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Abstract—We consider that a given number of Dissemination
Points (DPs) have to be deployed for disseminating information
to vehicles travelling in an urban area. We formulate our
problem as a Maximum Coverage Problem (MCP) so as to
maximize the number of vehicles that get in contact with
the DPs and as a second step with a sufficient amount of
time. Since the MCP is NP-hard, we solve it though heuristic
algorithms. Evaluation of the proposed solutions in a realistic
urban environment shows how knowledge of vehicular mobility
plays a major role in achieving an optimal coverage of mobile
users, and that simple heuristics provide near-optimal results
even in large-scale scenarios.

Keywords-Vehicular networks; network planning; maximum
coverage

I. INTRODUCTION

Vehicular Ad hoc NETworks (VANETs) are considered
one of the most promising areas of scientific research in
wireless networking. It should be pointed out that VANETs
share, and possibly exacerbate, the typical shortcomings of
ad hoc networks. Specifically: fleeting connectivity, rapidly
shifting topologies, highly dynamic traffic patterns, con-
strained node movements. In this paper, we try to provide
some answers to one of the recurring problems in vehicles-
to-infrastructure (V2I) communications, i.e., that of infor-
mation dissemination to passing vehicles. Assuming that an
area, served by roads of an arbitrary given topology, must be
equipped for information dissemination through the deploy-
ment of a limited number k of infrastructured nodes (e.g.,
IEEE 802.11 access points), what is the best deployment
strategy to maximize the dissemination of information?

In the following, we refer to the infrastructured nodes as
Dissemination Points (DPs), and, as a first step, we show
that road intersections are preferred locations to place DPs.
Then, we address two different cases. Firstly, we assume that
the information is just a small, self-contained item. A vehicle
will receive the information item if it gets in contact with a
DP at least once. Under this assumption, we are interested
in placing the DPs at k of the possible intersections so
as to maximize the number of vehicles that enter a DP
coverage area at least once; we therefore model our problem
as a Maximum Coverage Problem (MCP). Secondly, we

consider the case in which vehicle-to-DP contact times have
an impact on the dissemination process. In this case, we
give a different formulation for our problem, which aims at
favoring both the number of contacted vehicles as well as
the contact times. Both versions of the problem, however,
are NP-hard, thus we propose heuristic algorithms for their
solution and evaluate the performance of the heuristics by
considering a real-world urban environment and realistic
vehicular traces.

II. SYSTEM SCENARIO AND GOALS

We consider a urban road topology of area size equal to
A and including N intersections. We assume that each DP
has a dissemination range equal to R. Also, we denote by V

the number of vehicles that transit over the area A during a
given time period, hereinafter called observation period. Our
goal is to deploy k DPs so as to maximize either the number
of vehicles, among the possible V , served (i.e., covered) by
the DPs, or to favor both the number of covered vehicles
and the connection time between vehicles and DPs. This
significantly differs from other coverage problems, since

• the DPs deployed in the area do not have to necessarily
form a connected network or provide a continuous
coverage of the road topology: this is one of the major
differences from previous work on maximum graph
coverage [1] as well as on cellular and sensor wireless
networks (see e.g., [2]);

• vehicles may cross several intersections, thus they may
be covered (i.e., served) by more than one DP. When
contact time is taken into account, this aspect makes
existing generalizations of the MCP unsuitable to our
problem.

III. SELECTING THE LOCATION TYPE

The evaluation of where on a road to deploy the DPs is an
important first step in designing an efficient dissemination
system for vehicular environments. To this end, we simulate
a realistic vehicular mobility over a simple road topology,
and measure the potential for information dissemination of
an individual DP, deployed at first in the intermediate point
of a road segment, and then at an intersection ending the
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Figure 1. CDF of the number of vehicles within range of the DP (left)
and of the time spent by vehicles within range of the DP (right), with
R = 50 m and for different vehicle densities

same street. The vehicles movement is simulated with Vanet-
MobiSim [3], using the IDM-LC model, which reproduces
car-to-car interactions, stopping, braking and acceleration
phenomena in presence of traffic lights at road junctions
and overtakings, as observed in real world [4].

