RESUM

Al llarg d’aquest treball es tracta la incidència que ha tingut la Directriu Seveso II en els estats membres de la Unió Europea. Aquesta normativa fa referència a la prevenció i a la limitació de les conseqüències dels anomenats accidents majors, aquells esdeveniments que poden classificar-se com a de risc molt greu tant per a les persones com per al medi ambient.

Seguint aquesta pauta, durant el treball es defineixen els tipus d’accidents majors —que són les explosions, els incendis i les fuites de substàncies tòxiques— i s’hi indiquen les seves característiques.

Per una altra banda, mitjançant les bases de dades MHIDAS (Major Hazard Incident Data Service) i ARIA (Analysis, Research and Information on Accidents) es realitza una anàlisi històrica dels diferents estats membres de la Unió Europea dels què se’n disposen dades establint així una relació entre l’entrada en vigor de la Directriu Seveso II al 1996 i la disminució paulatina del nombre d’accidents i del nombre d’afectats per aquests. Una anàlisi d’aquest tipus no havia estat efectuada fins ara.

Tot i obtenir aquests resultats favorables, es pot concloure que és necessari que existeixi una continuació d’aquest treball que es fa tant per part de la Unió Europea com dels estats membres i de les seves pròpies indústries per tal de seguir prevenint que els accidents major succeeixin i aconseguir que puguin quedar definits com a incidents de conseqüències mínimes. És per això que s’ha de mantenir l’estudi en la Directriu Seveso II i les seves futures actualitzacions més restrictives.

D’una manera específica es fa incidència en un dels accidents majors més importants, les explosions, concretant en aquelles que succeeixen en atmosferes inflamables. Se’n defineixen les seves característiques, tipus, efectes i conseqüències.

L’ona de sobrepressió — una ona d’expansió a una pressió superior a l’atmosfèrica — és el seu efecte principal. Aquesta vendrà determinada per la velocitat a la que es produeixi l’explosió, diferenciant així els dos tipus d’explosió: la detonació, produïda a alta velocitat, i la deflagració, causada a baixa velocitat. Per tal d’estimar la magnitud de l’ona de sobrepressió s’empren dos mètodes diferenciats: el mètode del TNT equivalent (per a explosions en atmosferes no confinades) i el mètode de multi-energia (per a explosions en atmosferes confinades).

Un cop coneguts els seus efectes, s’estudien les seves conseqüències tant a nivell humà com a nivell estructural des del trencament de finestres o de timpans fins a la demolició d’un edifici o el trencament de la caixa pulmonar.
Incidència dels accidents majors a la Unió Europea. Anàlisi del cas de les explosions d’atmosferes inflamables.
6.2. Influència de la Directriu Seveso II a Holanda .. 35
6.3. Influència de la Directriu Seveso II al Regne Unit 39

7. EXPLOSIONS: TIPUS I CARACTERÍSTIQUES .. 43
7.1. Característiques de les explosions ... 43
7.2. Tipus d’explosions ... 44
7.2.1. La transició deflagració – detonació (DDT) ... 45
7.3. Característiques de l’ona de sobrepressió .. 46
7.3.1. Detonacions .. 46
7.3.2. Deflagracions ... 48
7.4. Explosions de núvols de vapor (VCE) ... 49
7.4.1. Explosions de vapor confinades ... 51
7.4.2. Explosions de vapor parcialment confinades ... 53
7.4.3. Explosions de vapor no confinades ... 53

8. MÈTODES D’ESTIMACIÓ DELS EFECTES D’EXPLOSIONS DE NÚVOLS DE GAS O VAPOR 55
8.1. Mètode del TNT equivalent – Explosions no confinades 55
8.1.1. Exemple de resolució ... 58
8.2. Mètode de multi-energia – Explosions confinades 59
8.2.1. Exemple de resolució ... 61
8.3. Avaluació de la dispersió i explosió del núvol inflamable 62

9. ESTUDI DE LA VULNERABILITAT A LES EXPLOSIONS 64
9.1. Anàlisi probit – Conseqüències sobre persones 64
9.1.1. Exemple de resolució ... 70
9.2. Vulnerabilitat estructural .. 71
9.2.1. Exemple de resolució ... 73

10. EXPLOSIONS HISTÒRIQUES .. 74
10.1. Flixborough

10.1.1. El procés i la planta

10.1.2. Esdeveniments previs a l’explosió

10.1.3. L’explosió

10.2. Pasadena

10.2.1. El procés i la planta

10.2.2. Esdeveniments previs a l’explosió

10.2.3. L’explosió

11. CONCLUSIONS

AGRAÏMENTS

BIBLIOGRAFIA
1. **GLOSSARI**

- α: Paràmetre de decaliment de la pressió (-)
- c_0: Velocitat del so en condicions atmosfèriques (m/s)
- d: Distància al lloc de l’explosió (m)
- E: Energia alliberada en la combustió (J)
- E_{TNT}: Energia alliberada en una explosió de TNT (kJ/kg)
- ΔH_c: Calor de combustió (kJ/kg)
- K_G: Índex de deflagració (-)
- i: Impuls de l’explosió (kg · m/s)
- LFL: Limit inferior d’inflamabilitat (%vol)
- η: Rendiment mecànic de l’explosió (-)
- η_c: Rendiment de la combustió (-)
- P: Probabilitat en l’anàlisi probit (-)
- $P_{màx}$: Sobrepressió estàtica màxima (Pa)
- $P_{r.màx}$: Sobrepressió de reflexió màxima (Pa)
- P_s: Sobrepressió normalitzada (-)
- ΔP_s: Pic de sobrepressió (Pa)
- $\Delta \bar{P}_s$: Pic de sobrepressió adimensional (-)
- P_0: Pressió atmosfèrica (Pa)
- Q: Pressió dinàmica màxima (Pa)
- ρ_c: Densitat del combustible (kg/m3)
- R: Distància normalitzada (-)
- T_{eb}: Temperatura d’ebullició (ºC)
- T_{fl}: Temperatura d’inflamació (ºC)
<table>
<thead>
<tr>
<th>Variable</th>
<th>Descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_a</td>
<td>Temps d’arribada (s)</td>
</tr>
<tr>
<td>t_+</td>
<td>Temps en fase positiva (s)</td>
</tr>
<tr>
<td>\bar{t}_+</td>
<td>Temps en fase positiva adimensional (-)</td>
</tr>
<tr>
<td>t_-</td>
<td>Temps en fase negativa (s)</td>
</tr>
<tr>
<td>U</td>
<td>Velocitat de l’ona de xoc (m/s)</td>
</tr>
<tr>
<td>UFL</td>
<td>Limit superior d’inflamabilitat (%vol)</td>
</tr>
<tr>
<td>V</td>
<td>Dosi (variable causativa) (1)</td>
</tr>
<tr>
<td>V</td>
<td>Volum del recipient (m3)</td>
</tr>
<tr>
<td>V_{conf}</td>
<td>Volum confinat (m3)</td>
</tr>
<tr>
<td>V_{obst}</td>
<td>Volum obstruït per objectes (m3)</td>
</tr>
<tr>
<td>W_c</td>
<td>Massa de combustible involucrat en l’explosió (kg)</td>
</tr>
<tr>
<td>W_{TNT}</td>
<td>Massa de TNT equivalent (kg)</td>
</tr>
<tr>
<td>Y</td>
<td>Població vulnerable (-)</td>
</tr>
<tr>
<td>z</td>
<td>Distància escalada (-)</td>
</tr>
</tbody>
</table>

1 Depenent de la variable causativa tindrà unitats diferents
2. PREFACI

Aquest treball està dedicat a eixamplar els coneixements generals relatius als accidents majors; més concretament, a les explosions d’atmosferes inflamables. A més a més, s’hi destaca l’interès personal per desenvolupar una conclusió, favorable en principi, referent a la implantació de la normativa europea Seveso II dedicada essencialment a la prevenció dels accidents majors. És indubtable que el desenvolupament industrial i tecnològic ha impлицat una millora molt important a nivell de vida de les societats industrialitzades. Cal reconèixer, però, que en la indústria —sectors energètic i químic, per exemple— han aparegut una sèrie de perills que no s’havien conegut abans.

L’impacte mediambiental, normalment associat a l’estat estacionari, n’és un bon exemple àmpliament conegut. Hi ha, però, un aspecte molt menys conegut però no per això menys important, especialment per a la població: l’impacte ambiental accidental, que ha provocat —i segueix provocant— situacions amb greus conseqüències; i és aquest impacte accidental l’objectiu del present Treball de Fi de Grau.

2.1. Origen del treball

L’origen del treball ha estat el contacte amb el Centre d’Estudis del Risc Tecnològic (CERTEC) del Departament d’Enginyeria Química i amb els projectes que s’hi estan duent a terme. Això, juntament amb els temes vistos anteriorment en l’assignatura Tecnologia del Medi Ambient, m’han fet veure la importància que la seguretat i —complementàriament— l’anàlisi i la reducció del risc tenen en una societat industrialitzada com la nostra. En aquest sentit, l’estudi dels denominats “accidents majors” (explosions, incendis i fuites tòxiques) és un dels aspectes essencials, juntament amb l’existència i compliment de determinada legislació que té per objectiu el control d’aquests accidents. Aquest treball pretén doncs analitzar la possible repercussió d’una de les normatives més importants a la UE, la Directriu 96/82/EC, també coneguda com a “Directriu Seveso” i, alhora, estudiar les principals característiques d’un dels tipus d’accidents majors més importants, les explosions d’atmosferes inflamables.

2.2. Motivació del treball

Una primera motivació per a realitzar aquest treball s’ha inspirat en les efemèrides que envoltaven la normativa europea de prevenció d’accidents majors. Per una banda, el 40è aniversari de l’accident de Seveso (1976-2016) i, per altra, el 20è aniversari de la implantació de la Directriu Seveso II —que substituïa la versió inicial Seveso I—.

Un altre factor que m’ha motivat a escollir aquest tema ha estat, com ja s’ha esmentat en l’apartat anterior, la constatació de la importància del risc associat als accidents majors i la necessitat d’ampliar i millorar el coneixement dels mateixos.
3. **INTRODUCCIÓ**

La prevenció d’accidents en la indústria ha estat, des de sempre, un motiu d’estudi en el camp de l’anàlisi i la reducció de riscos. L’objectiu principal d’aquests estudis ha estat i és reduir el nombre d’accidents el màxim possible i minimitzar les conseqüències dels que es puguin produir. Per dur a terme aquesta tasca, s’han impulsat diverses normatives i directrius per part dels governs de diferents països arreu del món. La qüestió què s’ha de plantejar, però, és si de veritat totes aquestes mesures que es prenen són efectives i si realment tenen algun efecte en la freqüència d’accidents que es produeixen.

És per això que en la primera part d’aquest treball s’han emprat bases de dades d’accidents per tal de realitzar una anàlisi històrica en els estats membres de la Unió Europea, per a determinar quina influència ha tingut l’aplicació d’una directriu referent a les instal·lacions industrials en el nombre d’accidents greus ocorreguts. Les conclusions desitjades d’aquest estudi, per tant, són trobar relacions favorables entre la normativa europea i una disminució del número d’accidents.

A més a més, s’ha consultat una àmplia bibliografia relacionada amb l’anàlisi i la reducció dels riscos en la indústria química, incidint sobretot en els efectes i les conseqüències de les explosions d’atmosferes inflamables. Aquestes són considerades com un dels accidents més comuns i més greus que poden succeir en les indústries químiques a causa dels múltiples danys que poden provocar.

3.1. **Objectius del treball**

Els objectius del treball queden definits de la manera següent:

- Definir els accidents majors i conèixer les seves característiques.
- Aprofundir en la directriu europea Seveso II així com en l’accident que va provocar la seva instauració.
- Estudiar la influència de la normativa Seveso II en els accidents ocorreguts en l’últim mig segle en els estats membres de la Unió Europea.
- Aprofundir els coneixements de les explosions incidint en les explosions de gas o vapor.
- Determinar els efectes de les explosions de gas o vapor mitjançant el mètode del TNT equivalent i el mètode multi-energy.
- Estudiar les conseqüències de les explosions de gas o vapor en les persones i en les estructures utilitzant l’anàlisi probit.
3.2. Abast del treball

La part teòrica d’aquest treball es basa essencialment en l’estudi de les explosions de vapor: les seves característiques, els mètodes d’estudi dels seus efectes i conseqüències i l’exemplificació d’aquestes en la vida real a través d’algunes explosions històriques representatives. No es contemplen altres tipus d’explosions però sí que es fa una petita introducció als altres tipus d’accidents majors (incendis i fuites), per tal d’establir una mínima base teòrica al parlar d’ells posteriorment en l’anàlisi històrica.

