pyramid.

3 main

classes

Total: 11 classes

NRF24L01

SPI

ftdi

Fig. 3.8 Software structure. Own source.

first_level_class.py

second_level_class.py

GUI files:

manual_mode.py

automatic_mode.py

multireceiving_mode.py

CRC file: CRC.py

app.py

ManualMode

AutomaticMode

MultireceivingMode

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 17

5. Libraries

This section presents the libraries that have been taken from other authors [3, 4] and have been

modified and optimized to fit the needs of this project.

5.1. First level classes: ftdi and SPI

These two classes [3], once have been adequately modified (annex A.1), are able to transmit and

receive data through the FTDI cable. However, it is important to take into account that these

classes were not built to support communication with a NRF24L01. In fact, they were only able to

detect the cable and read registers. Moreover, module d2xx needs to be installed.

The most important elements of these classes are the read and write methods from SPI class.

Almost every method in this file lives to eventually support these two functions. Therefore, it is

necessary to understand how they work.

write() method

In order to write (actually overwrite) a register, first thing to do is to tell the NRF24L01 (SPI Slave)

that it has to be prepared to receive data. This is achieved by activating the Chip Select pin, which

means setting CSN low (note this is an active low signal). Then, the chip wants to know what it is

supposed to do, that is why a one-byte command must be sent through the MOSI pin (DO from

the ftdi cable). In this case, the command is “001AAAAA” in binary code, where “AAAAA” is the

5-bit Register from the map address [1]. This command is represented in Fig. 5.1 from bit C7 to

C0. While this command is sent, status information is received from the chip (S7 to S0), which is

most of the times ignored. Afterwards, the information that will be overwritten on the register must

be sent (note that CSN keeps low during all this process as it will be of paramount importance

later on). Finally, CSN is set high, which is understood by the chip as an end of the transaction.

read() method

It is basically the same process although the command that needs to be sent is “000AAAAA” in

Fig. 5.1 SPI write operation. Source: SparkFun Electronics.

 18 Report

order to read the register “AAAAA”. After that, register information is sent through the MISO

connection from the NRF24L01.

If these two methods work properly it can be assured that both ftdi and SPI classes work just fine.

Unfortunately, this was not the case as mentioned before. The reason was found after a thorough

learning of the classes and how the NRF24L01 board needs to receive the information. The

original write() method allowed sending one byte to the chip and this method included setting the

CSN low at the beginning and high at the end of the process. This detail is not easy to

acknowledge as the method does not directly specify it. Therefore, it was impossible to write a

register because at least two bytes need to be sent with CSN set low. The following chart shows

a write and read process using the original classes:

Fig. 5.3 Reading process using the original library. Source: Electronic Engineering

Department ETSEIB – UPC.

Fig. 5.2 SPI read operation. Source: SparkFun Electronics.

SCK

CSN

reading writing

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 19

Fig. 5.3 shows the SCK output of the FTDI cable, which is the SPI Clock signal, and the SPI Chip

Select signal CSN. The reason for choosing the SCK to show the two processes is simply

because this signal shows when communication is taking place so that both writing and reading

processes can be seen. Every peak level represents a byte sent or received regarding the write

and read methods explained before. It is easy to see that the CSN signal is not working properly.

Here is how it performs once the original library has been modified:

Once the problem was identified, the next step was to decide how to modify these methods in

order to optimize their utility. Since the number of bytes written and read could vary depending on

what was read or written (not only one byte registers), the decision of removing CSN actions was

taken. Thus, the function of these methods has been limited to reading and writing one byte. This

allows great flexibility when building upper level classes. Moreover, the classes have been

modified in terms of removing useless methods and duplicities, in order to adapt the code to meet

this project needs. A full description of the methods regarding these classes can be found here.

Annex A.1 provides the python file containing both classes.

5.2. Second level class NRF24L01

Although first_level_class.py provides basic communication with the chip, a more complex

communication process is needed as the main objective is to be able to receive and send data

from and to another device. A micropython NRF24L01 class [4] has been used for this purpose.

Since this project does not operate with micropython it is necessary to adapt the code in that

sense. In addition, it is especially important to fully understand the methods of the NRF24L01

class in order to link successfully this class with the first level classes. A full description of the file

Fig. 5.4 Reading process with the modified library. Source: Electronic

Engineering Department ETSEIB – UPC.

u

file:///C:/Users/Usuario/Downloads/TFG/Codigo_Final/_build/html/first_level_class.html

 20 Report

that contains this class is available here. The full code is available in annex A.2. These are the

main characteristics regarding this class.

Resetting and initializing

SPI class must be initialized so that all of its methods are available and ready to use. After

initialization, every relevant register is set to a default value.

Low(pin) and high(pin) methods

Set CSN or CE (Chip Enable) into a low or high level. These methods, coupled with the read and

write from the SPI class, give free rein to the other methods to perform any communication

process with total flexibility.

Reg_read() and reg_write() methods

These functions were specially built to read and write registers because of its use all over the

code. With these methods the NRF24L01 device can be freely configured. The class contains a

bunch of methods which permit a direct and intuitive configuration of the most important registers

such as flush_rx(), flush_tx(), set_power_speed(), setcrc(),...

Listening methods

This class also contains methods that will be used in a listening process such as:

 open_rx_pipe: enables the pipe and the autoacknowledgement feature for that pipe

(which will be explained later) after writing the address in the correct pipe. In case the

pipe number is 2 or more, the last 4 bytes will be stored in pipe 1 address register and

the first one (in case the address is 5 bytes long) is stored in the respective pipe. Note

that all the pipes must have the same length.

Fig. 5.5 addressing data pipes. Source: SparkFun Electronics.

file:///C:/Users/Usuario/Downloads/TFG/Codigo_Final/_build/html/second_level_class.html

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 21

 start_listening(): it sets the chip in a RX mode, which means that the device is listening

from this point on. Besides, the FIFOs are cleaned to ensure that new data can be stored.

 stop_listening(): sets the chip back to a standby mode which prevents the NRF24L01

from capturing more packets.

 start_sending(msg): sends a packet containing the message “msg” according to the

configuration that has been applied to the chip.

 22 Report

6. GUI

Before reaching the top of the pyramid, it makes sense to explain how the Graphic User Interface

has been built as in the next section everything will be put together.

PyQt4 [4,5], a python module from Riverbank computing (www.riverbankcomputing.com), has

been used for this purpose. According to Riverbank computing [5], PyQt is a set of Python v2 and

v3 bindings for The Qt Company's Qt application framework and runs on all platforms supported

by Qt including Windows, MacOS/X and Linux. The bindings are implemented as a set of Python

modules and contain over 1,000 classes. Although it provides a handful of components, only

QtGui and QtCore will be used for this project.

Besides, the GUI has been developed using Qt Designer, which is a Qt’s tool that helps building

a GUI. It basically consists on dragging and dropping elements onto a window until you got

everything you need. Then, it just needs to be saved and converted to a py file format. It is worth

mentioning that although this is a useful tool, the result is a really basic GUI, which makes almost

inevitable the manual modifications of the given class.

The developed application is formed by three GUI classes according to each mode available in

the app. Every class is contained in a different file, so that the reader can quickly distinguish

between interfaces. These files are manual_mode.py, automatic_mode.py and

multireceiving_mode.py. It is important to draw attention to the fact that the classes that are going

Fig. 6.1 Qt Designer interface. Shaping the GUI. Own Source.

http://www.qt.io/

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 23

to be explained here are the final result from a series of intermediate steps which goes from the

most basic GUI developed with Qt Designer to a more complex layout (manually modified). Here

is a before/after layout:

Fig 6.2 First basic layout made with Qt Designer. Own source.