We considered different vehicular lane densities, ranging
between 5 and 20 vehicles/km. The potential for dissemina-
tion is evaluated in terms of number of concurrent vehicle-
to-DP contacts and of time spent by each vehicle within the
DP’s dissemination range R: a higher number of vehicles, as
well as longer dwelling times, correspond to a higher poten-
tial for information dissemination, as more users can receive
larger portions of the content provided by the DP. Fig. 1
depicts the Cumulative Density Function (CDF) of such two
metrics, when the DP is positioned along the road or at
the intersection, with varying vehicular densities. It can be
observed that the car density has a negligible impact on the
time that vehicles spend within DP’s dissemination range,
while it strongly impacts the number of vehicles in that
same area. In both cases, however, deploying the DP at the
intersection leads to better results, since more vehicles travel
through the dissemination area, spending there a longer
time. We also analyzed the effect that different DP ranges
have on the dissemination performance. Fig. 2 portrays the
same metrics studied before, for several values of R. The
dissemination range significantly affects both CDFs, with
larger ranges clearly providing better performance. In any
case, deploying the DP at the intersection yields again more
favorable properties than positioning it along the road, for
any value of R.

According to these results, intersections prove to be much
better locations than road segments for the deployment of
DPs, in terms of information dissemination potential.

IV. DEPLOYMENT ALGORITHMS

As stated before, we consider two cases, accounting for
(i) only the number of vehicles that get in contact with DPs,
and (ii) both the number of served vehicles and the vehicle-
to-DP contact times.
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Figure 2. CDF of the number of vehicles within range of the DP (left)
and of the time spent by vehicles within range of the DP (right), with a
vehicular lane density of 10 vehicles/km and for different DP dissemination
ranges

A. Maximizing contacts

Our goal is to maximize the number of vehicles covered
by k DPs. Based on the above results, we constrain ourselves
to considering only the N intersections located in the road
topology as possible locations for a DP. In particular, by
analyzing the vehicular mobility in the selected area, we
define an N × V matrix P whose generic element is given
by

Pij =

⎧⎨
⎩

1 if vehicle j crosses intersection i

during the observation period
0 otherwise

(1)

It is worth pointing out that the use of matrix P requires
that the identity of each vehicle be known so that it can be
tracked across all intersections.

We model the problem as a Maximum Coverage Problem
(MCP), which can be formulated as follows. We are given
a collection of sets S = {S1, S2, . . . , SN}, where Si is a
subset of a given ground set X = {x1, . . . , xV }. The goal
is to pick k sets from S to maximize the cardinality of
their union. To better understand the correspondence with
our problem, consider that the elements in X are the vehicles
that transit over the considered road topology during the
observation period. Also, for i = 1, . . . , N we have

Si = {xj ∈ X, j = 1, . . . , V : Pij = 1} (2)

i.e., Si includes all vehicles that cross intersection i at
least once over the observation period. Thus, by solving the
above problem, we obtain the set of k intersections where
a DP should be placed so as to maximize the number of
covered vehicles.

Unfortunately, the MCP problem is NP-hard; however,
it is well known that the greedy heuristic achieves an
approximation factor of 1 − (1 − 1

m
)m, where m is the

maximum cardinality of the sets in the optimization domain
[5]. We report the greedy heuristic below.

1) The greedy algorithm: The greedy heuristic (here-
inafter also called MCP-g) picks at each step a set (i.e.,
an intersection) maximizing the weight of the uncovered
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elements. Let us introduce an auxiliary set G. Let G ⊆ S
be a collection of sets and Wi (i = 1, . . . , N ) be the
number of elements covered by Si, but not covered by any
set in G. The steps of the greedy heuristic are reported in
Algorithm 1. Note that, although such algorithm provides a
very good approximation of the optimal solution, it requires:
(i) global knowledge of the road topology and network
system, (ii) the identity of the vehicles which have crossed
the N intersections during the observation period.