La part pràctica, que es basa en l’anàlisi històrica dels accidents majors en diferents països, abasta únicament els estats membres de la Unió Europea, dels quals se n’ha obtingut informació en les bases de dades MHIDAS i ARIA. Aquest estudi fa referència a la Directriu Seveso II, tot i que per extensió també es parla de la seva versió prèvia (Seveso I) i la posterior (Seveso III).
4. **ELS ACCIDENTS MAJORS**

Es defineix un accident com un esdeveniment imprevist i incontrolat que altera el curs normal i que és capaç de produir danys. Quan un accident ocorre en la indústria química es parla de fuites, abocaments, incendis, explosions i altres incidents que majoritàriament inclouen substàncies perilloses. Quan la situació pot classificar-se de risc greu o de catàstrofe que involucra a les persones, al medi ambient i a béns materials s’anomena “accident major”.

A l’hora de realitzar un estudi generalitzat sobre els accidents que poden succeir en un indret o en determinades instal·lacions, se’n tenen en compte quatre tipus: l’abocament o pèrdua de contenció, els incendis, les fuites i les explosions. Tot i això, es classifiquen veritablement com a accidents majors els incendis, les fuites i les explosions, atès que sovint l’abocament o pèrdua de contenció és la primera fase dels mateixos o, en alguns casos, no acaba en accident pròpiament dit. En aquest capítol es definiran en diferents apartats els incendis i les fuites, ja que al llarg d’aquest treball es realitzarà una anàlisi dedicada essencialment als efectes i possibles conseqüències de les explosions.

L’abocament, al quedar descartat d’aquest grup d’accidents, destaca com a incident. Es defineix un incident com aquell tipus d’esdeveniment que provoca danys materials poc importants i que en cap moment representa un risc per a la instal·lació industrial i el seu entorn o per la població. Tot i això, al llarg d’aquest capítol es farà una menció especial a les pèrdues de contenció de substàncies perilloses.

4.1. **Abocament de substàncies perilloses**

L’abocament o pèrdua de contenció acostuma a ser la primera fase dels accidents majors. Es produeix, per tant, quan algun recipient que conté un líquid o un gas o vapor que pugui considerar-se d’alt risc per les seves característiques d’inflamabilitat i/o toxicitat, pateix una perforació, una esquerda o el trencament o col·lapse total. A partir d’aquest moment, el material abocat pot tenir conseqüències ben variades: des de dispersar-se sense produir cap mal fins a provocar un incendi o una explosió. A la Figura 4.1 i a la Figura 4.2 es mostren les possibles seqüències de successos a partir de la pèrdua de contenció d’una substància perillosa.

És important distingir entre un escapament instantani, provocat pel col·lapse del recipient, o un de semi-continu, causat per una esquerda o una perforació suficient petita per a què la duració del procés d’abocament sigui significativa. En el cas que sigui instantani es suposa que tot el fluid es pot dispersar immediatament —en cas que es tracti d’un gas o vapor— o bé que pot estendre’s pel sòl i evaporar-se posteriorment —si es tracta d’un líquid—. Si és un abocament semi-continu les condicions del recipient aniran canviant amb el temps (disminució de la pressió o del nivell del líquid, per exemple) tot i que, si és
un escapament petit és acceptable establir un estat pseudo-estacionari; és a dir, es suposen constants les condicions del recipient.

![Diagrama de sequències d'evolució](image)

Figura 4.1. Seqüències d'evolució a partir de l'abocament d'una substància perillosa [13]

L’estat físic del material que s’escapa és el factor més important a determinar en aquests incidents. En cas que l’abocament sigui bifàsic, és important conèixer les proporcions relatives de gas/vapor i líquid tot i que això no sempre és possible i, a més a més, pot canviar mentre es produeix l’abocament. Així doncs, en la descàrrega instantània part del líquid del recipient, sotmès sobtadament a la pressió i temperatura ambientals, pot experimentar una evaporació flash, que augmentaria considerablement la proporció de vapor. Per altra banda, la fase gas de la fuita podria patir una condensació parcial.

La Figura 4.2. mostra un conjunt de possibles accidents desenvolupats a partir d’una pèrdua de contenció i, a més a més, en mostra l’efecte principal i indica quins són els perills potencials de cada un dels accidents.
Incidència dels accidents majors a la Unió Europea. Anàlisi del cas de les explosions d’atmosferes inflamables.

Figura 4.2. Seqüències d’evolució de l’abocament d’una substància perillosa i els seus danys potencials
En quant a l’evolució del cabal de l’abocament al llarg del temps, la descàrrega pot seguir un dels camins que es mostren en la Figura 4.3. La corba 1 correspon a un abocament instantani: en un període de temps molt curt s’arriba al cabal màxim, seguit per una caiguda sobtada després del col·lapse del recipient. A la corba 2 hi ha un període de creixement fins que s’estableix un cabal màxim i després té lloc un decreixement gradual a causa de l’esgotament de la força impulsora. Si durant un cert temps el recipient es segueix alimentant a la mateixa velocitat que es consumeix, apareix un període de cabal gairebé constant, que dóna lloc a la corba 3. La corba 4 representa el cas en què l’obertura de la pèrdua de contenció va engrandint-se al llarg del temps.

![Figura 4.3. Possibilitats de variació del cabal descarregat en un abocament al llarg del temps](image)

Resumint, en qualsevol dels casos esmentats anteriorment la quantitat total que es perd del recipient pot ser menor, igual o major que la continguda inicialment; depenent de l’alçada de la perforació, de l’alimentació, de l’evolució de la grandària de l’esquerda o de la connexió a la planta o a un altre equipament, entre d’altres.

4.2. Incendis

Els incendis són els accidents majors més freqüents en la indústria química, seguits per les explosions i les fuites de substàncies tòxiques. Els elements essencials per a que es produeixi un incendi són el combustible, un oxidant o comburent i una font d’ignició. Un incendi és defineix, doncs, com una oxidació ràpida i exotèrmica d’un combustible encès. El combustible pot estar en qualsevol dels tres estats però normalment és més fàcil que s’encenguï un vapor o un líquid. Tot i això, la combustió sempre es produeix en la fase vapor; així doncs, els líquids han d’evaporar-se i els sòlids descompondre’s i volatilitzar-se abans que es produeixi la combustió.
La combustió és una reacció química en la que s’allibera energia a partir de l’oxidació d’una substància determinada. Aquesta es produeix si la composició de la mescla combustible-comburent es troba dins dels límits d’inflamabilitat i si aquesta mescla es troba en les condicions adequades per a la ignició. Els tres elements esmentats per produir un incendi poden esquematitzar-se tal i com es veu en la Figura 4.4 formant el “triangle de foc”. Per tant, si falta qualsevol d’aquests elements, l’incendi no podrà produir-se.

La combustió és una reacció química en la que s’allibera energia a partir de l’oxidació d’una substància determinada. Aquesta es produeix si la composició de la mescla combustible-comburent es troba dins dels límits d’inflamabilitat i si aquesta mescla es troba en les condicions adequades per a la ignició. Els tres elements esmentats per produir un incendi poden esquematitzar-se tal i com es veu en la Figura 4.4 formant el “triangle de foc”. Per tant, si falta qualsevol d’aquests elements, l’incendi no podrà produir-se.

La inflamabilitat es defineix com la facilitat amb la que una substància pot cremar en un comburent; el foc n’és una de les conseqüències visibles. Un combustible mesclat amb un oxidant necessiten trobar-se dins dels límits d’inflamabilitat: per damunt del límit inferior d’inflamabilitat, LFL (Lower Flammability Limit), i per sota del límit superior d’inflamabilitat, UFL (Upper Flammability Limit). Aquests s’expressen com a concentració de combustible (percentatge en volum) en una certa mescla de combustible a una determinada pressió i temperatura.

Els límits d’inflamabilitat depenen de les concentracions d’oxigen i de gasos inerts en la barreja. Quan augmenta la concentració d’oxigen i disminueix la de gasos inerts, augmenta l’UFL mentre que el LFL no varia pràcticament. Un altre dels paràmetres que afecten els límits d’inflamabilitat és la temperatura. A mesura que aquesta augmenta, l’interval entre els dos límits es va ampliant seguint les expressions següents:

\[
LFL^T = LFL^{25^{\circ}C} \cdot \left[1 - \frac{0.75 \cdot (T - 25)}{-\Delta H_c} \right]
\]

\[
UFL^T = UFL^{25^{\circ}C} \cdot \left[1 - \frac{0.75 \cdot (T - 25)}{-\Delta H_c} \right]
\]

on \(T \) és la temperatura a la que es vol calcular el límit d’inflamabilitat (ºC).
En l’apartat 7.4 es pot trobar una petita explicació complementària a aquesta que mostra el càlcul dels límits d’inflamabilitat (LFL i UFL) per a mesclles de més d’un combustible amb aire; també s’hi ha inclòs una taula amb els valors dels límits per a unes quantes substàncies.

Per altra banda, en la Figura 4.5 es mostra un gràfic que representa una relació entre la concentració de vapor inflamable i la temperatura. En ell s’hi mostra la regió d’inflamabilitat conjuntament amb diversos conceptes explicats a continuació.

La temperatura d’inflamació (Flash point temperature) d’una substància és la temperatura mínima en la què es produeix suficient vapor per a formar, a prop de la superfície d’un líquid combustible, una mescla amb aire que es trobi dins dels límits d’inflamabilitat. A aquesta temperatura, la mescla cremarà però ho farà breument ja que no es genera prou vapor com per a mantenir la flama. Pot establir-se una estimació del valor de la temperatura d’inflamació \(T_{fl} \) mitjançant l’equació:

\[
T_{fl} = 0,683 \cdot T_{eb} - 71,7
\]

on \(T_{eb} \) és la temperatura d’ebullició (ºC).

La temperatura d’auto-ignició, AIT (Autoignition Temperature), és la temperatura a la què una substància inflamable és capaç de cremar en aire sense la necessitat d’una font d’ignició externa. L’AIT depèn de moltes variables: s’ha observat que un augment en el volum del sistema, en la pressió o en la concentració d’oxigen disminueixen el seu valor, mentre que la variació de la concentració de combustible és més complexa de caracteritzar.
4.3. Fuites de substàncies tòxiques

Les fuites de substàncies tòxiques, tot i no ser el tipus d’accident major més freqüent, pot arribar a suposar una greu catàstrofe com va ser el cas de Bhopal o el de Seveso (explicat en el capítol següent). Aquests accidents han originat la necessitat d’establir plans d’emergència i desenvolupar models de dispersió per tal d’estimar els efectes de les fuites i poder actuar en conseqüència.

El model de dispersió pot representar-se com un conjunt de tres passos a seguir per establir un procediment de modelatge d’una fuita. Aquests passos són:

1. Identificació del tipus de fuita. Si no es pot identificar el focus principal de primera mà, estimar quin procés pot haver ocasionat la fuita.
2. Desenvolupament d’un model d’origen per a descriure com s’estan alliberant les diferents substàncies i el ritme d’alliberament.
3. Estimació de les concentracions de material tòxic en les zones cap a on es dirigeix el vent, utilitzant un model de dispersió.