Fig 6.3 Final layout (manually modified). Own source.

 24 Report

It is easy to notice that lots of components have been “faked” to meet professional layout

expectations. This means more complexity and accuracy.

In an attempt of trying to avoid a detailed explanation of every component of the layout (which the

reader can find in the bibliography [6] and the component’s code in annex A.4, A.5 and A.6), this

section will present the most significant characteristics of the final GUI.

6.1. Title bar

As the reader might have noticed, no title bar is displayed on the final layout. The reason for this

is just esthetical. An effort to build the GUI as a unique unit has been made. Therefore, a

completely customized title bar has been created. Although this could seem straightforward, there

is more work behind it than the reader might expect. PyQt4 does not provide the kind of title that

meets this project expectation. Therefore, a bit of imagination was needed in order to build the

functions that are usually found in a title bar. These are: window movement, minimize, maximize

and close window. Maximize is useless in this case, as the app uses just the necessary space for

the app.

6.2. Minimize and close buttons

The two functions that provide functionality to these buttons are app.quit() and

myapp.minimized(). There is something important to draw attention on which applies to every

button. They are there, but the user is not able to see them. Knowing this may be difficult to

understand and that a picture is worth a thousand words:

Fig. 6.4 Real buttons in the app’s layout. Own source.

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 25

These buttons are set transparent so that the more stylish button’s images can be visible.

6.3. Labels, input fields and output fields

This application contains no labels (or at least, no visible ones). This decision was taken to provide

the professional appearance this project is looking for coupled with the fact that it is easier to deal

with an image than with the rigid layout that PyQt4 offers.

Input fields have been kept untouched. There are input lines, picklists and a text browser which

displays all the information. Each of them serves a specific purpose.

6.4. Status bar

It indicates the user whether the Device is connected or not. Therefore, there will always be a

QThread class method running periodically to update the connection state.

 26 Report

7. app.py file

Once all the necessary tools to build this application have been exposed, it is time to put

everything together and make it work. Since the app will display three configuration modes, it has

been considered sensible to maintain the same structure in the code as well. Therefore, in the

app.py file, three main classes (ManualMode, AutomaticMode and MultireceivingMode) can be

found corresponding to each mode. The other classes support these latter ones. This file acts as

a controller which manages the input parameters and actions that the user displays through the

GUI and translate these inputs into actions that the NRF24L01 class can understand and vice

versa. Detailed documentation about this file can be found here. The full code is available in annex

A.3. This is how this section will be structure:

 GeneralModeFunctions class

 QThread classes

 Manual mode

 Multireceiving mode

 Automatic mode

 Tests

7.1. GeneralModeFunctions class

Since most of the methods and attributes are similar in every mode class (if not equal), the

decision of joining all these methods and attributes together in one single class was taken. This

class was named GeneralModeFunctions.

7.1.1. Inheritance

Because these mode classes inherit from QtGui.QMainWindow, GeneralModeFunctions

needs to inherit this class to actually be able to execute the methods and attributes from the mode

classes without problems. This is the inheritance structure:

QtGui.QMainWindow()

GeneralModeFunctions()

ManualMode() AutomaticMode() MultireceivingMode

Fig 7.1 Mode classes’ Inheritance structure. Own source.

file:///C:/Users/Usuario/Downloads/TFG/Codigo_Final/_build/html/app.html

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 27

7.1.2. Methods

These methods are available to every mode class.

7.1.2.1. listening()

It is triggered when clicking the “Listen” button. This function is a very important one not only

because it sets the NRF24L01 in a listening state but also because in order to do that, it has to

call another class named ListeningLoop which is a thread. The reason of being of this thread is

the need of a loop when listening. If the loop was written in this method, the app would get stuck

and would not respond. Therefore, the loop must be executed in another class that runs

simultaneously together with one of the mode classes. If the method fails execution, a message

will let the user know whether it is due to a loss of connection or because the parameters have

not been applied yet. If it is owing to a loss of connection by popping up a message box informing

the user about the problem.

7.1.2.2. stop_listening()

It runs when the “Stop” button is clicked. It makes the NRF24L01 stop listening, which means

returning to a standby state (which also consumes less energy). A message confirming the

execution of this method is shown on the text browser. If the method fails, it will proceed as in the

listening() method.

7.1.2.3. end_Get_CheckConnection()

It is executed when a signal is received from GetConnection or CheckConnection class.

That is, when connection is established or lost. It just updates the status bar, terminates the thread

from which the signal comes from and starts the other one. Note that there is always one thread

running, GetConnection or CheckConnection.

7.1.2.4. add_to_record(s)

Normally, displays information to the user via the text browser. It also saves the displayed

information in a text file named as the mode that is currently running. This information is

overwritten every time the app is executed. This avoids deluging the folder with hundreds of files.

Nevertheless, if Focus or Fast file download modes are enabled it plays a whole different role

 28 Report

which is explained in detail on the sphinx documentation available here.

7.1.2.5. Change_mode()

This method is executed when the user presses the “Manual mode”, “Automatic mode” or

“Multireceiving mode” button. It closes the current GUI and opens a new one according to the

mode that the user chose. It also terminates the threads if they were running and passes the new

window's position.

7.2. QThread classes

All the classes that are presented in this section inherit from QtCore.QThread and are isolated

from the main classes for one of two reasons. A huge number of calculations take place in their

run() method which prevents the app from running correctly, which is the case of

packet_validation(), or because these classes’ run() method contain a loop that needs to be

executed simultaneously together with the current mode class. Note that all these classes

automatically execute its run method (where all the code is located) when the class is started.

These classes are:

7.2.1. Intro class

This class is only initialized and started by ManualMode class. It is only executed the first time

that ManualMode is called. It provides a 3 seconds Introduction image to the app and its owner

which is the following.

file:///C:/Users/Usuario/Downloads/TFG/Codigo_Final/_build/html/app.html

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 29

7.2.2. Move class

Since this app has an especial title bar and the function of dragging the window is executed when

pressing long invisible button at the top of the window, this functionality is carried out by this class.

Whenever the button is “pressed” (not clicked), the run() method from this class is executed. This

method consists of a loop which maintains the relative distance (and angle, of course) between

the mouse and the window while the button is pressed. Nevertheless, it is possible that the loop

does not update fast enough the relative distance which causes the mouse being outside the

button which stopped the loop because the mouse was no longer pressing the button but another

part of the screen. This problem was tackled by focusing on the on the mouse state (left click

pressed or not pressed) instead of focusing on the button once the button was pressed.

7.2.3. GetConnection class

This class is triggered every time the device is disconnected. Therefore, it will run at least one

time, right at the beginning. It basically consists of a loop that is constantly trying to stablish

communication with the device. If it can, the state of the status bar will change to “Connected” in

green and a message confirming this connection is displayed in the text browser.

Fig. 7.2 Introduction image to the app. Own source.

 30 Report

7.2.3.1. Checkconnection class

Whenever the GetConnection loop stops running, the Checkconnection loop does. In this

case, this loop does not check the device connection, as this would mean sending information

through the FTDI cable and expecting something in return. This is not good practice since the app

could be applying parameters or be in the listening loop while this happens which would turn out

badly due to the fact that both signals would be sent through the cable simultaneously.