Algorithm 1 The MCP-g heuristic
Require: k, P, S

1: G ← ∅, C ← 0, U ← S
2: Wi =

∑V

j=1
Pij , i = 1, . . . , N

3: repeat
4: Select Si ∈ U that maximizes Wi

5: G ← G ∪ Si

6: C ← C + 1
7: U ← U \ Si

8: Wi =
∑V

j=1

j:xj �∈G

Pij , i = 1, . . . , N

9: until C = k or U = ∅

Below, we propose i) a hierarchical algorithm which
reduces the computational complexity by applying the divide
et impera approach, and ii) a different problem formulation
where the knowledge of the vehicles identity is not needed.

2) The subzone algorithm: We superimpose an overlay
grid with cells of arbitrary, equal size on our road topology.
We name a cell as subzone and denote the number of sub-
zones by B = 2L (with L ∈ N1). We define a hierarchical
structure consisting of L+1 levels, such that, at the generic
level l (l = 0, . . . , L), the unit area includes 2L−l subzones.
We start by solving the maximum coverage problem in each
subzone (i.e., l = 0), and we find the optimum location of
k0 DPs in every overlay grid. Then, at each step l ≥ 1, we
divide the area of the grid into 2L−l subzones, each twice
the size of a single subzone at the previous step, and we
select kl intersections among the ones that were chosen at
step l − 1. We repeat the procedure till the subzone area
coincides with the area of the overlay grid (i.e., l = L).
The subzone heuristic, hereinafter also called MCP-sz, is
reported in Algorithm 2.

Note that the value of kl can be set so as to limit the
number of intersections selected within each subzone at step
l (l = 0, . . . , L). As an example, for k � N , we found that
the algorithm can be efficiently run by fixing kl = k, ∀l. For
larger values of k, instead, setting kl = 
 k

2L−l � + 2L−l − 1
allows the selection of at least k

2L−l per subzone, i.e., k

intersections in the whole area, plus some extra intersections
per subzone (2L−l − 1). The benefit of such redundancy
is twofold: it allows us to better approximate a centralized
solution, and its impact is limited since the number of

Algorithm 2 The MCP-sz heuristic

Require: k, P, S, 1 < B = 2L

1: S ′ ← S
2: for l = 0 to L do
3: Divide the road topology into 2L−l cells of equal size
4: for m = 1 to 2L−l do
5: Solve the MCP in the m-th subzone, by taking S ′

as input set and kl as the number of DPs to deploy
6: Remove from S ′ the unselected intersections
7: m ← m + 1
8: end for
9: l ← l + 1

10: end for

extra intersections reduces exponentially at each step of the
procedure till it reaches 0 at the last round (i.e., l = L).

As a last remark, the value of B can be determined so
as to limit the number of candidate intersections that are
selected at each round (hierarchical level) of the procedure.
In particular, given k0, the number of intersections selected
in the first round (l = 0) must be less than or equal to the
number of existing intersections, i.e.,

Bk0 ≤ N (3)

Since B = 2L, from (3), it is possible to derive a value
for L and, thus, for the number of levels that avoids useless
iterations, i.e., to consider too fine grids which do not yield
any selection of intersections.

3) Unknown vehicles identity: Here we assume that the
vehicles identity is not recorded and the only available infor-
mation is the number of different vehicles that have crossed
each of the N intersections during the observation period.
Thus, our objective becomes the maximization of the total
number of service opportunities provided by k DPs. To this
end, let νi, i = 1, . . . , N , be the total number of vehicles that
have crossed intersection i during the observation period,
i.e.,

νi =
V∑

j=1

Pij i = 1, . . . , N (4)

We then model the problem as a 0-1 Knapsack Problem
(KP), which is defined as follows [6]. We are given a bag
and a set of N items I = {I1, . . . , IN}. Each item Ii ∈ I
has a non-negative value and a non-negative weight, and the
maximum weight that we can carry in the bag is equal to k.
The objective is to select a subset of items I ′ ⊆ I whose
weight does not exceed k and that maximizes the overall
value of the bag. Each item must only be selected once.
To better understand the correspondence with our problem,
consider that the elements in I are the intersections; each
intersection i has a weight equal to 1 and a value equal to
νi (i = 1, . . . , N ). Thus, our problem can be formulated as,
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max

N∑
i=1

νiyi (5)

s.t.