Els models de dispersió descriuen el transport aeri de les substàncies tòxiques cap a regions allunyades de l’origen de la fuita. Si es tracta d’una fuita continuia, tal i com es mostra en la Figura 4.6, la fuita es catalogarà com a plomall (plume en anglès); i si ho fa de forma gairebé instantània —Figura 4.7— serà un puff. La concentració màxima de material tòxic es troba en l’origen (que no té perquè trobar-se al nivell del terra). Les concentracions a distàncies més elevades seran, òbviament, més baixes a causa de la mescla turbulenta amb l’ambient i la conseqüent dispersió. En general, la concentració de màxim interès és la que existirà a prop del sòl, que és on hi pot haver persones. Els paràmetres dels quals depèn la dispersió atmosfèrica són:

- La velocitat del vent
- L’estabilitat atmosfèrica
- Les condicions del terra (obstacles, desnivells)
- La distància de l’origen de la fuita al nivell del terra
- La flotabilitat i el moment del material alliberat

A mesura que la velocitat del vent augmenta, el plomall de la Figura 4.6 s’estira i es fa més estret; el material es mou més ràpidament cap a regions allunyades però, a la vegada, es dilueix més ràpidament en l’ambient per trobar-se en contacte amb una major quantitat d’aire.

L’estabilitat atmosfèrica es refereix a la mescla vertical de l’aire. Durant el dia, la temperatura de l’aire disminueix ràpidament amb l’alçada, cosa que provoca els moviments verticals; en canvi, a la nit la disminució no està tan marcada i el moviment vertical és inferior: l’atmosfera és, per tant, més estable. Els perfils de temperatura durant el dia i la nit es mostren en la Figura 4.8.
Figura 4.6. *Plume* format per una fuita continua

Figura 4.7. *Puff* format per una fuita gairebé instantània

Figura 4.8. Temperatura de l’aire en funció de l’alçada en condicions diürnes i nocturnes
L'estabilitat atmosfèrica pot classificar-se en tres categories: inestable, neutra i estable. Quan es parla de condicions atmosfèriques inestables, el sòl rep més calor de la que en surt provocant que la temperatura de l'aire a prop del terra sigui més elevada que en alçades superiors: això acostuma a succeir a primera hora del matí. Així doncs, s'anomena inestable perquè l'aire de baixa densitat es troba per sota del d'alta densitat causant un augment de la turbulència mecànica. Si les condicions són neutres, l'aire per damunt del sòl es calenta i la velocitat del vent augmenta, reduint l'efecte d'escalfament de l'energia solar. Aquesta situació no afecta a les turbulències atmosfèriques. Per últim, si les condicions atmosfèriques són estables el sol no pot escalfar el terra amb tanta celeritat com aquest es refreda; per tan, la temperatura de l'aire a prop del sòl es més baixa que la que hi ha a una alçada superior.

Les condicions del terra afecten a la mescla a la superfície i al perfil del vent amb l'alçada. Els arbres i els edificis augmenten la mescla de la substància tòxica amb l'aire, mentre que els llacs i les regions obertes la disminueixen. A la Figura 4.9 es mostren els canvis de la velocitat del vent segons el tipus de regió on es produeixi la fuita.

[Diagrama de les condicions del terra i el gradient vertical del vent]

Figura 4.9. Efecte de les condicions del terra al gradient vertical del vent

L'alçada de la fuita afecta àmpliament a les concentracions de material tòxic al nivell del terra. A mesura que augmenta l'alçada de l'alliberament del material tòxic, les concentracions a nivell de terra són inferiors, doncs el plomall s'ha de dispersar més distància verticalment.

Finalment, la flotabilitat i el moment del material alliberat canvien l'alçada efectiva de la fuita. El moment a alta velocitat portarà el gas a una alçada superior del punt inicial provocant, doncs, que augmenti l'alçada efectiva. Si la densitat del gas és inferior a la de l'aire, la fuita tindrà inicialment una flotabilitat positiu i es desplaçarà cap amunt. En canvi, si la densitat del gas és superior a la de l'aire, la flotabilitat inicial del gas serà negativa i el farà decaure cap al terra.
5. **SEVESO: D’ACCIDENT A DIRECTRIU**

El poble de Seveso, amb actualment més de 22.000 habitants, forma part de la història de la prevenció dels riscs en les indústries químiques de la Unió Europea. L’any 1976, un greu error ocorregut a la planta de producció de hexaclorofè de la companyia *Icmesa Chemical Company* va provocar un accident amb una gran fuita d’una toxina molt potent anomenada TCDD (o dioxina). La fuita va ser de tal magnitud, que va comportar la implantació d’una directriu en tots els estats membres de la UE.

Aquesta normativa, que portava i segueix portant el nom de Seveso, va ser instaurada inicialment el 1982 per tal d’evitar que catàstrofes com aquella tomen a succeir i així reduir la quantitat d’accidents i el nombre d’afectats per aquests. Posteriorment, es va anar modificant i posant al dia en successives edicions.

5.1. L’accident de Seveso

El 10 de juliol de 1976 a les 12:37 h es va produir una reacció fora de control en un dels reactors de la planta d’ICMESA (*Industrie Chimiche Meda Societa Azionara*) a Seveso, un poble situat a prop de Milà. Aquest incident no va causar cap explosió ni incendi, sinó que va originar —a causa de l’increment de la pressió i l’obertura d’un disc de trencament— una fuita d’aerosol que es va escampar per l’aire. Entre les substàncies dispersades, s’hi trobava una quantitat relativament petita de TCDD (Figura 5.1), coneguda correntment amb el nom de dioxina, una de les substàncies més tòxiques que es coneix avui en dia i utilitzada en la Guerra del Vietnam per part dels Estats Units (Agent Taronja).

![Figura 5.1. Fórmula del TCDD](image)

L’accident, que va durar unes poques hores, va provocar uns efectes que es van perllongar durant setmanes. Es va produir una evacuació parcial i tardana del poble de Seveso i, tot i que no es van registrar morts directes de persones a causa de la TCDD, un cert nombre de dones embarassades que havien estat exposades a la contaminació van patir un avortament. A més a més, moltes altres persones van emmalaltir i algunes espècies animals van morir.
L’impacte de l’accident de Seveso va superar notòriament al que havia tingut l’accident de Flixborough (explicat a l’apartat 10.1) l’any 1974 i va provocar un alt grau de conscienciació en la població pel que fa a les indústries químiques i els seus perills potencials, fent que augmentés la demanda de controls en aquest tipus d’instal·lacions.

5.1.1. El procés i la planta

El procés que es duia a terme a la planta de Seveso era la producció de 2,4,5-triclorofenol (TCP) en un reactor “batch”. El TCP és un producte utilitzat principalment en l’àmbit dels herbicides i pesticides. La producció d’aquesta substància havia augmentat significativament en els darrers anys, ja que s’havien tancat moltes plantes en altres països a causa de problemes amb la higiene i la seguretat.

La reacció estava dividida en dues fases: en primera instància es produïa la hidròlisi alcalina del 1,2,4,5-tetraclorobenzè (TCB) utilitzant hidròxid de sodi en presència d’etilenglicol com a solvent, a una temperatura de 170 – 180 ºC per formar 2,4,5-triclorofenat de sodi. La mescla també contenia xilè, que s’utilitzava per eliminar l’aigua per destil·lació azeotrópica. En un segon nivell, el triclorofenat de sodi s’acidificava mitjançant àcid clorhídric i es purificava mitjançant una destil·lació. L’esquema de la reacció es mostra en la Figura 5.2.

![Figura 5.2. Esquema de la reacció per a la producció de 2,4,5-triclorofenol (TCP)](image)

En aquesta reacció, la producció de petites quantitats de la toxina TCDD (2,3,7,8-tetraclorodibenzo-p-dioxina) és inevitable. En una reacció per sota dels 180 ºC, la quantitat formada de TCDD no acostuma a superar 1 ppm de TCP, però amb un escalfament prolongat a una temperatura d’entre 230 i 260 ºC es podria incrementar per mil vegades aquesta quantitat.

Al llarg de tot aquest procés, aproximadament un 99,7% del TCDD format es concentrava en els residus de la destil·lació que es recol·lectaven i s’incineraven. L’altre 0,3% es mesclava com a impuresa amb el TCP donant una concentració màxima de 10 ppb.
El sistema del reactor, mostrat en la Figura 5.3, estava format per un recipient amb un agitador i una camisa de calefacció abastida amb vapor a 12 bar i 188 ºC; aquesta camisa (en realitat, un sistema de serpentí extern de mitja canya) s’utilitzava també per a refrigerar el reactor una vegada acabada la destil·lació final en la què s’eliminava la major part de la dioxina. A més a més, el reactor estava proveït amb un disc de trencament dissenyat per cedir a 3,5 bar i un sistema de ventilació enfocat directament a l’atmosfera; no hi havia previst cap tractament dels gasos emesos en cas d’emergència. El propòsit del disc de trencament era evitar una explosió del reactor originada per la possible sobrepressió quan s’utilitzava aire comprimit en el reactor.

En referència al TCDD, es genera per l’eliminació de dues molècules d’HCl del TCP tal i com es mostra en la Figura 5.4. Una persona pot intoxicar-se de la dioxina mitjançant la ingestió d’aquesta, la seva inhalació o a partir d’un contacte directe amb la pell. El símptoma més estès d’intoxicació del TCDD és el cloracne, que es tracta d’una infecció cutània semblant a l’acne causada per substàncies químiques. Aquesta pot durar des de pocs mesos fins a alguns anys, depenent de la gravetat de l’erupció.
5.1.2. Esdeveniments previs a la fuita

L’inici de l’operació (procés discontinu) va produir-se el 9 de juliol a les 16:00 h. El reactor va carregar-se amb 2000 kg de TCB, 1050 kg de NaOH, 3300 kg d’etilenglicol i 600 kg de xilè. Després de què la reacció tingués lloc, part de l’etilenglicol va destil·lar-se, tot i que la fracció treta va ser únicament del 15% en comptes del percentatge comú, 50%; l’operari va incomplir, per tant, totalment el protocol d’operació. Així doncs, la majoria del solvent va quedar-se dins el reactor.

Es va interrompre la destil·lació a les 5 del matí, però no es va fer circular aigua per la camisa del reactor per a refredar la massa reactiva i, per tant, el reactor, no va arribar al rang de temperatures de 50-60 ºC que estava especificat: la camisa de calefacció (que era també la de refrigeració) va quedar a alta temperatura i amb vapor residual en el seu interior. El termòmetre va apagar-se essent 158 ºC l’última temperatura enregistrada. La Figura 5.5 mostra el perfil de temperatura enregistrat en el reactor. A causa de la interrupció del funcionament del termòmetre, la gràfica no mostra la temperatura a l’hora de l’accident.

![Figura 5.5. Perfil de temperatura mesurat al reactor en l’accident de Seveso](image)
El torn dels treballadors va acabar a les 6:00 h donant lloc al cap de setmana, durant el qual la planta d'ICMESA tancava. El reactor va deixar amb l'agitació apagada però sense haver reduït la temperatura de la massa que contenia. Així doncs, durant aquella matinada, a causa de la calor residual de la camisa calefactora, es van produir una sèrie de reaccions exotèrmiques a causa de les quals el reactor va arribar a assolir una temperatura de 300 ºC.

5.1.3. **La fuita**

A les 12:37 h del dissabte 10 de juliol, es va produir la ruptura del disc de trencament del reactor, a causa de l'alta pressió que s'hi havia creat. Un dels enginyers de la companyia que estava passejant prop de la planta va sentir un fort xiulet i va observar com emergia un núvol de vapor de la canonada connectada a la sortida del disc de trencament. Es calcula que la fuita va durar aproximadament 20 minuts.

Aquest enginyer, juntament amb dos altres treballadors, van córrer fins a la sala de calderes per posar en marxa la bomba d'aigua contra incendis i després van posar-se la roba protectora adequada. Una hora després de la ruptura del disc, ja va poder deixar passar aigua freda al sistema del reactor.