Notwithstanding this, it is possible to check the cable’s connection without interfering with the

device and this is what this class actually does.

7.2.4. ListeningLoop class

It runs a loop in which it checks if the any() method from the NRF24L01 class returns True and, if

so, sends a signal to the current mode class when something is received. If the device is

disconnected while running this loop, a signal is sent to the current mode class which triggers a

method that pops up a message on the screen informing of this unexpected disconnection.

Fig. 7.3 Status bar states. Own source.

Fig. 7.4 Error message box due to an unexpected device disconnection. Own source.

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 31

7.2.5. PacketValidation class

This class is of paramount importance not only for its complexity but also because it to catch a

packet without knowing almost anything about it. The process regarding this class will be tackled

in section 7.5.4.

7.3. Manual mode

The purpose of this mode is to establish communication either with a transmitter and a receiver.

As the title of this mode reveals, all the relevant parameters regarding this communication will be

modifiable by the user. These are the relevant settings that must be taken into account when

receiving and sending packets:

 Air data rate [1 Mbps, 2 Mbps, 250 Kbps] – input value

According to the NRF24L01 datasheet [1], “Using lower air data rate gives better receiver

sensitivity than higher air data rate. But, high air data rate gives lower average current

consumption and reduced probability of on-air collisions. [...] A transmitter and receiver

must be programmed with the same air data rate to communicate with each other”.

 Channel [0 to 125] – input value

According to the NRF24L01 datasheet [1], “You must program a transmitter and a receiver

with the same RF channel frequency to communicate with each other”.

 Static payload length [1 to 32 Bytes] - input value (only for receiver mode)

Must be the same length as the sent message, otherwise the chip will not get the correct

CRC (as it sent right after the message) causing a CRC failure and discarding the packet.

 Enable CRC (although is forced to be enabled when Auto Acknowledgement is enabled.)

[1]: “The CRC is the mandatory error detection mechanism in the packet. It is either 1 or

2 bytes and is calculated over the address, Packet Control Field and Payload”.

 CRC [1 or 2 bytes] - input value

Must be the same as the transmitter, otherwise will cause a CRC failure and the packet

will be automatically rejected unless it is deactivated from the receiver side.

 Pipe enabled [pipe 0 to 5] – input value (only for receiver mode)

Only one pipe needs to be enabled in this mode.

 32 Report

 Enhanced ShockBurst enabled for the chosen pipe

Normally, messages are sent with Enhanced ShockBurst enabled.

 Pipe address – input value

Must be the same as the transmitter address and set in the pipe address that has been

enabled

 PWR_UP, PRIM_RX registers and CE must be set high to enter in RX mode

PWR_UP - if set high, the NRF24L01 enters standby-I mode.

CE - if set high, the NRF24L01 enters standby-II mode.

RIM_RX - if set high, the device enters in RX mode.

 Dynamic Payload – This feature permits automatic payload detection for the receiver

only if Dynamic Payload has been enabled from the transmitter, otherwise the payload
length will not be set in the transmitted packet

The following table shows how both the receiver and the transmitter should be configured to be

able to communicate with each other:

Input Settings

Air rate Same for the receiver and the transmitter

Channel Same for the receiver and the transmitter

CRC Same for the receiver and the transmitter

Pipe Not relevant

Pipe address Same for the receiver and the transmitter

Registers’ configuration

Register Receiver Transmitter

00

0b1001 (1 byte CRC)

0b1101 (2 bytes CRC)

0b1000 (1 byte CRC)

0b1100 (2 bytes CRC)

01

0b111111 – Enhanced

ShockBurst enabled in all

pipes

Not relevant

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 33

02 0b111111 – Enable all pipes Not relevant

03 Address width for all pipes
Address width (related to

register 10)

04 Not relevant Not relevant

05
Same for the receiver and the

transmitter

Same for the receiver and

the transmitter

06
Same for the receiver and the

transmitter

Same for the receiver and

the transmitter

07 Not relevant Not relevant

08 Not relevant Not relevant

09 Default Default

0A

One of these registers must fit

the TX address sent by the

transmitter (notice LSB is

written first)

Not relevant

0B The register that corresponds

to the chosen pipe to receive

the information must have the

same length as the TX

address from the transmitter

Not relevant

0C Not relevant

0D Not relevant

0E Not relevant

0F Not relevant

10

Not relevant The introduced address

must equal the chosen RX

pipe address (notice LSB is

written first)

11

Choose the desired payload

width for the chosen pipe

Not relevant

12 Not relevant

13 Not relevant

 34 Report

14 Not relevant

15 Not relevant

16 Not relevant

17 Default Not relevant

1C Not relevant Not relevant

1D Not relevant Not relevant

If all these registers were overwritten in both the transmitter and the receiver and CE signal was

set high in both chips (first on the receiver and then the transmitter so that the message can be

received before being sent and not after), the message should be saved in the RX FIFO from the

receiver which can be easily accessed with the R_RX_PAYLOAD command as will be shown in

the following section.

7.3.1. ManualMode class

The mode classes contain the specific attributes and methods regarding the mode (annex A.3).

7.3.1.1. The constructor

As this class inherits from GeneralModeFunctions, two parameters must be passed to the

inherited class which are: an instance of the GUI class from the corresponding mode and the

name of the text file that is going to be used as a record.

This class needs no other attribute to run properly (apart from the ones inherited). However, there

is a short presentation which turns up every time the program is executed where the logo of the

app appears together with the owner’s name.

It is actually very basic. There is a global variable which is True by default so that the first time the

if statement is executed, it initializes an Intro() instance and then starts the QThread class. This

QThread class (Intro()) runs automatically its method run(), which makes the program wait for

3 seconds before hiding the intro and letting the user see the Manual mode interface.

Table 7.1 Registers’ configuration. Own source.

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 35

7.3.1.2. apply_new_parameters() method

It tries to apply the input parameters chosen by the user into the NRF24L01. If it fails a message

box will tell the user whether is it due to an unacceptable input or because the app lost connection

with the chip (if this is the case, GetConnection class will be started, which will wait for the device

to be connected). If it succeeds, parameters will appear on the text browser together with a

message confirming the success. It also checks if the user has clicked on stop_listening() after

clicking on listening. If not, stop_listening() method is executed before applying the parameters.

7.3.1.3. read() method

It gets the message by calling the recv() method from the NRF24L01 class and prints it on the

text browser

7.3.1.4. tx_message() method

Opens an input window were the user can write the message that wants to send. The message

must be written as in the Address input field. When the user clicks the “OK” button this method

calls the sending() method.

7.3.1.5. sending() method

This method actually sends the packet by calling start_sending() from the NRF24L01 class. After

that, it checks whether the message was correctly sent. Then it waits for the acknowledgement

packet in case that option was checked by the user. When the acknowledgement packet has

been received, a message informs the user about that fact.

7.3.2. Example

In this example, both the transmitter and the receiver can be configured with this application as

will be shown.