N∑
i=1

yi ≤ k; yi ∈ {0, 1} ∀i (6)

The 0-1 KP is an NP-hard problem in general, however
in our case, where all intersections have the same weight,
it can be solved in polynomial time by simply sorting the
intersections in decreasing order by their value, and selecting
the first k intersections. We name this algorithm KP-P.

In Section V-B, we present the deployment and cover-
age performance obtained by solving the MCP by brute
force and through the greedy algorithm (MCP-g), compared
against the cases where the hierarchical approach is used
(MCP-sz) and where vehicles identity are not available (KP-
P).

B. Maximum coverage and contact times

Here we address our second case, where k DPs have to
be deployed at the road intersections so as to favor both the
number of covered vehicles, as well as the time for which
they are covered. To this end, let us define an N ×V matrix
T whose generic element, Tij represents the total time that
vehicle j would spend under the coverage of a DP if the DP
were located at intersection i, i.e., the contact time between
a vehicle j and a DP located at intersection i. Then, we
formulate the following problem, which we name Maximum
Coverage with Time Threshold Problem (MCTTP): given k

DPs to be deployed, we aim at serving as many vehicles as
possible, for (possibly) at least τ seconds each, i.e.,

max
V∑

j=1

[
min

(
τ,

N∑
i=1

Tijyi

)]
(7)

s.t

N∑
i=1

yi ≤ k; yi ∈ {0, 1} ∀i (8)

Note that in (7) we place a DP at an intersection so as
to maximize the number of vehicles that are covered, taking
into account a vehicle’s contact time up to a maximum value
equal to τ : DPs that provide coverage for at least τ seconds
to a given vehicle do not further contribute to the overall
gain of covering such a vehicle. The constraint in (8) instead
limits the number of DPs to k. It can be easily verified
that the MCP is a particular case of the above formulation,
obtained by setting τ = 1 and Tij = Pij . Hence, MCTTP
is NP-hard and we propose the following heuristic for its
solution.

1) A greedy approach: The greedy algorithm we propose
to solve the MCTTP problem, denoted by MCTTP-g, picks
an intersection at each step so as to maximize the provided

coverage time, although only the contribution due to vehicles
for which the threshold τ has not been reached is considered.

Let G ⊆ S be a collection of sets and let now Wi (i =
1, . . . , N ) be the total contact time provided by intersection
i, considering for each vehicle a contribution such that the
vehicle’s coverage time due to G ∪ Si does not exceed the
threshold τ . The greedy heuristic is reported in Algorithm 3.

Algorithm 3 The MCTTP-g heuristic
Require: k, T, τ , S

1: G ← ∅, C ← 0, U ← S
2: tj = 0, j = 1, . . . , V

3: repeat
4: Wi =

∑V

j=1
min(τ − tj ,Tij), i = 1, . . . , N

5: Select Si ∈ U that maximizes Wi

6: G ← G ∪ Si

7: C ← C + 1
8: U ← U \ Si

9: tj = min(τ, tj + Tij), j = 1, . . . , V

10: until C = k or U = ∅

Again, we notice that the time-threshold heuristic requires
knowledge of the global road topology and of the vehicles
identity. Likewise for the MCP, we present a time-subzone
algorithm, which adopts the divide et impera approach and
a 0-1 KP, for which knowledge of the vehicles’ identity is
not necessary.

2) The time-subzone algorithm: As done in Sec-
tion IV-A2, we divide the road topology in B = 2L cells,
called subzones, and we apply the time-subzone heuristic
(MCTTP-sz) whose steps are reported in Algorithm 4.