La fuita a la planta de Seveso va contaminar els voltants de la planta amb TCDD tal i com es mostra a la Figura 5.6. Es tracta d'un mapa de l'àrea mostrant les zones afectades diferenciades segons la concentració mitja d'aquestes. La zona A, amb una àrea d'1,08 km² tenia una concentració mitja de TCDD de 240 μg/m² arribant fins a 5000 μg/m². La zona B, que seguia la direcció del vent i es trobava més allunyada, tenia una àrea de 2,69 km² i la seva concentració mitja de dioxina era de 3 μg/m² arribant a un màxim de 43 μg/m². A la “Zona de Respecte” (la zona R), aliena a la direcció del vent, amb una àrea de 14,3 km², la concentració mesurada variava des de la indeterminabilitat fins als 5 μg/m².
Arrel de la fuita, els governants regionals i municipals de la zona van recomanar a la població no menjar productes cultivats en els camps afectats per l’accident. A més a més, van catalogar la zona afectada simplement com a contaminada, sense especificar el tipus de producte ni les seves conseqüències. Durant dues setmanes va discutir-se entre les diferents autoritats la necessitat d’evacuar a la població de Seveso i, finalment, el 26 de juliol van evacuar-se 179 persones de la zona A i, tres dies més tard, van ser evacuades 550 persones més. De la zona B, unes 5000 persones van restar sota vigilància mèdica i amb la possibilitat de romandre a les seves cases.

Paral·lelament, es va modelar la fuita utilitzant models per tal de fer prediccions de les concentracions de dioxina en el sòl i realitzar una descontaminació eficient. Va assumir-se que la ruptura del disc de trencament va venir causada per la pressió de vapor de l’etilenglicol a 250 ºC. Va deduir-se també que la velocitat d’escapament del vapor va ser de 274 m/s (velocitat del so). Amb tot això es va estimar que la quantitat de dioxina que s’havia escapat era d’entre 1,6 i 2 kg. Mentrestant, la pluja havia provocat que la dioxina fos dipositada en la vegetació, en els edificis, entre d’altres.

Inicialment es van plantejar diversos mètodes de descontaminació. El TCDD és pràcticament insoluble en aigua (0,2 μg/L a 25 ºC), així que condicions com la pluja provocaven que no s’eliminés sinó que es filtrés de la vegetació al sòl. Un dels mètodes suggerits va ser cremar la terra contaminada amb llançaflames però es va témer que no...
s’arribés a una temperatura mínima de 1000 ºC i no és destruïda la dioxina sinó que s’escombrés cap a una altra zona. Un altre mètode proposat va ser aplicar una mescla d’oli d’oliva i ciclohexanona al sòl per tal que el TCDD es dissolgués amb l’oli i es descompongués mitjançant la radiació ultraviolada del sol. Aquest mètode va descartar-se per les condicions de pluja que hi havia i es temia que es pogués filtrar la dioxina dissolta als rius.

La descontaminació va realitzar-se finalment mitjançant una neteja per aspiració de gran intensitat i una neteja posterior amb aigua a alta pressió. També es va escarificar el sòl, enretirant una capa de terra que posteriorment va ser tractada en una incineradora. La Figura 5.7 mostra mapes de la concentració real de TCDD, demostrant la reducció d’aquesta al llarg del temps.

5.2. La Directriu Seveso

L’accident de Seveso al 1976 va comportar tantes conseqüències que la Comunitat Europea va decidir establir una Directriu amb el seu nom. El propòsit d’aquesta normativa és prevenir els accidents majors que incloguiu substàncies perilloses i limitar les seves conseqüències per a les persones i per al medi ambient i així garantir uns nivells de protecció elevats en tota la Comunitat Europea de forma consistent i efectiva.
Així doncs el 24 de juny de 1982 es va establir la Directriu 82/501/CEE anomenada “Directriu relativa als riscos d’accidents majors en determinades activitats industrials” més coneguda com Directriu Seveso. Aquesta normativa s’aplica a gairebé totes les activitats industrials en les que interviguin, bé sigui en l’emmagatzematge o en el procés, una sèrie de substàncies inflamables, tòxiques, explosives o oxidants, en quantitats superiors a les especificades [5].

Les disposicions generals que estan descrites en la Directriu Seveso es llisten a continuació:

- El cens d’instal·lacions en situació de risc, amb la conseqüent identificació de les substàncies perilloses utilitzades
- L’existència d’un pla de prevenció i un pla d’emergència per cada una de les instal·lacions industrials
- La cooperació entre els operadors per tal de limitar l’efecte dominó
- El control dels habitatges que es troben en l’entorn de les instal·lacions industrials així com la notificació de les persones residents en aquests habitatges sobre aquestes mesures, els plans d’emergència i prevenció, entre d’altres.
- L’existència d’una autoritat capacitada responsable de la inspecció de les instal·lacions industrials categoritzades d’alt risc

El 9 de desembre de 1996 va aplicar-se a la Unió Europea la Directriu Seveso II, catalogada com a 96/82/CE. Aquesta es tractava d’una actualització de l’antiga normativa que, a grans trets, incrementava la seguretat i la prevenció dels riscos de forma àmplia [6]. Arrel d’aquesta millora de la normativa, s’ha decidit realitzar una anàlisi històrica dels estats membres de la Unió Europea que es mostra en el capítol 6. En aquest treball s’ha adjuntat la Directriu Seveso II en l’Annex B.

En l’inici de la normativa s’estableixen una sèrie de punts a tractar en la modificació de la Directriu 82/501. Primerament, doncs, es remarca la necessitat d’una implementació més efectiva de la directriu ja estipulada i s’hi inclou una possible ampliació de l’àmbit d’aplicació d’aquesta. A més a més, es demana una participació més elevada per part dels estats membres per tal de millorar l’intercanvi d’informació entre ells. Altrament, i arrel dels accidents de Bhopal i Mèxic, s’esmenta la necessitat de controlar millor la disposició de nous emplaçaments industrials a prop d’instal·lacions ja en ús o d’habitatges.

Per altra banda, insisteix en establir uns símils d’aplicació de la directriu en indústries que emprin les mateixes substàncies amb un risc potencial per al medi ambient i per a les persones. Es parla també d’una aplicació de mesures similars a les de la directriu en
àmbits que aquesta no correspon (com per exemple, activitats de transport en els molls de càrrega) i de la qual haurien d'encarregar-se’n els propis estats membres.

Finalment, en aquests punts també es disposa que una anàlisi prèvia d’accidents majors va evidenciar que la majoria d’errors provenien de la part organitzativa i directiva. Per augmentar la seguretat en aquest àmbit, es considera que l’operador de la fàbrica ha de proporcionar els documents on s’exposin les substàncies que s’utilitzen, les operacions que es fan, les instal·lacions, etc. A més a més, s’han d’establir plans d’emergència tan interns com externs que han de ser de caràcter públic per tal de donar una millor protecció als habitatges.

El 4 de juliol de 2012 va decidir-se modificar la normativa 96/82/CE (Seveso II) arrel d’una sèrie de canvis estudiats al 2008, i així va sorgir la normativa 2012/18/UE o Seveso III. Tot i la seva publicació fa gairebé 4 anys, la seva aplicació no es va considerar obligatòria en els països de la Unió Europea fins a l’1 de juny del 2015.

La novetat més important en la que recau l’actualització de la Directriu és l’ampliació del rang d’aplicació d’aquesta. Així doncs, instal·lacions industrials classificades de baix nivell fins ara, estaran obligades a implementar una MAPP (Major Accidents Prevention Policy) per tal de complir el sistema establert. [8]

Un altre dels punts importants de Seveso III és reforçar l’execució de les seves obligacions. Així doncs, les inspeccions realitzades sota aquesta normativa reinventada seran més estrictes i, per exemple, si algun dels inspectors detecta una fallada, es requerirà una nova inspecció en el període màxim de sis mesos. Per tal de no sobrecarregar les companyies, la legislatura europea obliga als estats membres a coordinar i a consolidar les seves pròpies investigacions.

Un últim gran canvi que ha estipulat la directiva Seveso III és la millora de la participació pública. Els governs dels diferents països membres de la Unió Europea tenen la obligació d’informar activament i de forma permanent a la població sobre les instal·lacions tant d’alt com baix nivell i de les seves pautes a seguir en cas d’esdevenir un accident major.

Per resumir, doncs, aquesta evolució de la normativa Seveso, es pot afirmar que s’està fent un gran esforç tant per part de la Comissió Europea com dels Estats membres i de les indústries d’arreu de la Unió Europea per tal de reduir el màxim possible el nombre d’accidents i la quantitat de persones afectades per aquests. Per determinar si en els últims 20 anys s’ha aconseguit fer-ho, en el següent capítol es mostra l’anàlisi històrica realitzada de les dades d’accidents majors obtingudes abans i després de l’aplicació de la Directriu Seveso II.
6. **Influència i resultats de la directriu Seveso II: Anàlisi històrica dels accidents**

Al llarg d’aquest capítol es mostra l’estudi realitzat sobre la influència de la directriu Seveso II en els països de la Unió Europea. Aquesta anàlisi s’ha realitzat mitjançant les bases de dades MHIDAS (Major Hazard Incident Data Service) i ARIA (Analysis, Research and Information on Accidents).

Com s’ha explicat en el capítol anterior, la directriu Seveso II va aplicar-se en els països que formaven la UE l’any 1996 i es va anar aplicant en els altres països en anys posteriors a mesura que aquests anaven esdevenint estats membres de la Unió Europea. La raó del per què s’ha escollit aquesta normativa i no qualsevol de les altres dues és ben clara.

Per una banda, la directriu Seveso I va ser establerta en un període de temps massa llunyà, on la indústria química era força diferent de la que coneixem avui en dia. A més a més, el nombre d’accidents registrats en les diferents bases de dades es escàs ja que la transmissió d’informació i l’enregistrament d’incidents era molt menor a causa del baix nivell tecnològic de l’època. Per altra banda, la directriu Seveso III s’ha implantat molt recentment en els estats membres i, per tant, no tindria sentit realitzar un estudi sobre aquesta ja que el nombre d’accidents que s’haurien registrat en la indústria química al llarg de l’últim any seria mínim en comparació amb el nombre total d’accidents en els anys previs.

L’anàlisi ha estat acotada entre els anys 1960 i 2016, ja que es disposa de poques dades d’anys anteriors i, a més a més, si s’hagués utilitzat un període més gran, l’anàlisi quedaria desequilibrada en la part prèvia a la implementació de la directriu Seveso II, doncs l’any inicial quedaria massa allunyat d’un punt mig ideal.

Així doncs, l’estudi de l’anàlisi històrica es basa en una comparació exhaustiva entre les característiques dels accidents majors ocorreguts en la indústria química (com poden ser la freqüència, el tipus, el nombre d’afectats, etc.) en els estats membres de la UE abans de la implantació de la directriu Seveso II i després d’aquesta.

En un primer instant, es va realitzar l’anàlisi utilitzant únicament la base de dades MHIDAS, la qual va deixar d’actualitzar-se fa una dècada aproximadament. Per aquesta raó, els accidents succeïts en anys posteriors al 2005 no quedaven determinats en l’estudi. És per això que s’ha decidit complementar l’anàlisi utilitzant una altra base de dades: l’ARIA.

Aquest estudi ha comportat diversos problemes en quant a l’obtenció i l’anàlisi de les dades i, per aquesta raó, no han pogut ésser analitzats tots els estats membres de la
Unió Europea. S'ha de tenir en compte que aquest treball constitueix el primer estudi d'aquesta índole i, què, al no disposar d'altres referències no ha estat possible establir una precisió i una extensió més elevades.

Per una banda, països com Irlanda, Xipre o Luxemburg, entre d'altres, han quedat exclosos de l'estudi per falta de dades —es tracta de països amb molt poca o nul·la indústria química—. Aquests estats estan indicats en la Taula 6.1.