The transmitter and the receiver will have the following characteristics:

 Address: 0xB2B3B4

 Message (transmitter): 0x01

 Air rate: 1Mbps

 Power (transmitter): 0 dBm

 CRC: 1 byte

 Pipe number used (receiver): 0

 36 Report

Using the app, the chip configuration is as follows:

Register Map configuration

Register Receiver Transmitter

00 0x09 0x08

01 0x01 0x3F

02 0x01 0x3F

03 0x01 0x02

04 0x68 0x0A

05 0x40 0x40

06 0x7 0x07

07 0x0E 0x0E

08 0x00 0x1A

09 0x00 0x00

0A 0xB4 0xB3 0xB2 0x01 0x04 0xB3

0B 0x00 0xC2

0C 0x00 0xC3

0D 0x00 0xC4

0E 0x00 0xC5

0F 0x00 0xC6

10 0x00 0xB4 0xB3 0xB2

11 0x01 0x05

12 0x00 0x00

13 0x00 0x00

14 0x00 0x00

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 37

15 0x00 0x00

16 0x00 0x00

17 0x11 0x01

1C 0x3F 0x3F

1D 0x3F 0x3F

Now, let’s see how easy it is to configure both the receiver and the transmitter with this app.

It is not important to have the device connected when starting the app, although it will be

necessary when applying the parameters. A message will turn up on the text browser if the

connection has been successful. Moreover, we can quickly check the state of our connection in

the status bar, which, if the device has been connected properly, will display “Connected” in green.

Then we can proceed to introduce the input parameters as the app opens Manual mode by

default. There are a couple of things that must be taken into account when introducing the

parameters.

Table 7.2 Registers’ configuration example. Own source.

Fig. 7.5 Manual mode interface. Own source.

 38 Report

 All numbers must be written as in hexadecimal format separating every byte with a space.

For example: b1 b3 c5 01

 The address can be of 3, 4 or 5 bytes long

 The address is written in reverse to the register it is written from the Least Significant Byte

(LSB) to the Most Significant Byte (MSB). That is because it is easier to understand the

address writing first the MSB (this will be of paramount importance in the Automatic

mode).

Receiver:

The transmitters code for this example is available in annex C. This configuration can be easily

set throughout the app by fulfilling the parameters and clicking on “Apply parameters”.

Now we just need to click on “Listen” to start receiving packets:

Fig. 7.6 Screenshot after clicking on “Apply parameters”. Own source.

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 39

When the packet is sent from the transmitter, the receiver catches that packet and shows its

message on the text browser:

Transmitter:

Similarly, we can configure the transmitter:

Fig. 7.7 Screenshot after clicking on “Listen”. Own source.

Fig. 7.8 Screenshot after receiving the packet. Own source.

 40 Report

As we want to send a message, we just need to click on “Send” and the following window will pop

up:

The message must be written in the same way as the address. After clicking “OK”, the message

will be sent and a message confirming this fact is displayed on the text browser.

Fig. 7.9 Screenshot after clicking on “Apply parameters”. Own source.

Fig. 7.10 Screenshot after clicking on “Send”. Own source.

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 41

7.4. Multireceiving mode

Once all the problems from the Manual mode have been overcome, this mode turns out really

simple (annex A.3). The strong point of it is the capacity of receiving messages from different

addresses, this is, the possibility to communicate among different devices at the same time. This

can be achieved thanks to the 6 receiving pipes integrated in the NRF24L01.

7.4.1. Multireceiving_mode class

The methods that make this class work are the followings.

7.4.1.1. apply_new_parameters()

This method configures the NRF24L01 to be ready for listening. Notice that this method leaves

the chip in a low energy consumption state. This means, it is not “listening” yet. Here is the

configuration table where the reader can see which fields are required and how they must be

fulfilled.

Fig. 7.11 Screenshot after clicking on “OK”. Own source.

 42 Report

Input Settings

Air rate Same for the receiver and the transmitter

Channel Same for the receiver and the transmitter

CRC Same for the receiver and the transmitter

Pipe Not relevant

Pipe address Same first three bytes for the receiver and the transmitter

Register Map configuration

Register Receiver Transmitter

00 0b1000 (1 byte CRC)

0b1100 (2 bytes CRC)

0x0C

01 0b111111 – Enhanced

ShockBurst enabled in all

pipes

Not relevant

02 0b111111 – Enable all pipes Not relevant

03 Address width for all pipes Address width (related to

register 10)

04 Not relevant Not relevant

05 Same for the receiver and the

transmitter

Same for the receiver and

the transmitter

06 Same for the receiver and the

transmitter

Same for the receiver and

the transmitter

07 Not relevant Not relevant

08 Not relevant Not relevant

09 Default Default

0A One of these registers must fit Not relevant

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 43

0B
the TX address sent by the

transmitter (notice LSB is

written first)

Not relevant

0C Not relevant

0D Not relevant

0E Not relevant

0F Not relevant

10 Not relevant The introduced address

must equal one enabled

RX pipe address (notice

LSB is written first)

11 The pipe that is going to be

used must have a 32 bytes

payload width

Not relevant

12 Not relevant Not relevant

13 Not relevant Not relevant

14 Not relevant Not relevant

15 Not relevant Not relevant

16 Not relevant Not relevant

17 Default Default

1C Not relevant Not relevant

1D Not relevant Dynamic Payload Length

Enabled

7.4.1.2. read()

This method is similar to the read() from Manual mode. Nevertheless, it also prints the pipe from

where the message has been caught on the screen so that the user can easily tell which

Table 7.3 Registers’ configuration. Own source.

 44 Report

transmitter is sending the information by checking the address of the pipe.

7.4.2. Example

Transmitter’s code for this example is available in annex D. To perform this example and actually

use the functionality that this mode provides, several transmitters are needed. For this example,

3 transmitters were used:

These transmitters have been configured as follows (annex D):

Transmitters’ packet characteristics

Addresses 0xB1 0xB2 0xB3 0xB4 0x01/02/03

Channel 64 (2464 [MHz])

Air rate 1Mbps

Power 0 dBm

Fig. 7.12 Receiver (left hand) connected to the laptop and 3 transmitters connected to

Open18F4520 boards. Own source.

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 45

CRC 2 Bytes

Dynamic Payload Enabled

Message 1 2 4 8 15

In order to receive all the packets sent by the transmitter, the following parameters must be set

within the app to configure the receiver accordingly.

After applying the parameters, the user just needs to click on “Listen” to be ready to receive

packets. The following image shows the messages that have been received coupled with the pipe

that contains the address from which the messages have been sent. This means that the user

can easily recognise the transmitter that sent the message.

Table 7.4 Transmitters’ packet characteristics. Own source.

Fig. 7.13 Example parameters. Transmitters’ addresses are set in pipes 0, 2 and 4. Own

source.

 46 Report

Fig. 7.14 Screenshot of the messages that have been received from different pipes. Own

source.

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 47

7.5. Automatic mode

This is probably the most complex mode in this application. Its aim is to get the message from a

3, 4 or 5 bytes address packet, knowing only the first 4 or even 3 bytes and nothing else (it also

works with 5). This “nothing else” has important consequences. It allows the receiver to extract

the message sent by different transmitters regardless of their configurations (address length,

payload length and the CRC length). It basically reads every message contained in a packet that

starts with the first 3 chosen bytes. The implications are impressive, however, this adds a lot of

complexity to the message extraction, problems that will need to be tackled.

This mode is an enhanced variant of the so called Promiscuous Reading [10], which is the ability

to receive a packet by knowing just a part of its address. It allows the receiver to get messages

from up to 65793 different transmitters in contrast with the 6 different pipes that the device

provides thanks to the Multireceiver functionality. Unfortunately, this Promiscuous Reading is not

available in the NRF24L01, therefore, it will be applied manually using software.