Algorithm 4 The MCTTP-sz heuristic

Require: k, T, S, 1 < B = 2L

1: S ′ ← S
2: Divide the road topology in B cells of equal size
3: for l = 0 to L do
4: for m = 1 to 2L−l do
5: Solve the MCTTP in the m-th subzone, by taking

S ′ as input set and kl as the number of DPs to
deploy

6: Remove from S ′ the unselected intersections
7: m ← m + 1
8: end for
9: l ← l + 1

10: Merge each pair of adjacent subzones so as to obtain
2L−l subzones

11: end for

3) Unknown vehicles identity: When the vehicles’ iden-
tities are not available, the only information we have is the
total time that all vehicles would spend under the coverage
of a DP if it were located at intersection i, i.e.,
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Ti =
V∑

j=1

Tij i = 1, . . . , N (9)

Thus, in this case we want to maximize the total contact
(service) time offered to the vehicles, when k DPs are
deployed. Again, the problem can be formulated as the
following 0-1 KP. We are given a set of N intersections
(items) I = {I1, . . . , IN}; each intersection has a value Ti

and unitary weight, and the maximum number of selected
intersections (maximum weight) must be equal to k. The ob-
jective is to select a subset of k intersections that maximizes
the overall service time provided to the vehicles, i.e.,

max

N∑
i=1

Tiyi (10)

s.t.

N∑
i=1

yi ≤ k; yi ∈ {0, 1} ∀i (11)

As already mentioned, the above problem can be solved in
polynomial time by using the simple algorithm reported in
Section IV-A3. We refer to this solution, which requires the
knowledge of the Ti coefficients (i = 1, . . . , N ), as KP-T.

The performance of the brute force solution of the
MCTTP problem are presented in Section V-C, together with
those of its greedy (MCTTP-g), subzone (MCTTP-sz), and
no-identity (KP-T) heuristics.

V. PERFORMANCE EVALUATION

We applied the algorithms presented in the previous sec-
tions to a real-world road topology, in presence of realistic
vehicular mobility. The resulting DP deployments were then
evaluated in terms of information dissemination capabilities.

A. Scenario

For our performance evaluation, we set the dissemination
range of every DP to 100 m and we selected a real-world
road topology from the canton of Zurich, in Switzerland.
Realistic traces of the vehicular mobility in such region are
available from the Simulation and Modelling Group at ETH
Zurich [7]. These traces describe the individual movement of
cars through a queue-based model calibrated on real data [8]:
they thus provide a realistic representation of vehicular
mobility at both microscopic and macroscopic levels. The
road topology we considered is a 100 km2 portion of the
urban and suburban area of the city of Zurich, a map of
which can be found in the plots of Fig. 4. We extracted
an hour and a half of vehicular mobility, in presence of
average traffic density conditions, during which more than
70000 cars travel within the selected area.

In order to remove partial trips (i.e., vehicular movements
starting or ending close to the border of the square area), we
filtered the trace, by removing cars that traverse only three
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Figure 3. Ratio of vehicles experiencing at least one contact with a
DP versus the number k of DPs deployed, for different algorithms that
maximize contacts

intersections or less, as well as those spending less than one
minute in the considered region.

B. Maximizing contacts

In the scenario described above, we first run the deploy-
ment algorithms for contact maximization presented in Sec-
tion IV-A. The selected settings for the MCP-sz algorithm
were L=4, kl=k. Also, in order to provide a lower-bound
benchmark to the performance of the schemes, we also test
a random deployment, that ignores the vehicular mobility
information and whose outcome results from averaging
multiple tests over the same road topology. The coverage
ratio, i.e., the number of vehicles that experience at least one
contact with a DP over the total number of vehicles in the
scenario, is shown in Fig. 3. For each deployment algorithm,
the ratio is recorded versus the number of allowed DPs k.
Three different behaviors can be distinguished.

The first is that of the random algorithm, which, lacking
all information on the movement of vehicles, performs
poorly: it cannot provide one contact or more per vehicle
even when a large number of DPs is deployed (we stress
that 26 DPs occupy roughly one third of the intersections in
the road topology under study).

The second behavior is that of the KP scheme, which has
only partial knowledge of the vehicular mobility, since it
accounts for vehicular densities at intersections but neglects
the mobility between them. The KP algorithm performs
better than the random one, although its absolute result still
has wide margins for improvement. As a matter of fact, the
curve gets close but does not reach a coverage ratio equal
to one, even when 26 DPs are employed.