Taula 6.1. Estats membres de la UE exclosos de l'anàlisi històrica per falta de dades

<table>
<thead>
<tr>
<th>País</th>
<th>Data d'entrada a la UE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulgària</td>
<td>2007</td>
</tr>
<tr>
<td>Croàcia</td>
<td>2013</td>
</tr>
<tr>
<td>Eslovàquia</td>
<td>2004</td>
</tr>
<tr>
<td>Eslovènia</td>
<td>2004</td>
</tr>
<tr>
<td>Estònia</td>
<td>2004</td>
</tr>
<tr>
<td>Hongria</td>
<td>2004</td>
</tr>
<tr>
<td>Irlanda</td>
<td>1973</td>
</tr>
<tr>
<td>Letònia</td>
<td>2004</td>
</tr>
<tr>
<td>Lituània</td>
<td>2004</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>1958</td>
</tr>
<tr>
<td>Malta</td>
<td>2004</td>
</tr>
<tr>
<td>Xipre</td>
<td>2004</td>
</tr>
</tbody>
</table>

Així doncs, l'anàlisi històrica s'ha basat en estudiar aquells països la indústria dels quals ha tingut i té certa rellevància a nivell internacional. Els països plantejats per a estudiar són els que es troben llistats en la Taula 6.2. Tots aquests eren membres de la Unió Europea molt abans de la implantació de la Directriu Seveso II i, per tant, la comparació s'ha fet en tots els països per igual: abans i després de l'any 1996. Tot i això, per tal de no redactar una memòria de caire repetitiu, es mostren en els apartats 6.1, 6.2 i 6.3 les anàlisis realitzades sobre Espanya, Holanda i el Regne Unit respectivament, considerant que els resultats obtinguts són suficients per establir una conclusió referent a la Directriu Seveso II en el conjunt europeu.
Taula 6.2. Estats membres de la UE rellevants per a realitzar l’anàlisi històrica

<table>
<thead>
<tr>
<th>País</th>
<th>Data d’entrada a la UE</th>
<th>Data d’aplicació Seveso II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alemanya</td>
<td>1958</td>
<td>1996</td>
</tr>
<tr>
<td>Bèlgica</td>
<td>1958</td>
<td>1996</td>
</tr>
<tr>
<td>Espanya</td>
<td>1986</td>
<td>1996</td>
</tr>
<tr>
<td>França</td>
<td>1958</td>
<td>1996</td>
</tr>
<tr>
<td>Holanda (Països Baixos)</td>
<td>1958</td>
<td>1996</td>
</tr>
<tr>
<td>Itàlia</td>
<td>1958</td>
<td>1996</td>
</tr>
<tr>
<td>Regne Unit</td>
<td>1973</td>
<td>1996</td>
</tr>
</tbody>
</table>

Per altra banda, en la Taula 6.3 es mostren els països que han quedat descartats de l’anàlisi històrica doncs no s’ha considerat que tinguessin una rellevància suficient a nivell industrial.

Taula 6.3. Estats membres de la UE exclosos de l’anàlisi històrica per no ésser suficient rellevants

<table>
<thead>
<tr>
<th>País</th>
<th>Data d’entrada a la UE</th>
<th>Data d’aplicació Seveso II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Àustria</td>
<td>1995</td>
<td>1996</td>
</tr>
<tr>
<td>Dinamarca</td>
<td>1973</td>
<td>1996</td>
</tr>
<tr>
<td>Finlàndia</td>
<td>1995</td>
<td>1996</td>
</tr>
<tr>
<td>Grècia</td>
<td>1981</td>
<td>1996</td>
</tr>
<tr>
<td>Polònies</td>
<td>2004</td>
<td>2004</td>
</tr>
<tr>
<td>Portugal</td>
<td>1986</td>
<td>1996</td>
</tr>
<tr>
<td>República Txeca</td>
<td>2004</td>
<td>1996</td>
</tr>
<tr>
<td>Romania</td>
<td>2007</td>
<td>2007</td>
</tr>
<tr>
<td>Suècia</td>
<td>1995</td>
<td>1996</td>
</tr>
</tbody>
</table>
6.1. Influència de la Directriu Seveso II a Espanya

A Espanya, el nombre d’accidents majors per any és en cap cas superior a 6, com pot observar-se en la Figura 6.1. Tot i això, a simple vista no s’observa cap disminució del nombre d’accidents a mesura que avança el temps, tot i que hi ha una gran variació en la freqüència. Per aquesta raó, posteriorment es mostra una comparació del nombre d’accidents abans i després de l’aplicació de la normativa Seveso II, els resultats de la qual haurien de mostrar l’eventual influència de la mateixa.

![Nº accidents majors Espanya](image)

Figura 6.1. Accidents per any a Espanya

Com s’ha explicat anteriorment, aquests accidents majors poden estar categoritzats de tres formes diferents: com a explosions, incendis o fuites de substàncies tòxiques. A més a més, existeixen les pèrdues de contenció de substàncies tòxiques (no inclosos en l’estudi) que acostumen a formar part d’aproximadament el 50% dels accidents majors, usualment com a primera fase; ara bé, aquest aspecte no acostuma a contemplar-se de manera directa en les anàlisis històriques, donat que sol implicar una notable impreció. Si s’observa a la Figura 6.2 es pot ressaltar la característica que el sumatori dels percentatges es superior a 100. La raó de que succeeixi això és que molts dels esdeveniments inclouen una seqüència de diversos accidents.
Figura 6.2. Percentatges dels tipus d’accidents majors a Espanya.

En referència al nombre de morts i ferits per any —a diferència del nombre d’accidents per any— sí que pot observar-se una tendència a la baixa (a excepció d’accidents aïllats) tal i com es mostra en la Figura 6.3 i la Figura 6.4. Cal destacar, però, l’accident ocorregut l’any 1978 a un càmping de Sant Carles de la Ràpita (Tarragona), que va provocar més de 200 morts i 100 ferits; aquest és, però, un accident totalment atípic pel que fa a les seves conseqüències.

Figura 6.3. Morts per any en accidents a Espanya.
Un cop establertes les dades per cada un dels anys entre el 1960 i el 2016, i per tal d’arribar a una conclusió envers l’efectivitat de la normativa Seveso II, a continuació s’estableix la comparació entre els accidents que van succeir abans i després del 1996 (Figura 6.5). També queda reflectida en la Figura 6.6 la comparació entre el nombre de morts i ferits abans i després de l’aplicació de la normativa.

![Figura 6.4. Ferits per any en accidents a Espanya](image)

Comparació nº accidents majors Espanya

<table>
<thead>
<tr>
<th>Nº accidents totals</th>
<th>Abans Seveso II</th>
<th>Després Seveso II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>52</td>
<td>31</td>
</tr>
</tbody>
</table>

![Figura 6.5. Comparació d’accidents previs i posteriors a l’aplicació de Seveso II a Espanya](image)
Incidència dels accidents majors a la Unió Europea. Anàlisi del cas de les explosions d’atmosferes inflamables.

Figura 6.6. Comparació de morts i ferits previs i posteriors a l’aplicació de Seveso II a Espanya

En vista dels resultats obtinguts en els gràfics anteriors, es pot concloure que existeix una relació favorable entre l’aplicació de la Directriu Seveso II —i tota la normativa associada a la mateixa— i la disminució del nombre d’accidents al llarg del temps així com del nombre de morts i ferits en aquests.

Totes les dades sobre les quals s’ha treballat l’anàlisi històrica d’Espanya es troben indicades en la Taula A.1 de l’Annex A.

6.2. Influència de la Directriu Seveso II a Holanda

Holanda s’ha anat incorporant durant les últimes dècades en el llistat de països amb més projecció industrial. És per això que s’ha considerat com a bona candidata per a analitzar la influència que ha tingut la Directriu Seveso II en la seva indústria. Al igual que Espanya, Holanda no mostra —en la Figura 6.7— a simple vista una clara reducció del nombre d’accidents a mesura que avancen els anys, tot i que pot observar-se que des de 2008 només s’han produït 3 accidents majors, fet que ressalta una mica aquesta disminució.
Si es diferencien els tipus d’accidents majors ocorreguts en la indústria neerlandesa des del 1960 fins al 2016 —Figura 6.8— és pot observar com, a diferència d’Espanya, els incendis són els esdeveniments que més desgràcies ocupen en els Països Baixos. Novament, les pèrdues de contenció de substàncies perilloses simbolitzen aproximadament un 50% dels accidents tot i no estar identificats en aquest gràfic.

Per tal de continuar amb l’anàlisi de la influència de la normativa Seveso II, a continuació es mostren, en la Figura 6.9 i la Figura 6.10, l’evolució del nombre de morts i ferits al llarg del temps, respectivament. De nou, no se’n pot determinar cap tendència tot i que s’observa també que en el segle XXI, a excepció de l’any 2000, el nombre d’afectats es veu reduït notablement.
Així doncs, per tal de concloure l’anàlisi històrica realitzada sobre aquest país, es comaren el nombre d’accidents majors ocorreguts abans del 1996 i després (Figura 6.11) així com el nombre de morts i ferits provinents dels accidents (Figura 6.12).
Revisant els dos gràfics anteriors pot semblar que existeixi una discordança de valors entre el nombre de morts totals i el nombre de ferits totals a Holanda abans i després de l’aplicació de la normativa Seveso II, ja que apareix una quantitat que podria semblar massa elevada de ferits. Aquesta dada ve donada per un accident aïllat provocat a la localitat de Enschede (una explosió de gas natural) que va provocar 20 morts i 950 ferits. Si es volgués desvincular aquest greu incident, que pot considerar-se excepcional, de l’anàlisi històrica, s’obtindria un gràfic com el de la Figura 6.13.

Amb aquestes dades doncs, es podria concloure que la normativa Seveso II està relacionada, al igual que a Espanya, amb la disminució del nombre d’accidents i del nombre de persones afectades per aquests. Tot i això s’ha de tenir en compte que
sempre pot produir-se un cas aïllat, que posteriorment necessitarà unes restriccions més elevades per tal que no es repeteixi un incident de la mateixa índole.

<table>
<thead>
<tr>
<th>Comparació nº morts i ferits Holanda (modificat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abans Seveso II</td>
</tr>
<tr>
<td>Nº morts totals</td>
</tr>
<tr>
<td>79</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

Figura 6.13. Comparació de morts i ferits previs i posteriors a l’aplicació de Seveso II a Holanda obviant l’accident de Enschede l’any 2000

Totes les dades sobre les quals s’ha treballat l’anàlisi històrica d’Holanda es troben indicades en la Taula A.2 de l’Annex A.

6.3. Influència de la Directriu Seveso II al Regne Unit

Per finalitzar aquesta anàlisi específica d’alguns estats membres de la Unió Europea s’han tractat les dades referents als accidents majors succeïts en el Regne Unit entre els anys 1960 i 2016. Al ser un estat amb una indústria química molt superior a la dels països abans descrits i al tenir una capacitat d’enregistrament d’accidents superior —per exemple, la base de dades MHIDAS és originària del Regne Unit—, el nombre de dades utilitzades és molt més elevat i, per tant, es poden treure unes conclusions més resolventes i significatives un cop estudiades.

En primer lloc, es mostra en la Figura 6.14 el gràfic que dóna el nombre d’accidents majors per any en el Regne Unit. A diferència dels casos d’Espanya i Holanda, en aquest gràfic sí que es pot observar clarament la tendència a la baixa a partir del 1998 (és a dir, 2 anys després de la implantació de la normativa Seveso II) després d’haver-se provocat una augment considerat en el nombre d’accidents des dels anys 60 fins a finals dels 90.

Si s’analitzen els tipus d’accidents majors que han tingut lloc en el Regne Unit, es pot observar (en la Figura 6.15) que, al igual que a Holanda, la gran majoria d’esdeveniments són incendis, seguits per les explosions i, a continuació, per les fuites de substàncies tòxiques. Sempre tenint en compte que aproximadament en el 50% dels casos s’ha produït un escapament de la pròpia substància, tòxica o inflamable, involucrada en
l’accident; aquests “incidents”, denominats en anglès *loss of containment events*, al no tenir la repercussió d’un accident major (donc molts d’ells acaben sense efectes significatius), no són enregistrats i, per tant, la seva freqüència real és desconeguda.