This is achieved by configuring the receiver to receive a 3 or 4 bytes address with Enhanced

Shockburst disabled. By doing so, the device will not check anything that comes after the address

(mainly the CRC) and will just pass as much data to RX FIFO (first in, first out) as it can store (32

bytes).

Up to this point, the device is able to capture the packet, which contains the message.

Nevertheless, this packet is hidden among many other bits. This means that the chip will not know

either where the message exactly begins or where it ends. This makes it almost impossible to

extract the correct message, even knowing it is among this large row of ones and zeros that the

device has captured. Here are a few samples to exemplify this point:

1

The answer to this problem lies in the Enhanced ShockBurst packet structure. Messages are

1 PCF (Packet Control Field) include the payload length, the PID and the no acknowledgement bit.

Fig. 7.15 This figure shows that it is not possible (a priori) to know for sure where the

message begins and where it ends. Own source.

 48 Report

usually wrapped up in an Enhanced ShockBurst packet format. This packet contains (apart from

the message) metadata such as the length of the message, the PID (Packet Identity), the No

Acknowledgement bit and a CRC validation. These parts of the packet will not only help in the

message extraction, but also provide important information about the transmitters configuration

such as the CRC length and the full address which will be very useful in future sections.

7.5.1. Enhanced ShockBurst packet

As mentioned before, there are a bunch of elements wrapping up the message. Their distribution

and length within the packet are:

A detailed explanation of these elements, which is strongly recommended, can be found in the

bibliography [1].

7.5.2. Receiving process

The receiver has the Enhanced ShockBurst mode disabled, this means that it is expecting a

packet format like this:

We want no CRC to be verified from the receiver side, as we still don’t know where this CRC is

located. Instead the NRF24L01 will store the maximum data that the FIFO can keep to ensure

that the entire packet is in between these 32 bytes

Fig. 7.16 Enhanced ShockBurst packet distribution.

Source: http://yveaux.blogspot.com.es/2014/07/nrf24l01-sniffer-part-1.html

Fig. 7.17 Packet distribution with Enhanced Shockburst disabled. Source: SparkFun

Electronics.

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 49

From now on, fixed lengths for the different fields will be provided to simplify the explanation as it

can be easily extrapolated to different lengths. Let’s say we have a 5 bytes message and we want

the device to read the message with just the first 4 bytes of that address. The aim is that once the

first 4 bytes of the address are checked, everything else passes to the RX FIFO in order to have

free access to it.

As can be seen in figure 7.13, the receiver (with Enhanced Shockburst disabled) checks the first

4 bytes of the received packet and stores the rest into the RX FIFO as if it was the message. The

CRC must be disabled as the device does not know where the CRC is located. That is not a free

of charge as when using a 3 bytes’ address from the receiver side, some noise is captured by the

device since just 3 bytes from the address must fit to capture the packet. This problem will be

tackled later on.

Fig. 7.18 The upper side packet represents a standard packet sent to the receiver. The

other packet represents how the receiver sees the upper packet.

Source: http://yveaux.blogspot.com.es/2014/07/nrf24l01-sniffer-part-1.html

 50 Report

Now, almost all the packet (except the first 4 bytes from the address that has been checked) can

be accessed with the command R_RX_PAYLOAD.

In order to split the different sections of the packet, the information will be processed at a bit level

rather than at a byte level due to the 9 bits of the Packet Control Field. The Bitstring module will

be used for this purpose.

With all the packet information available in the RX FIFO a way needs to be found to locate every

section of the packet in order to locate the message and the full address from where the message

has been sent.

First thing to do is to delimitate the packet. Note that if the CRC is found, the packet will be

delimited since it is located right at the end of the packet. However, that is only one advantage of

finding the CRC. As we are going to see in the next section, finding the CRC will necessarily

validate the message.

7.5.3. CRC

This section explains the importance of calculating the CRC [7, 8, 9] and the process that has

Fig. 7.19 Noise detected knowing the first 3 bytes from the address. Own source.

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 51

been followed in order to manually get it. The CRC manual calculation is important for the

following reasons:

 Packet validation: The CRC is calculated over the whole packet (excluding, of course,

the CRC itself) to ensure that the receiver receives the right information from the

transmitter. This is very helpful when receiving with a 3 bytes’ address as it is easy to

receive dummy data.

 Guessing packets’ payload length: if payload length is unknown, it can be derived (as

will be explained) once the CRC is located. This means knowing exactly where the

message is located (because the end of the payload is the beginning of the CRC) and

being able to extract it, which is the main aim of all these calculations.

Since the payload length is normally contained in the Packet Control Field (unless it is disabled),

this mode will “guess” the packets’ address length.

The consequence of using the CRC are impressive. Just by knowing the first 3 bytes of a

message’s address, this mode is able to present the message without errors.

But before delving into how to extract the message from a completely unknown packet, the CRC

needs to be correctly calculated.

7.5.3.1. CRC manual calculation

According to the datasheet [1]:

“The CRC is the mandatory error detection mechanism in the packet. It is either 1 or 2 bytes and

is calculated over the address, Packet Control Field and Payload.

The polynomial for 1 byte CRC is X8 + X2 + X + 1. Initial value 0xFF.

The polynomial for 2 byte CRC is X16 + X12 + X5 + 1. Initial value 0xFFFF.”

As it has been said before, CRC is calculated over a bit string which is not multiple of 8 (due to

the Packet Control Field). This is unfortunate not only because it makes it compulsory to work at

a bit level (which consume more resources) but because CRC functions available on the internet

work at a byte level which compels this project to have its own CRC calculation function.

This function has the following characteristics:

Arguments:

 The bit string from which the CRC will be derived.

 52 Report

 An integer regarding the CRC’s length.

Return:

 The resulting CRC’s bit string.

The CRC’s calculation procedure has been deeply analysed and can be found in the bibliography.

Although some modifications can be added to this procedure, it basically consists on performing

an XOR operation between the message and the polynomial in every iteration until you get the

desired CRC length. The polynomial degree must equal the desired CRC bit length. In this case,

an initial step is added to this process, which is performing an XOR operation between the

message and an initial bit string which is going to be 0xFF for the one-byte CRC and 0xFFFF for

the two-bytes CRC. The following example will provide a better understanding of how the function

works.

This is a real packet sent by a transmitter:

1011001010110011101101000000011100000000101101000

 3-bytes address Packet Control Field Message CRC

Since the CRC is one-byte length, the polynomial X8 + X2 + X + 1 (100000111 converted to bit

code) will be used coupled with an initial value of 0xFF (11111111 converted to bit code) as it has

been mentioned before. The CRC is calculated over the whole packed (excluding the CRC itself),

therefore, the CRC is calculated over the bit string:

10110010101100111011010000000111000000001. In order to perform the calculations

correctly, eight “0” bits need to be appended to the end of this bit string which will end up being

the CRC. Taking all these into account, the next steps need to be followed in order to obtain the

CRC:

1. Align the initial value with the first bit of the given bit string and so on. Perform an XOR

operation between the bits in the same column. The rest remains the same.

1011001010110011101101000000011100000000100000000

 11111111

 0100110110110011101101000000011100000000100000000

2. Align the first bit of the polynomial bit string with the first “1” of the resulting bit string and
perform the same XOR operation as in step one.

0100110110110011101101000000011100000000100000000
 100000111

0000110001110011101101000000011100000000100000000

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 53

3. Iterate over step 2 until all the bits from the resulting bit string are “0” excluding the last 8
bits. These are the last two iterations.