The third behavior is that shown by the remaining al-
gorithms: the brute force solution to the MCP, the greedy
solution, and the subzone solution. The common point to
these algorithms is that they all exploit full knowledge of
the vehicles identity and mobility over the road topology. It
is interesting to notice how both the greedy and the subzone
schemes almost overlap with the optimal solution, and thus
provide an excellent result in terms of information dissem-
ination. Also, we stress that the difference with respect to

158



 0

 2

 4

 6

 8

10

 0  2  4  6  8 10

y 
(k

m
)

x (km)

 0

 2

 4

 6

 8

10

 0  2  4  6  8 10

y 
(k

m
)

x (km)

(a) MCP

 0

 2

 4

 6

 8

10

 0  2  4  6  8 10

y 
(k

m
)

x (km)

 0

 2

 4

 6

 8

10

 0  2  4  6  8 10

y 
(k

m
)

x (km)

(b) MCP-g

 0

 2

 4

 6

 8

10

 0  2  4  6  8 10

y 
(k

m
)

x (km)

 0

 2

 4

 6

 8

10

 0  2  4  6  8 10

y 
(k

m
)

x (km)

(c) MCP-sz

 0

 2

 4

 6

 8

10

 0  2  4  6  8 10

y 
(k

m
)

x (km)

 0

 2

 4

 6

 8

10

 0  2  4  6  8 10

y 
(k

m
)

x (km)

(d) KP-P

Figure 4. Deployments of DPs obtained with different algorithms maximizing contacts over the Zurich road topology, for k = 6

the KP algorithm is extremely high, since the greedy and
subzone schemes cover 90% of vehicles with just 6 DPs
(accounting for 7% of the available intersections), and 99%
of vehicles with 12 DPs (14% of intersections).

Further insight in the different behaviors is provided in
Fig. 4. The figure shows the actual positions of the DPs over
the road topology1, when k = 6, for the MCP, MCP-g, MCP-
sz, and KP-P formulations. There, it can be observed how the
greedy algorithm results in a solution that is nearly identical
to the optimal one, whereas the subzone solution is less
similar to the optimal, but still close to it. The reason is that
the hierarchical approach trades the reduction in complexity
for optimality, and can take suboptimal decisions during
initial iterations. However, the final result is still very close
to that obtained by solving the MCP by brute force. On
the contrary, the deployment achieved by the KP algorithm
is noticeably different, as DPs tend to be gathered in a
same area, characterized by high vehicular traffic density.
By summarizing the results, we can conclude that:

1) knowledge of vehicular trajectories is the discriminat-
ing factor in achieving an optimal deployment of DPs;

2) when exploiting such a knowledge, even a simple,
hierarchical solution, such as the subzone algorithm
can lead to near-optimal results in real-world road
topologies of tens of km2;

3) exploiting these properties it is possible to inform a
high percentage of vehicles by deploying DPs at a
small percentage of intersections.

C. Maximizing coverage and contact times

Taking into account the time dimension, we increase the
complexity of the problem, by maximizing coverage and
contact times between vehicles and DPs. A random deploy-
ment is again employed to benchmark the performance of
the algorithms we introduced in Section IV-B.

The coverage ratio achieved by the different schemes as
the number of deployed DPs k varies is depicted in the
left plot of Fig. 5, for a time threshold value τ = 30s.
Exactly as observed in the previous section, also in this
case information on vehicular mobility plays a major role

1The light blue dots are used to mark the DPs’ position, their size is not
related to the DP’s dissemination range.
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Figure 5. Coverage ratio versus the number k of DPs deployed, for τ=30s
(left) and coverage time CDF, for τ=30s and k=6 (right)

in favoring contacts among vehicles and DPs. As a matter
of fact, the random solution performs poorly, while the KP-
T algorithm provides a better coverage of vehicles. The
MCTTP, MCTTP-g, and MCTTP-sz solutions, leveraging
their knowledge of cars trajectories, guarantee the highest
coverage and tend to perform similarly.