Fent referència al nombre d’afectats pels accidents, es pot deduir a partir dels gràfics representats en la Figura 6.16 i en la Figura 6.17 que, per una banda, el nombre de morts té una tendència a la baixa des d’anys abans de l’aplicació de Seveso II; la raó pot ésser l’aplicació de la directriu prèvia —Seveso I— que va ser aprovada al 1982. Per altra banda, el nombre de ferits per any té una tendència molt similar a la del nombre d’accidents per any: augmenta fins a finals del segle XX i a partir d’aquell moment comença a disminuir gradualment fins a dia d’avui.
Per tal de finalitzar l’anàlisi històrica de la mateixa manera que en els altres països, a continuació es disposen en la Figura 6.18 i la Figura 6.19 la comparació entre el nombre d’accidents i el nombre de morts i ferits abans i després de l’aplicació de la normativa europea. Es veu clarament, com s’estableix una relació clara entre la disminució d’incidents i d’afectats i l’entrada en vigor de Seveso II. A més a més, si es comparen, per exemple, les proporcions de morts/accident o de ferits/accident, també surt favorable:

\[
\begin{align*}
\text{Abans Seveso II:} & \quad \frac{181}{776} = 0,23 \frac{\text{morts}}{\text{accident}}; \quad \frac{3286}{776} = 4,23 \frac{\text{ferits}}{\text{accident}} \\
\text{Després Seveso II:} & \quad \frac{20}{313} = 0,06 \frac{\text{morts}}{\text{accident}}; \quad \frac{701}{313} = 2,24 \frac{\text{ferits}}{\text{accident}}
\end{align*}
\]
Per tant, si s’extrapolen aquests resultats a la resta d’estats membres de la Unió Europea es pot concloure que la Directriu Seveso II ha estat una gran mesura per tal de prevenir accidents i alleugerir-ne les seves conseqüències. Tot i aquest resultats tan favorables, és necessari seguir treballant avui en dia, ara amb la Directriu Seveso III, per seguir minimitzant l’impacte dels accidents majors en tot el territori Europeu.

Totes les dades sobre les quals s’ha treballat l’anàlisi històrica del Regne Unit es troben indicades en la Taula A.3 de l’Annex A.

En els següents capítols s’analitzen les principals característiques, els efectes i les possibles conseqüències d’un d’aquests accidents majors amb una incidència important: les explosions de núvols de vapor o gas inflamables.
7. EXPLOSIONS: TIPUS I CARACTERÍSTIQUES

Una explosió està associada a un augment molt ràpid del volum originat per l’expansió d’un gas o vapor pressuritzat, a la vaporització instantània d’un líquid o a una reacció química molt ràpida. La violència de l’explosió depèn de la velocitat a la què l’energia és alliberada. Existeixen tres tipus d’energia que pot alliberar-se en una explosió: energia física, energia química i energia nuclear. Al llarg d’aquest treball es tractarà l’estudi d’explosions que alliberen energia química, les quals deriven d’una reacció química. Un exemple pot ser l’esclat d’una atmosfera inflamable. Pel que fa a les explosions físiques, són les que es produeixen quan un recipient a pressió esclata. El fenomen és diferent i la manera de calcular-ne els efectes també, però aquests efectes són els mateixos que els d’una explosió química: l’ona de sobrepressió i la projecció de fragments.

L’ona resultant d’una explosió química es genera per l’expansió dels gasos al lloc de l’explosió. Aquesta explosió pot haver estat causada per dos mecanismes: l’escalfament tèrmic dels reactius, o bé el canvi total de mols en fase gas de la reacció. Per la majoria d’explosions per combustió d’hidrocarburs en l’aire, el canvi del nombre de mols es petit. Per exemple, si es considera la combustió del propà en aire, la reacció és:

\[C_3H_8 + 5O_2 + 18,8N_2 \rightarrow 3CO_2 + 4H_2O + 18,8N_2 \]

El nombre inicial de mols de la part esquerra de la reacció és de 24,8. En canvi, en els productes, el nombre de mols és de 25,8. En aquest cas, només es produirà un petit augment en la pressió a causa del canvi en la quantitat de mols i, contràriament, la gran part d’energia de l’explosió provindrà de l’energia invertida en l’escalfament dels productes de la reacció.

S’han de distingir, també, les explosions de mescles de vapors combustibles amb un comburent (generalment aire) —que són les de major interès per la seguretat en la indústria química i les que s’estudiaran al llarg d’aquest treball— de les produïdes per explosius convencionals com el TNT. Aquestes últimes tenen característiques diferents ja que els materials que les causen inclouen oxigen en ells mateixos i, per tant, l’explosió pot produir-se en absència d’aire i a una velocitat molt gran.

7.1. Característiques de les explosions

La característica principal de les explosions es l’ona d’expansió o sobrepressió que provoquen. L’energia química que s’acumula, per exemple, en la combustió d’una mescla d’aire i combustible es transforma parcialment en energia física (expansió). Aquest procés de conversió d’energia és molt similar al que ocorre en els motors de combustió.
En l’atmosfera envoltant l’explosió, s’experimentarà una ona d’expansió determinada per la variabilitat dels paràmetres d’estat dinàmic del gas: la pressió, la densitat i la velocitat de les partícules. Generalment, aquests paràmetres incrementen el seu valor ràpidament i després disminueixen més lentament fins a valors per sota dels valors ambient. Aquests canvis es poden trobar diferenciat en l’apartat 7.2 on es parla dels tipus d’explosions.

L’ona de sobrepressió va seguida d’un fort vent de pressió negativa. Aquest vent provoca que els objectes siguin xuclats cap al centre de l’explosió. Aquest efecte pot causar que els fragments que s’hagin originat en l’explosió es moguin en sentit contrari a l’original un cop hi arriba l’ona del vent.

Un aspecte interessant —comentat en seccions posteriors— és l’efecte del confinament a causa d’obstacles. La reflexió de l’ona de sobrepressió origina un increment del pic de sobrepressió que augmenta de manera important el seu poder destructor.

7.2. Tipus d’explosions

Les explosions químiques poden caracteritzar-se en dues grans categories: deflagracions i detonacions. En una deflagració, l’ona de sobrepressió es desplaça a una velocitat subsònica. Per a mescles d’hidrocarburs amb aire la velocitat acostuma a ser de l’ordre de 300 m/s. En una detonació però, apareix una ona de xoc com a conseqüència de l’existència d’una ona de combustió (ona de reacció). Així doncs, la velocitat de l’ona de xoc de la detonació comprèn una velocitat molt superior a la del so, arribant als 2000-3000 m/s.

Una detonació és capaç de generar pressions molt més elevades que una deflagració – per a la mateixa quantitat d’explosiu o combustible involucrada – i és per això que és considerada més destructiva. Mentre que una deflagració pot arribar a provocar pressions de l’ordre de 8 bars, una detonació, en canvi pot arribar fins als 20 bars. A la Figura 7.1 es pot observar la diferència de la dinàmica de l’explosió en una detonació i en una deflagració.

![Figura 7.1. Comparació de la sobrepressió entre una detonació (a) i una deflagració (b)](image-url)
Tot i existir aquesta diferència, existeix un cas en què una deflagració pot convertir-se en una detonació: quan el front de flama es propaga al llarg d’una canonada. Aquest procés, conegut com a DDT (Deflagration to Detonation Transition), s’esmenta en l’apartat 7.2.1. D’altra banda, la sobrepressió pot augmentar considerablement si hi ha reflexió de l’ona a causa del confinament.

7.2.1. La transició deflagració – detonació (DDT)

Un núvol de gas o vapor en aire, no confinat i dins dels límits d’inflamabilitat no detona sinó que deflagra; no hi ha precedents de detonacions d’aquests núvols. Només es pot aconseguir una detonació mitjançant una DDT (en anglès, Deflagration-to-Detonation Transition).

L’energia mínima que ha de tenir la font d’ignició per tal de produir una iniciació directa d’una detonació —per a una atmosfera inflamable, només en estat de confinament— s’anomena energia crítica d’iniciació. L’energia crítica d’iniciació també s’utilitza per il·lustrar la sensibilitat de la mescla de combustible i aire. En la Figura 7.2 es mostra l’energia crítica d’iniciació per a diversos combustibles mesclats de forma estequiomètrica amb l’aire.

![Figura 7.2. Energia crítica d'iniciació d'algunes mesgles de combustible amb aire [4]](image)

El valor de l’energia està expressat en kg de tetril, un explosiu molt similar al TNT. Es pot comprovar en el gràfic que el metà és el que té més energia crítica d’iniciació donada la seva estructura molecular particular.

Així doncs, la DDT es produeix mitjançant una acceleració de la flama que es propaga al llarg d’una canonada. Aquesta transició origina les poques detonacions que succeeixen en la indústria química: la majoria de les explosions acostumen a ser deflagracions.
7.3. Característiques de l’ona de sobrepressió

L’ona de sobrepressió és la causant de la major part dels efectes en els accidents ocorruts amb núvols de vapor no confinats o parcialment al produir-se una explosió. Així doncs, al llarg d’aquest apartat s’analitza l’ona de sobrepressió en els seus diversos aspectes. Aquesta seguirà actuant, fins i tot, quan el material del núvol s’hagi consumit, bé que la seva acció es redueix a mesura que s’allunya del punt d’explosió.

7.3.1. Detonacions

Si es consideren els canvis de pressió que tenen lloc en un punt fix a una certa distància al llarg del temps, en el cas de les detonacions la variació de sobrepressió dóna un gràfic com el de la Figura 7.3. La pressió augmenta gairebé instantàniament assolint-se el valor màxim o pic de sobrepressió (fase positiva): després la pressió disminueix, prenent valors negatius (fase negativa). És a dir, l’ona de sobrepressió va seguida d’una altra de “buit”, que també té efectes destructius sobre segons quins elements. Quan l’ona de sobrepressió (fase positiva) impacta amb un objecte, la pressió que s’exerceix sobre les superfícies transversals a la direcció de propagació de l’ona augmenta gairebé instantàniament fins a un valor de pressió màxima $P_{\text{màx}}$.

Figura 7.3. Variació de la sobrepressió i la pressió dinàmica al llarg del temps en un punt fix 89[13]

Aquesta gràfica (corresponent a una detonació) està dibuixada conforme els paràmetres resultants d’una ona expansiva d’una explosió d’una tona de TNT. La Taula 7.1 mostra els valors de la sobrepressió en funció de la distància.
Taula 7.1. Paràmetres utilitzats per a representar la variació de la sobrepressió en un punt fix en una explosió d’una tona de TNT al llarg del temps. [13]

<table>
<thead>
<tr>
<th>Distància (m)</th>
<th>(t_a) (m/s)</th>
<th>(t_+) (ms)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,1</td>
<td>4</td>
<td>5,5</td>
<td>3,5</td>
</tr>
<tr>
<td>18,2</td>
<td>18</td>
<td>12</td>
<td>1,08</td>
</tr>
<tr>
<td>24,4</td>
<td>37</td>
<td>16</td>
<td>0,87</td>
</tr>
<tr>
<td>36,6</td>
<td>59</td>
<td>18</td>
<td>0,93</td>
</tr>
</tbody>
</table>

\(t_a \) indica el temps que tarda l’ona de sobrepressió en arribar des del punt on es produeix l’explosió fins al punt fix que s’està estudiant. Per altra banda, \(t_+ \) també s’anomena com a període de xoc en els casos que l’explosió sigui una detonació. El període de xoc és on es produeix la màxima destrucció en estructures. Per això és important determinar el seu valor per estimar els danys causats.

Per tal de trobar la corba que comprèn \(t_+ \) s’utiitza l’equació següent:

\[
P = P_{\text{màx}} \cdot \left(1 - \frac{t}{t_+}\right) \cdot \exp \left(-\alpha \cdot \frac{t}{t_+}\right)
\]

Un cop superat l’interval de temps que comprèn \(t_+ \), la pressió en el punt d’estudi decau per sota de l’atmosfèrica a causa del canvi de direcció del vent originat en l’explosió que flueix en sentit contrari a l’inicial. Aquest interval de temps s’anomena temps en fase negativa \((t_-) \). La sobrepressió durant \(t_- \) generalment no excedeix els 25 kPa (en valor absolut). Tot i no ser un valor gaire elevat, els seus efectes destructius acostumen a ser molt importants ja que la majoria dels edificis no estan dissenyats per resistir pressions interiors superiors a les exteriors. Finalment, quan l’ona de sobrepressió s’esvaeix, la pressió torna a adquirir el valor atmosfèric.

Tots aquests valors de sobrepressió i temps estan classificats dins d’un apartat de pressió estàtica. Per altra banda, existeix un altre tipus de pressió: la pressió dinàmica. Aquesta es manifesta com la transformació de l’energia cinètica del vent generat en l’explosió en energia de pressió al trobar-se una superfície en el seu camí (superfície paral·lela a l’ona de sobrepressió). Es pot veure representada l’evolució de la pressió dinàmica en el gràfic de la Figura 7.3.