0000000000000000000000000000000000001100000100000
 100000111
0000000000000000000000000000000000000100001010000
 100000111
001101000

The full CRC calculation is available in annex G and the CRC function in annex A.7.

7.5.4. Message extraction

Since there is no information about the incoming packets apart from the packet structure and the

first three bytes of the address, a smart play is needed in order to finally get the correct message.

Firstly, the packet must be located among the large string of bits that have been recorded in the

FIFO. Since the FIFO will start with the fifth byte of the packet (In this example the first four refer

to the firsts address’ bytes), the problem lies in finding the end of the packet. As has been

explained before, the CRC occupies the last bits of the packet, therefore, if the CRC is found, the

packet will be located. Unfortunately, the CRC is unknown and it cannot be calculated since the

packet has not been delimited yet. Besides, the CRC length is also unknown.

On the bright side, there is only one combination of packet length and CRC length that would

make the CRC from the packet be equal to the CRC calculation over the packet (excluding the

CRC). It would be a hard work to try all the combinations manually, fortunately it is easy for a

computer to do this task.

Now that the Packet has been delimited, it is easy to locate the end of the message (where the

CRC begins). Nevertheless, the beginning of it is not that simple to find. The reader might think

that the beginning of the message can be derived since the length of the message is contained

in the Packet Control Field. However, this section of the packet cannot be located since the

address length is still unknown. Notwithstanding this fact, the length of the message is still there,

somewhere inside the packet, and it has a fixed length of 6 bits. At this point, it is easy to notice

that the same procedure used in the preceding paragraphs can also be applied in this case.

The process would be the following:

 Choose a payload length between 1 and 29

 Locate the position where the payload length should be (inside the Packet Control Field).

 Compare the chosen length with the bits where the payload length should be.

 If both numbers are the same, the payload length has been found. Otherwise, choose

 54 Report

the following number and restart the process.

With the payload length we can easily assign every bit to its corresponding section. Now, not only

the message can be extracted but also the whole address so that the user can distinguish the

messages by its transmitters. Moreover, the PID (contained in the Packet Control Field) is also

available and its use will be explained in the following section.

7.5.5. PID. Avoiding retransmissions

In a normal transaction, the transmitter sends the same message several times and then changes

to the receiving mode and waits for an acknowledgement packet from the receiver. If no

acknowledgement is received, the transmitter restarts the process again and again until it receives

the acknowledgement packet. The receiver waits for the message, and only when it is validated,

changes to the transmitter mode and sends the acknowledgement packet to the transmitter and

then turns back to the receiving mode. Since the receiver can easily receive another retransmitted

package with exactly the same information as the one that has been already received, the packet

must have something to differentiate a new packet from a retransmission. Comparing the

message is not an option as some transmitters may be sending the same message over and over

again until something changes. The solution in this case lies in the two PID bits. Every

retransmission has the same combination of this two bits. The chip keeps the combination of the

last message received. However, this is not enough to discard a packet since other devices could

be sending different information with the same PID as another couple of packets that are being

retransmitted. Therefore, not only the PID is compared with the new incoming message but also

the CRC. That ensures that every new message is adequately handled and no duplicated

messages are captured by the NRF24L01.

 This packet transaction handling is automatic when enabling Enhanced ShockBurst.

Unfortunately, this feature must be disabled to provide this chip with a Promiscuous Reading

mode. Nevertheless, this automatic handling can also be manually applied (with software) since

in this mode the PID is available as well as the CRC. In order to do this, the following process has

been applied:

 Once the packet sections have been determined, the PID and the CRC from the packet

are compared with the corresponding ones from the last packet received. In case they are

different, the packet is automatically accepted.

 If the packet is accepted, its PID and CRC are recorded to be compared with the following

packet.

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 55

7.5.6. First try-outs

This section is going to tackle all the problems encountered when putting all the previous points

into practice. This is, explaining the problem and providing the solution that has been

implemented.

Problem:

The first time it ran, the program stopped working when validating the message. This was due to

the large amount of calculations that the main thread had to do when validating the message.

Solution:

The development of a new thread that executes these calculations simultaneously. This thread

named packet_validation, is called every time the the FIFO receives something and, the main aim

of this thread is to determine if the bitstring that the FIFO has captured is a real packet or just

noise. This thread calls the crc_() function several times so it has to performe a large number of

operations.

Problem:

The new thread is not fast enough to tackle all the noise. The thread is reinstanciated before it

actually finishes executing the code.

Solution 1:

Fig. 7.20 Frozen screen when trying to validate the packets. Own source.

 56 Report

Up to 10 threads are instanciated to deal with all the noise. This threads are instanciated inside a

list so that its elements are constantly recycled. This gives the threads enough time to perform its

calculations before they are recycled.

Solution 2:

This mode was consuming a great deal of resources which lead this project to an optimization

process. Since the crc_ () is the function that more times is executed by far and the one that takes

more time to be executed, it is sensible to try to enhance its efficiency.

Luckly, there was a lot of room for improvement since the function was developed, in such a way

that the steps in between the calculations could be easily printed to fix any possible error. Both

the old and the new function are available in annex A.7.

This functions’ performance was evaluated in terms of timing. Since the packet_validation() thread

will normally be executed because of the noise, the function will run all the loops till the end. As

will be explained later, validating a noise packet would be equivalent to running 58 times (29 times

every CRC length) a 17 bytes packet. The reason why this test has not been performed within

the application is because it was considered necessary to isolate the problem so that non external

influences could afect the final results. The test was performed 10 times to ensure the reliability

of the results.

RESULTS

crc_func (old version) average
6,624 s

crc_ (optimized version) average
1,0428 s

Time improvement (%) 84,26%

Table 7.5 Time test results. Own source.

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 57

7.5.7. Automatic_mode class

This section gives an insight over the methods that make this mode do the trick. The code

regarding this class is available in annex A.3.

7.5.7.1. apply_new_parameters

Since this method has been explained in other modes and no further information is necessary,

here is the NRF24L01 configuration for both the transmitter and the receiver. Note the flexibility

from the transmitter’s side.

Input Settings

Air rate Same for the receiver and the transmitter

Channel Same for the receiver and the transmitter

Pipe Not relevant

Pipe address Same first three bytes for the receiver and the transmitter

Register Map configuration

Register Receiver Transmitter

00 0b0 - (CRC disabled) 0x0C

01 0b0 – Enhanced ShockBurst

disabled

Not relevant

02 Enabled at least 1 pipe Not relevant

03 0b11 – 3 bytes long Address width (related to

register 10)

04 Not relevant Not relevant

05 Same for the receiver and the

transmitter

Same for the receiver and

the transmitter

06 Same for the receiver and the

transmitter

Same for the receiver and

the transmitter

 58 Report

07 Not relevant Not relevant

08 Not relevant Not relevant

09 Default Default

0A

One of these registers must fit

the last 3 bytes introduced in

the transmitter register 10

Not relevant

0B Not relevant

0C Not relevant

0D Not relevant

0E Not relevant

0F Not relevant

10 Not relevant Last 3 bytes introduced

must equal one enabled RX

pipe address (notice LSB is

written first)

11

The pipe that is going to be

used must have a 32 bytes

payload width

Not relevant

12 Not relevant

13 Not relevant

14 Not relevant

15 Not relevant

16 Not relevant

17 Default Default

1C Not relevant Not relevant

1D Not relevant Dynamic Payload Length

Enabled

Table 7.6 Registers’ configuration. Own source.