Fig. 5 also reports, in the right plot, the distribution of
the coverage time, i.e., the amount of time that each vehicle
spends within range of DPs during its trip in the considered
scenario. The figure refers to the case in which 6 DPs are
deployed over the road topology, and τ is set to 30s, as
remarked by the vertical threshold line in the plot. The time
coverage goal is to maximize the number of vehicles that
spend τ seconds or more under coverage of DPs: it translates
into the CDF curve crossing τ at the lowest possible point.

When comparing the two plots in Fig. 5, we can notice
that MCTTP and MCTTP-g provide a matching perfor-
mance, which is superior to those achieved by the other
schemes. Indeed, a random deployment of DPs induces both
a lower number of vehicle-to-DP contacts and a shorter
coverage time with respect to MCTTP and MCTTP-g. The
KP-T solution leads to a slightly better performance in terms
of coverage time (2% more cars covered for at least τ

seconds), which is however paid at a high coverage ratio
cost (more than a 10% reduction in covered cars). The
MCTTP-sz algorithm instead allows a 5% increase in car-
to-DP contacts, but the 30s coverage threshold is reached by
15% less vehicles. Similar behaviors can be observed also
for different values of the τ threshold. In Fig. 6, τ is set to
60s, and we can observe that the random and KP-T schemes
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Figure 6. Coverage ratio versus the number k of DPs deployed, for τ=60s
(left) and coverage time CDF, for τ=60s and k=6 (right)
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Figure 7. Coverage ratio versus the number k of DPs deployed (left) and
coverage time CDF, for k=6 (right)

still perform worse than MCTTP and its greedy and subzone
heuristics.

The relationship of the τ -dependent schemes from τ is
studied in Fig. 7. There, we focus on MCTTP-g, since
the other algorithms showed similar behaviors, and evaluate
it as τ ranges between 5 and 120 seconds. The coverage
ratio, in the left plot of Fig. 7, shows how the MCTTP-g
solution falls in between those obtained with an algorithm
that maximizes vehicle-to-DP contacts, i.e., MCP-g, and
with one that maximizes the overall coverage time, i.e.,
KP-T. In particular, for low values of τ , MCTTP-g tends
to MCP-g, since the time constraint is easily satisfied (a
contact with a single DP is often sufficient to reach the
desired coverage time) and the algorithm can thus focus on
maximizing the coverage. On the other hand, when τ is
high, MCTTP-g tends to KP-T, since the desired coverage
time is seldom reached, and thus the same vehicles keep on
contributing to the optimization: the focus of the algorithm
then shifts onto coverage times.

This is confirmed by the coverage time CDFs, on the right
plot of Fig. 7, where the same behavior of the MCTTP-
g algorithm is observed, as τ varies. It can be however
noted how MCTTP-g with τ=5s matches MCP-g in terms
of coverage ratio, but outperforms it in terms of coverage
time. Similarly, MCTTP-g with τ=120s matches KP-T as
far as the coverage time is concerned, but provides a better
coverage ratio. The combined maximization of contacts
and coverage time can thus achieve better performance
than contacts-only or time-only driven solutions even in

borderline conditions.
Summarizing, we can draw the following conclusions:

• also when maximizing contacts and coverage time,
simple, hierarchical solutions that exploit knowledge
of vehicular mobility can lead to quasi-optimal results
over large-scale road topologies;

• the coverage time threshold τ can be used to cali-
brate the deployment so that it is preferably driven by
vehicle-to-DP contacts or by coverage time.

VI. CONCLUSION

We proposed a maximum coverage approach to the prob-
lem of information dissemination in vehicular networks. The
formulations and relative heuristics we presented tackle both
the case in which maximizing vehicle-to-DP contacts is the
only goal, as well as the case in which coverage time is also
an important aspect to account for. We evaluated the different
solutions in a real world topology, showing that knowledge
of vehicular mobility is the main factor in achieving an
optimal deployment of DPs. Our results also prove that,
given such knowledge, simple heuristics can be successfully
employed to plan a deployment capable of informing more
than 95% of vehicles with a few DPs.
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