Es pot expressar la pressió dinàmica màxima \(Q \) de la següent manera:

\[
Q = \frac{5}{2} \cdot \frac{(P_{\text{màx}})^2}{7P_0 + P_{\text{màx}}}
\]

Una altra propietat a tenir en compte és la velocitat de l’ona de sobrepressió:
Finalment, és important considerar la sobrepressió màxima per reflexió. Quan l’ona de pressió xoca amb una superfície sólida que no és paral·lela a la direcció de propagació es produeix una reflexió de la mateixa. A part de depender de la \(P_{\text{màx}} \), la pressió de reflexió depèn també de l’angle d’incidència. És per això que la sobrepressió de reflexió màxima \(P_{r,\text{màx}} \) es dóna quan l’ona de xoc troba una superfície perpendicular a la direcció de propagació:

\[
P_{r,\text{màx}} = 2P_{\text{màx}} \cdot \left(\frac{7P_0 + 4P_{\text{màx}}}{7P_0 + P_{\text{màx}}} \right)
\]

Es pot apreciar en l’equació anterior que \(P_r \) tindrà un valor mínim de \(2P_{\text{màx}} \) ja que en ones petites el valor de \(P_{\text{màx}} \) és menyspreable enfront \(P_0 \). Per a ones de xoc fortes, en canvi, el valor de \(P_r \) s’aproxima a 8 vegades la pressió lateral màxima \((P_{\text{màx}}) \). Per tant, el confinament augmenta els efectes potencials de l’explosió.

A l’hora d’estimar alguns efectes com per exemple, morts o ferides per impactes rebuts com a conseqüència de l’explosió (com es veu en l’apartat 9.1), el paràmetre rellevant és l’impuls. L’impuls està definit com l’àrea que es troba per sota de la corba de sobrepressió (Figura 7.3):

\[
i = \int_0^{t_+} P_0(t) dt = \int_0^{t_+} P_{\text{màx}} \cdot \left(1 - \frac{t}{t_+} \right) \cdot \exp \left(-\alpha \cdot \frac{t}{t_+} \right) dt
\]

\[
i = P_{\text{màx}} \cdot t_+ \cdot \left[\frac{1}{\alpha} - \frac{1}{\alpha^2} \cdot (1 - e^{-\alpha}) \right]
\]

Tot i obtenir aquesta equació, es pot resoldre l’impuls d’una forma més senzilla si es considera que la fase positiva té una forma triangular. Així doncs, s’estima que l’alçada és el pic de sobrepressió i la base la durada de la fase positiva:

\[
i = \frac{1}{2} \cdot \frac{\Delta P}{t_+}
\]

7.3.2. Deflagracions

La majoria de les explosions que succeeixen en la indústria química són deflagracions, que, a diferència de les detonacions, no arriben al seu pic de sobrepressió d’una forma sobtada sinó que ho fan de forma relativament gradual, tot i que molt ràpida. La fase positiva de l’ona de sobrepressió d’una deflagració està caracteritzada per un increment continuat fins al punt de pressió màxima menor que en les detonacions a causa de la seva baixa velocitat; és a dir, per a la mateixa quantitat de material involucrat en
l'explosió, el pic de sobrepressió d'una deflagració serà significativament inferior al pic d'una detonació. Això fa que el rendiment mecànic de les deflagracions sigui molt més baix que el de les detonacions (obtingudes normalment amb explosius convencionals).

La variació de la pressió en un punt determinat, en el cas de les deflagracions, també mostra una fase negativa que, una vegada més, és menys acusada que en el cas de les detonacions. Es pot observar la variació de la pressió en la Figura 7.4.

Els paràmetres que caracteritzen la deflagració són els mateixos que ja s'han exposat en l’apartat anterior per a les detonacions.

En conjunt, doncs, l'efecte de les deflagracions serà inferior al que es donaria —per a la mateixa quantitat de material— si es tractés d'una detonació, a causa de la diferència en les velocitats a les que es desplaça l'ona de sobrepressió i al diferent valor del pic de sobrepressió.

7.4. Explosions de núvols de vapor (VCE)

Una explosió d'un núvol de vapor, coneguda usualment per les sigles VCE (Vapor Cloud Explosion) és el resultat de la fuita d'un material inflamable a l'atmosfera, la dispersió d'aquest i la conseqüent ignició de la porció inflamable del núvol.

La recerca i els casos ocorreguts en relació amb les explosions de núvols de vapor han categoritzat aquestes explosions en dos grups, amb objectius totalment diferents:

- Per una banda, les FAE (Fuel Air Explosions), dedicades a objectius clarament bèl·lics (tot i que, atès el baix rendiment mecànic abans esmentat, aquestes explosions aprofiten més l'efecte tèrmic que no pas l'ona de sobrepressió): la recerca està orientada a augmentar la potència de l'explosió.
- Per altra banda, les VCE (Vapor Cloud Explosions), explosions accidentals associades a instal·lacions industrials: la recerca està dirigida a evitar possibles accidents i, eventualment, reduir-ne les conseqüències.
Al llarg d’aquest capítol es tracten, evidentment, les explosions de núvols de vapor o gas (VCE) que poden trobar-se en la indústria química. Per a què es produeixi una explosió de vapor o gas han de donar-se diverses condicions: en primer lloc, s’ha de produir una fuita d’un material inflamable; a continuació, la ignició d’aquest s’ha de retardar suficient per a formar una mescla la qual tingui una concentració inclosa dins els límits d’inflamabilitat; per últim, ha d’existir una font d’ignició amb una energia capaç d’encendre la mescla de combustible i aire.

Així doncs, la mescla de combustible i aire no s’encendrà si té una composició inferior al límit inferior d’inflamabilitat, LFL (*Lower Flammability Limit*) o bé si està massa concentrat i, per tant, supera el límit superior d’inflamabilitat, UFL (*Upper Flammability Limit*). En cas que es tingui únicament un tipus de combustible mesclat amb l’aire, els seus límits d’inflamabilitat es poden determinar mitjançant dades ja tabulades. A títol d’exemple, en la Taula 7.2 es mostren els valors d’aquests límits per a algunes substàncies. Per altra banda, si existeix una mescla de combustibles en aire, s’utilitzen les expressions:

\[
LFL_{\text{mescla}} = \frac{1}{\sum_{i=1}^{n} \frac{y_i}{LFL_i}}
\]

\[
UFL_{\text{mescla}} = \frac{1}{\sum_{i=1}^{n} \frac{y_i}{UFL_i}}
\]

on \(y_i \) és la fracció del component (sense tenir en compte l’aire) i \(n \) és el nombre de tipus de combustibles.

Taula 7.2. Límits d’inflamabilitat de gasos i vapors en aire a pressió estàndard (%vol a 25 ºC) [4]

<table>
<thead>
<tr>
<th>Gas o Vapor</th>
<th>LFL – UFL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metà</td>
<td>5,0 – 15,0</td>
</tr>
<tr>
<td>Età</td>
<td>3,0 – 15,5</td>
</tr>
<tr>
<td>Propà</td>
<td>2,1 – 9,5</td>
</tr>
<tr>
<td>Etilè</td>
<td>2,7 – 34,0</td>
</tr>
<tr>
<td>Propilè</td>
<td>2,0 – 11,7</td>
</tr>
<tr>
<td>Hidrogen</td>
<td>4,0 – 75,6</td>
</tr>
<tr>
<td>Acetona</td>
<td>2,5 – 13,0</td>
</tr>
<tr>
<td>Dietil èter</td>
<td>1,7 – 36,0</td>
</tr>
<tr>
<td>Acetilè</td>
<td>1,5 – 100,0</td>
</tr>
</tbody>
</table>
7.4.1. Explosions de vapor confinades

Una explosió confinada de vapor consisteix en la inflamació de gas o vapor en condicions de confinament total, per exemple dins un recipient o un edifici. Aquestes explosions es produeixen quan el vapor o gas es troba dins els límits d'inflamabilitat i hi ha un punt d'ignició.

Els dos paràmetres fonamentals en les explosions confinades són: la pressió màxima i la velocitat d'augment de la pressió. Per tal d'avaluar aquestes dos característiques s'utilitza l'aparell que es mostra en la Figura 7.5. Amb aquesta màquina es realitzen diferents tests que mostren la naturalesa explosiva dels gasos que es volen estudiar. Com a resultat s'obté una gràfica que mesura la pressió en funció del temps.

Per tal de realitzar aquesta mesura, s'ha d'incorporar la mescla de gas i aire adequada dins el recipient i s'ha de provocar una ignició mitjançant una espurna. Un cop s'inicia la ignició, l'ona de pressió es mou dins l'aparell fins que col·lideo amb la carcassa. La pressió en l'interior del recipient es mesura mitjançant un transductor col·locat en la paret exterior. Així doncs, s'obté un gràfic com el de la Figura 7.6. La velocitat d'augment de la pressió caracteritza la velocitat de propagació de la flama provinent de l'explosió i, per tant, la magnitud de la mateixa. El pendent o inclinació de la gràfica es calcula en el punt d'inflexió tal i com es mostra en la Figura 7.6.
Aquest tipus d'experiment es repeteix diverses vegades a diferents concentracions. En la majoria dels casos, la pressió màxima i la velocitat màxima d’augment de la pressió es troben dins del rang d’inflamabilitat però no necessàriament a la mateixa concentració tal com es pot observar en els gràfics representats en la Figura 7.7.

Un cop resoltes aquestes característiques, poden ser utilitzades en dos àmbits. Per una banda, els límits d’inflamabilitat trobats s’empren per a determinar les concentracions segures en les que es pot treballar, així com la quantitat de material inert requerit per controlar i establir la concentració dins una regió segura. Per altra banda, la velocitat màxima d’augment de la pressió indica la força de l’explosió. Per tant, es pot comparar el comportament de les explosions de diferents materials. Així mateix, aquesta velocitat màxima pot ésser utilitzada per dissenyar un conducte per tal d’alleujar el recipient durant l’explosió abans que la pressió el trenqui (això sol fer-se en instal·lacions en les que poden produir-se explosions de pols) o bé per establir l’interval de temps per afegir un supressor en l’explosió (aigua, CO₂, o un halogenat) per tal d’aturar el procés de combustió.
Finalment, s’ha de tenir en compte la manera com s’inicia la ignició ja que una ignició a prop del centre del recipient, provoca un augment del valor de \((dP/dt)_{\text{màx}}\) a diferència de l’obtingut en les ignicions provocades vora la carcassa. En quant a l’efecte de la geometria del recipient, s’ha observat que, per a recipients de forma similar amb el mateix tipus d’ignició, la variació de \((dP/dt)_{\text{màx}}\) amb el volum del recipient segueix l’equació de l’anomenada \textit{Llei cúbica}, que estableix menors velocitats d’augment de la pressió per a volums superiors:

\[
\frac{dP}{dt}_{\text{màx}} \cdot V^{1/3} = K_G
\]

La \textit{Llei cúbica} es pot utilitzar per predir velocitats d’ augment de la pressió en cambres de grandària industrial a partir d’experiments de laboratori en recipients anàlegs. S’ha de tenir en compte, però, que l’índex de deflagració \(K_G\) es manté constant per cada combustible, ja sigui sòlid o líquid.

Les explosions confinades són molt rares en la pràctica, però el seu estudi és interessant per a obtenir informació sobre les diferents atmosfères potencialment explosives.

7.4.2. Explosions de vapor parcialment confinades

Les explosions de vapor parcialment confinades són aquelles que succeeixen en edificis o instal·lacions industrials, en les que les paret del edifici o la presència d’equipaments (racks de canonades, reactors, columnes, de destil·lació, etc.) provoquen un cert confinament. Aquest tipus d’accidents són, en part, similars a les explosions totalmente confinades ja que es produeixen en un volum acotat, però es diferencien bàsicament per l’existència de sistemes d’escapament o de ventilació per on els gasos poden desplaçar-se, ja siguin obertures (finestres, per exemple) o espais oberts existents entre les instal·lacions.