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 59

7.5.7.2. read()

Once the RX FIFO captures a possible packet, this method is called. If Focus or File download

mode are disabled, the data is manipulated in order to obtain the full packet. This means joining

the first 3 bytes from the address to the rest of the packet. Then, the packet validation thread is

called. In future sections will be explained what happens when those modes are enabled.

7.5.7.3. packet_validation class

Although this is not a method of the AutomaticMode class, it is worth explaining this thread in

order to follow a logic sequence of actions.

This class is eventually called by read() and automatically executes its run method. This method

validates the packet as has been explained in the preceding sections. This means trying different

packet length and CRC length until one of them fits with the calculated CRC. It also goes through

a similar process in order to find the payload length and therefore, the address length. It finally

sends back all the extracted information from the packet and presents it to the filter_duplicities()

method from AutomaticMode class.

7.5.7.4. filter_duplicities()

As obvious as it seems, this method filters the retransmission packets so that no duplicated

messages are displayed in the text browser. This is done by comparing the PID and the CRC

from the last message with the PID and CRC from the current packet.

If the message passes this filter, it will be sent to add_to_record(), which will display the message

on the screen.

7.5.8. Example

Transmitter’s code for this example is available in annex D. Let’s take a look at the final Automatic

mode layout:

 60 Report

Only 3 parameters are to be set in order to receive the desired packets. In fact, not even the full

length of the address needs to be provided. Just the first 3 bytes are necessary (although more

bytes can be provided). In this example, packets starting with the b3 b2 b2 are going to be caught.

As always, parameters need to be applied by clicking on “Apply new parameters” before clicking

on the “Listen” button.

Fig. 7.21 Final Automatic mode layout. Own source.

Fig. 7.22 Message reception. Own source.

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 61

7.5.9. Extra functionalities

The testing of this mode revealed that when using a high payload length (near 29 bytes), the app

needs up to 10 seconds to process all the packet. This is due to the fact that a great deal of

calculations need to be performed before reaching the correct combination of CRC length,

payload length and address length coupled with the fact that other validations can be running at

the same time. The following functionalities have been implemented in order to give an optimised

solution to this problem. These functionalities, although spread over the whole code, do not affect

other methods behaviour unless certain conditions are met or the user specifies it as will be

shown.

A new method has been created to provide what is going to be called from this point onwards as

“fast reception”:

fast_reception()

This method takes the configuration information from the transmitter’s packet and configures the

receiver accordingly so that all the packet extraction can be processed by the NRF24L01 which

is going to be way faster than keeping the Automatic Mode on. It is important to draw attention to

the fact that this change of configuration prevents the receiver from receiving information from

other devices but just for a brief period of time, in which the great majority if not all the packets

will be sent by the transmitter.

These method is the base upon which the following features will be built.

7.5.9.1. Fast file download

This functionality is automatically enabled when the receiver receives a file. Every file sent to the

receiver must be encapsulated in between two messages: “text fileXXXX” and “end file”, where

“XXXX” is the size of the file. When a text file is being received, fast_reception() method is called.

While the file is being downloaded, the app pops up a saving file window where the user will be

able to select the file location as well as its name. At the same time, the text file will periodically

provide information about the percentage of file that has been downloaded. Once the file has

been downloaded, the app will change back to the Automatic mode and will show a message

confirming this fact. The download will be available for the user to be accessed. add_to_record()

method is in charge of storing the file in this case. read() method translates the bytes of the

message into letters and symbols using ascii decoding. The files and functions that have been

used to translate the text file into bytes and to send the packets are available in the bibliography[

Example:

Figure 7.23 shows the saving window that pops up when a file is received.

 62 Report

The main window shows the progression of the download in real time.

The process finishes when the end file message is received.

Fig. 7.23 Window opened when a file is received. Own source.

Fig. 7.24 Downloading file. Own source.

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 63

7.5.9.2. Focus

By clicking the “Focus” button, the app will focus its attention on the transmitter that sent the last

packet using fast reception. This allows almost instantaneous message reception taking profit of

the already built fast_reception() method. The messages will appear one after the other since

there is no point in providing information about the address as will be the same for every message

received.This feature is disabled when clicking “Focus” again. It is worth mentioning that this

feature has been adapted to be compatible with a wireless keyboard. Therefore, the messages

that will appear on screen after clicking on focus will be converted regarding the keyboard code.

Example:

Once the first message is received the user can click on “Focus” to focus on the last address

received. Then the application is going to translate every byte received from that address and

concatenate the messages. Every letter that the user types with the keyboard will appear on the

screen almost instantly.

Fig. 7.25 Downloading file. Own source.

Fig. 7.26 Downloaded file. Own source.

 64 Report

7.6. Tests

These are the tests that have been performed to ensure the well-functioning of these modes.

7.6.1. Manual mode

Checking all the parameters available in the user interface. Payload limits (32 bytes) will also be

checked. Since this implementation is identical in every mode, this test will not be applied in the

other modes:

Fig. 7.27 Downloading file. Own source.

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 65

Fig. 7.28 Message reception. Own source.

Fig. 7.29 Checking receiver parameters. Own source.

 66 Report

Fig. 7.30 Checking transmitter parameters. Own source.

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 67

7.6.2. Multireceiving mode:

Checking all pipes and sending two messages at the same time.

 68 Report

Fig. 7.31 Checking multireceiver parameters. Own source.

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 69

7.6.3. Automatic mode

Checking all address length possibilities from the transmitter and the receiver side. At the same

time, the CRC has been changed as well. Also check that messages are also received when

sending at the same time:

Fig. 7.32 Receiver address length: 3 bytes – Transmitter address length: 3 bytes – CRC: 2.

Own Source.

Fig. 7.33 Receiver address length: 3 bytes – Transmitter address length: 4 bytes – CRC: 1.

Own Source.

 70 Report

Fig. 7.34 Receiver address length: 3 bytes – Transmitter address length: 5 bytes – CRC: 2.

Own Source.

Fig. 7.35 Receiver address length: 4 bytes – Transmitter address length: 4 bytes – CRC: 1.

Own Source.

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 71

Fig. 7.36 Receiver address length: 4 bytes – Transmitter address length: 5 bytes – CRC: 2.

Own Source.

Fig. 7.37 Receiver address length: 5 bytes – Transmitter address length: 5 bytes – CRC: 1.

Own Source.

 72 Report

8. Compatibility

The aim of this project is to create a python application. Nevertheless, this leads to a compatibility

problem when someone tries to run the app in Microsoft Windows OS and does not have python,

or has python but does not have the required modules. Therefore, some efforts have been made

in the direction of finding a tool to convert the python application into an exe file that can be directly

executed from any Microsoft Windows OS. The reason for doing this is to accomplish one of the

main objectives of this project, which is, preventing the user from any contact with programming,

and that includes downloading python and its modules.

After some research a tool was found to convert python files into a Windows executable. This

tool, named py2exe, permits this conversion [11]. It includes all the necessary modules in a folder

together with other necessary files that support this executable file. More information about how

this conversion is performed can be found in the bibliography.

Fig. 8.1 Folder where the .exe file is located and the direct access to the app on the

Desktop. Own Source.

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 73

9. Future Works

Since this project has focused its efforts on how this sniffer can receive information, there are a

few aspects that have not been tackled and would be worth of further study. These are some

examples:

 This sniffer can, with the app, get the configuration settings from packets sent by different

devices. It would be interesting to give the app the possibility to configure itself based on

received messages. Then, it could reconfigure different devices with different

configurations that are not receiving each other’s packets, into one single configuration

and allow these devices to catch each other’s packets.

 The acknowledgement packet has not been tackled in depth since this project, although

includes a message sending feature, is mainly focused on the reception side. Therefore,

it would be interesting to send several packets waiting for the acknowledgement packet

each time so that no errors could arise in the communication process.

 Other platforms and programming languages could be used in order to give this sniffer

more flexibility. For instance, with the development of an app for android, the user could

even send pictures or recordings through these devices.

 Delving into the last point, it would be interesting to connect somehow this boards to the

speakers’ cable and try to send music through a smartphone or tablet.

 The NRF24L01 can be used in the development of a wireless peripheral such as a mouse,

a playstation controller or even the smartphone could be used to control certain actions

on the computer.

 74 Report

10. Environmental footprint

Although this is a software development project, hardware parts of this project need to be

analysed in terms of recycling and in the case of the NRF24L01, RF consequences on humans

must also be taken into account.

According to Electronics TakeBack Coalition [12], “Over 1,000 materials, including chlorinated

solvents, brominated flame retardants, PVC, heavy metals, plastics and gases, are used to make

electronic products and their components—semiconductor chips, circuit boards, display panels,

and disk drives. […] About 40% of the heavy metals in landfills, including lead, mercury and

cadmium, comes from electronic equipment discards”. These products are very damaging for the

environment and need to be properly recycled. Therefore, once the user has exploded the first

two ‘R’s (Reduce and Reuse) [13], the recycling process takes place. In order to do so, the user

must find a “Punto limpio”. Ecolec foundation has all these points mapped over the whole country

[14].

According to the “Real Decreto 1066/2001” [15], There is mainly 1 restriction for the frequency

range between 10 MHz and 10 GHz (in which our sniffer works). The average body SAR must

not be greater than 0,08 W/Kg. Considering a person whose total body mass is below average

(~50 Kg) and assuming this person is absorbing all the RF waves, if the NRF24L01 was working

in a transmitter mode at maximum power (1 mW) the SAR would be 0,00002 W/Kg. Therefore, it

can be assured that this device will never be harmful to humans in terms of RF.

Development of a Python application for monitoring RF messages using one NRF24L01 board and a USB-MPSSE cable 75

11. Costs and time planning

COSTS

Quantity Cost/Unit (€/u)

Total item

cost(€)

C232HM-DDHSL-0 1 41,31 41,31

NRF24L01+ 1 3,99 3,99

Pack Open18F4520 Package B

(board, PIC18F4520, nRF24L01+

module, connexion cables, peripherals)

3 73,75 221,25

 TOTAL 266,55 €

TIME PLANNING

 Hours Cost/hour (€/h) Total cost (€)

Previous study 75 60 4500

GUI building 50 60 3000

Manual mode 25 60 1500

Multireceiving mode 5 60 300

Automatic mode 50 60 3000

Trials and testing 75 60 4500

Documentation 100 60 6000

TOTAL 380 TOTAL 22800 €

 76 Report

Conclusions

The aim of this project was to build a python application capable of interacting with a NRF24L01

to act as a sniffer, providing feedback from RF communications between different devices. This

main objective has been successfully achieved and other objectives focused on that direction

have also been successfully implemented within the app. Here is an overview of the relevant

points regarding this project coupled with some problems or difficulties that have been

encountered and how they have been tackled:

 Standard communication between several boards have been stablished (Manual and

Multireceiving mode).

 The chip allows to catch packets that match their first 3 bytes and saves almost the whole

packet inside the RX FIFO which gives free rein to packet manipulation. This operation

has a 28 bytes’ payload limitation as opposed to the 32 bytes in a regular communication.

This is because almost the whole packet is saved in the RX FIFO rather than just the

message.

 Packet treatment procedures such as CRC calculation, message extraction and

retransmissions removal can be processed by the PC.

 These latter points allow this application to abuse from the CRC packet validation and

extract the message from that packet together with some relevant information about the

transmitters configuration.

 The last point has been proved to be a bit slow when trying to extract long messages

(near to 29 bytes).

 This problem has triggered the creation of 2 functionalities (Fast file download and Focus)

that have appeared to be way faster, losing very little flexibility thanks to the fast reception

function.

 The system NRF24L01 - USB/MPSSE cable – computer can properly work as a sniffer.

 A completely customized GUI has been built with python modules and has been

converted into an executable file for Microsoft Windows OS. This provides easy access

to the application without having to download either python or any of its modules.

To conclude, it is worth mentioning that this application exploits all the resources that this board

provides, taking it to whole new level where not only the message can be acquired from almost

any packet, with no more information than the first 3 bytes, but also relevant information about

the transmitters configuration, which is of paramount importance for the purpose of this

application.

Aquí pot anar el títol del vostre PFC Pág. 77

Bibliography

[1]

[https://www.sparkfun.com/datasheets/Components/SMD/nRF24L01Pluss_Preliminary_Prod

uct_Specification_v1_0.pdf, 05 of June 2016]

[2]

[http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_C232HM_MPSSE_CA

BLE.PDF, 05 of June 2016]

[3] [http://m222982.blogspot.com.es/2013/03/ftdi-mpsse-mode-library-part-i-spi.html, 13 of

June 2016]

[4] [https://github.com/micropython/micropython/tree/master/drivers/nrf24l01, 13 of June

2016]

[5] [https://www.riverbankcomputing.com/software/pyqt/download

[6] [http://pyqt.sourceforge.net/Docs/PyQt4/classes.html 4 of May 2016]

[7] [http://www.zlib.net/crc_v3.txt, 30 of April 2016]

[8] [https://en.wikipedia.org/wiki/Cyclic_redundancy_check, 30 of April 2016]

[9] [http://www.lammertbies.nl/comm/info/crc-calculation.html, 30 of April 2016]

[10] [http://yveaux.blogspot.com.es/2014/07/nrf24l01-sniffer-part-1.html, 13 of June 2016]

[11] [http://www.py2exe.org/index.cgi/Tutorial, 6 of June 2016]

[12] [http://www.electronicstakeback.com/how-to-recycle-electronics, 16 of June 2016]

[13] [http://www.consumer.es/web/es/medio_ambiente/urbano/2012/09/10/212515.php, 16 of

June 2016]

[14] [http://www.ecolec.es, 16 of June 2016]

[15] [https://www.boe.es/diario_boe/txt.php?id=BOE-A-2001-18256, 16 of June 2016]

Pág. 78 Memoria

Figures

3.1 [http://www.waveshare.com/product/nrf24l01-rf-board-b.htm, 12 of March 2016]

3.2 [http://www.ftdichip.com/Products/Cables/USBMPSSE.htm, 20 of March 2016]

3.3 [http://www.waveshare.com/w/upload/0/07/NRF24L01-RF-Board-UserManual.pdf, 20 of

March 2016]

3.4 [http://www.ftdichip.com/Products/Cables/USBMPSSE.htm, 20 of March 2016]

5.1 [http://www.waveshare.com/w/upload/4/45/NRF24L01P.pdf, 04 of May 2016]

5.2 [http://www.waveshare.com/w/upload/4/45/NRF24L01P.pdf, 04 of May 2016]

5.3 [http://www.waveshare.com/w/upload/4/45/NRF24L01P.pdf, 04 of May 2016]