Així doncs, una fuita d’un gas o vapor inflamable pot crear una atmosfera inflamable en una zona parcialment confinada donant lloc a una explosió. Al igual que en els altres tipus d’ explosió, l’ona de sobrepressió és l’efecte més important. Aquesta depèn del grau de confinament existent, el qual ve determinat per les dimensions dels edificis, de l’equipament, etc., juntament amb la localització del núvol i la quantitat d’obstacles que obstrueixen el seu pas. Els danys causats per l’explosió ocorren en un període de temps molt petit, ja que l’ona de sobrepressió arriba als diferents obstacles —inclouent-hi els components estructurals— i pot ocasionar un col·lapse en tota l’estructura.

7.4.3. Explosions de vapor no confinades

Les explosions de vapor no confinades són aquelles que ocorren fora d’edificis, instal·lacions industrials o recipients, a l’aire lliure i sense pràcticament cap interacció amb
equipaments o edificis. Es generen, a l’igual que en les explosions confinades, a partir de la fuita d’un vapor combustible o bé d’un líquid a partir del qual es formarà el vapor.

En les explosions de vapor no confinades s’ha de tenir en compte la formació del propi núvol. El temps que tarda en ocórrer la ignició a partir del moment que comença la conformació del núvol passa a ser un factor crític. Així doncs, si transcorre molt poc temps, el núvol serà suficient petit com per no afectar greument al seu entorn en el moment de l’explosió. A mesura que avança el temps, els efectes i la magnitud de l’explosió augmenten com a conseqüència de l’acumulació de material en el núvol. En cas que la ignició sigui retardada un període de temps prou gran, la major part dels materials del núvol serà capaç de dispersar-se i diluir-se en l’ambient fins a concentracions inferiors al límit d’inflamabilitat.

En aquestes explosions, per a què la sobrepressió tingui un valor apreciable la massa de combustible en el núvol, entre els límits d’inflamabilitat, ha de tenir un valor important, que no es coneix amb precisió i que alguns autors situen al voltant dels 1000 kg.
8. MÈTODES D’ESTIMACIÓ DELS EFECTES D’EXPLOSIONS DE NÚVOLS DE GAS O VAPOR

En l’àmbit de la prevenció de riscos s’han desenvolupat molts mètodes per evaluar i predir els efectes que causen les explosions de gas o vapor: des del mètode d’equivalència del TNT fins als mètodes de corbes d’explosió passant per mètodes numèrics.

Al llarg d’aquest capítol es parla dels mètodes d’estimació més importants i més utilitzats: el mètode del TNT equivalent i el mètode de multi-energia (inclòs en els mètodes de corbes d’explosió).

8.1. Mètode del TNT equivalent – Explosions no confinades

S’ha demostrat en molts estudis que la sobrepressió ocasionada per l’explosió d’una atmosfera inflamable que conté una determinada massa de gas o vapor inflamable pot ser estimada mitjançant el càlcul de la massa equivalent de TNT. Es coneix el TNT, trinitrotolú, com a explosiu convencional. Al tractar-se d’un component àmpliament utilitzat en l’àmbit militar, els seus efectes s’han estudiat i tabulat de forma extensa.

El mètode del TNT equivalent permet, doncs, predir, d’una forma ràpida i senzilla, els danys ocasionats per l’explosió d’un núvol de vapor no confinat. És tracta d’un mètode que compta amb una resolució simple ja que l’únic paràmetre utilitzat per representar l’explosió és l’energia explosiva, la qual permet calcular la quantitat de TNT equivalent.

Tot i la simplicitat d’aquest mètode, s’ha mostrat gràcies a estudis pràctics i a dades experimentals que la corba de sobrepressió per al TNT (representada en la Figura 8.1) no és totalmente representativa de la VCE, ja que aquesta s’excedeix en la predicció de la sobrepressió a prop del punt de l’explosió i mostra el contrari en els punts allunyats de l’explosió.

El mètode del TNT equivalent es basa en la llei de Hopkinson, establerta empíricament a partir de proves realitzades utilitzant explosius. Aquesta llei indica que els efectes de dues explosions del mateix explosiu en la mateixa atmosfera són els mateixos a dos punts que es troben a la mateixa distància escalada z. Aquesta s’expressa de la forma següent:

$$ z = \frac{d}{\sqrt[3]{W_{TNT}}} $$

on

- d és la distància real (m), i
- W_{TNT} és la massa equivalent de TNT (kg).
Es pot establir una relació entre la distància normalitzada i la màxima sobrepressió estàtica (pic de sobrepressió) per a una explosió de TNT (o per a l'explosió d'una atmosfera inflamable equivalent a una quantitat donada de TNT). La sobrepressió normalitzada sol expressar-se en referència a la pressió atmosfèrica i al pic de sobrepressió de la següent manera:

\[P_s = \frac{P_{\text{max}}}{P_0} \]

En la Figura 8.1 es pot observar la relació indicada anteriorment. Aquesta gràfica és utilitzada únicament per a explosions que succeeixen sobre una superfície plana (el terra), ja que és on ocorren la major part de les de les explosions accidentals (en les plantes químiques o en el transport). Aquestes explosions són de caire semiesfèric (l'ona de sobrepressió és reflectida en el sòl i es desplaça de forma semiesfèrica). En cas que es volgués tractar una explosió enmig de l’aire (considerant una explosió esfèrica) s’hauria de multiplicar el valor obtingut per 0,5.

![Figura 8.1. Sobrepressió normalitzada \(P_s \) en funció de la distància normalitzada \(z \)](image)

De la mateixa manera, pot establir-se una relació entre l’impuls \(i \) i l’impuls normalitzat \(i_s \) a partir de l’equació que s’expressa:

\[i_s = \frac{i}{W^{1/3}} \]

Per calcular l’impuls normalitzat partint del mètode del TNT equivalent, s’utilitza el gràfic de la Figura 8.2. Aquest gràfic està representat tenint en compte que es té 1 kg de TNT.
Així doncs, per aplicar correctament el mètode del TNT equivalent s’ha d’equiparar una energia coneguda d’una determinada massa de combustible a una massa equivalent de TNT. Aquesta equació es basa en la hipòtesi que la massa d’explosiu es comporta com una massa diferent de TNT amb una base energètica equivalent. El càlcul d’aquesta massa de TNT es realitza mitjançant l’equació:

\[W_{TNT} = \eta \cdot W_c \cdot \Delta H_c / E_{TNT} \]

on

- \(W_c \) és la massa de combustible del núvol entre els límits d’inflamabilitat (kg)
- \(\Delta H_c \) és la calor de combustió del combustible (kJ/kg)
- \(E_{TNT} \) és l’energia alliberada pel TNT (kJ/kg) i
- \(\eta \) és el rendiment mecànic de l’explosió (-).

S’ha d’assenyalar que l’obtenció del valor de \(W_c \) no és un fet trivial. Una possibilitat (la més utilitzada) és suposar que tot el material emès forma part de la regió inflamable del núvol, fet que pot portar a sobreestimacions considerables dels efectes de l’explosió. Un altre procediment més realista consisteix en aplicar un model de dispersió sobre l’emissió i així estimar el volum del núvol que es troba dins la regió d’inflamabilitat en un cert instant.

L’estimació del valor del rendiment mecànic de l’explosió acostuma a ser un altre gran problema en aquest mètode. S’utilitza per a ajustar l’estimació de diversos factors; com poden ser el tipus de mescla que es produeix amb l’aire per part del combustible o la conversió de l’energia tèrmica en energia mecànica, entre d’altres. El valor estimat el qual han ratificat alguns estudis es troba entre el 3% i el 10%.
Així doncs, un cop coneguts els paràmetres i les equacions necessàries per aplicar el mètode del TNT equivalent, ja es pot establir el procediment:

1) Determinar la quantitat total de material inflamable involucrat en l’explosió \(W_c \).

2) Estimar l’eficiència de l’explosió (criteri clarament conservador: 10%; altres criteris corrents utilitzats: 3-5 %) i calcular la massa de TNT \(W_{TNT} \).

3) Mitjançant el gràfic corresponent al TNT, estimar la sobrepressió màxima \(P_{màx} \) i l’impuls \(i \).

4) Mitjançant la taula corresponent, estimar els danys que s’ocasionaran en estructures, en equips de procés i en persones.

Tot i que en principi aquest mètode és únicament per a explosions no confinades, a la pràctica s’utilitza també per a explosions parcialment confinades (per exemple, augmentant el rendiment del 3% al 5%).

A continuació es mostra un exemple que aplica el procediment que s’hauria de seguir per tal d’estimar els danys causats per una explosió mitjançant el mètode del TNT equivalent.

8.1.1. Exemple de resolució

Es mesclen 4500 kg de metà amb l’aire després de produir-se una fuita i exploten. Cal determinar la massa equivalent de TNT \(W_{TNT} \), la sobrepressió màxima \(P_{màx} \), l’impuls \(i \) i els danys que es produiran en un punt situat a 50 m. Pot assumir-se un rendiment \(\eta = 3\% \).

1) \(W_c = 4500 \, kg \)

2) \(\eta = 3\% \)

\[
W_{TNT} = \frac{\eta \cdot W_c \cdot \Delta H_c}{E_{TNT}} = \frac{0,03 \cdot 4500 \, kg \cdot \left(\frac{1 \, mol}{0,016 \, kg} \right) \cdot 818,7 \, kJ/mol}{4684 \, kJ/kg} = 1475 \, kg \, TNT
\]

3) \(z = \frac{d}{3 \sqrt{W_{TNT}}} = \frac{50 \, m}{(1475 \, kg)^{1/3}} = 4,39 \, \frac{m}{kg^{1/3}} \)

\(P_s = 0,74 \)

\(P_{màx} = P_s \cdot P_0 = 0,74 \cdot 101,3 \, kPa = 74,57 \, kPa \)

\(i_s = 0,11 \, Pa \cdot s/kg^{1/3} \)

\(i = i_s \cdot \sqrt[3]{W_{TNT}} = 0,11 \, Pa \cdot s/kg^{1/3} \cdot (1475 \, kg)^{1/3} = 1,26 \, Pa \cdot s \)
8.2. Mètode de multi-energia – Explosions confinades

El mètode multi-energia, desenvolupat per Van den Berg [14][15], es basa en la suposició que només les parts del núvol de vapor que es troben confinades són les que contribueixen a crear l’ona de sobrepressió. Així doncs, aquest mètode identifica aquestes parts i les hi assigna un cert grau de confinament. Es determina aleshores la contribució d’aquest confinament als efectes de la sobrepressió.

Per tal d’establir uns valors correctes per a la sobrepressió s’empren corbes semi-empíriques anomenades corbes característiques. A partir de les corbes proposades per aquest model, s’ajusten les dades per tal d’obtenir equacions que estableixin una relació entre la sobrepressió, l’impuls, la distància i la durada de l’explosió.

La base d’aquest model està referida a què l’energia de l’explosió depèn majoritàriament del nivell de congestió i no tant de la concentració de combustible en l’aire. Per aquesta raó, es suposa que es tracta d’una barreja aproximadament estequiomètrica combustible/aire, amb un valor energètic mitjà vàlid per a tots els hidrocarbars (3,5 MJ/m³).

Per cada una de les explosions tractades amb el mètode multi-energia s’ha d’assignar un nombre que representarà la força i l’energia explosiva inicial. Aquest valor es troba entre l’1 i el 10. Per efectes en zones properes i/o en explosions fortes s’assigna el valor màxim (10). Tot i això, en la majoria de casos s’utilitza un valor igual o superior a 7 en punts allunyats ja que és més representatiu de la realitat. En cas que es vulgui determinar els efectes causats per les parts no confinades, se les hi pot donar un valor baix (entre 1 i 3).

Per a aplicar el mètode multi-energia s’ha de calcular en primer lloc la distància normalitzada \(\tilde{R} \) (distància escalada de Sachs):

\[
\tilde{R} = \frac{d}{\left(\frac{E}{P_0}\right)^{1/3}}
\]

On \(E \) és l’energia alliberada per l’explosió, que es calcula de la següent manera:

\[
E = \eta_c \cdot V_{confinat} \cdot \Delta H_c \cdot \rho_c
\]

on \(\eta_c \) és el rendiment de la combustió (-)
\(\Delta H_c \) és la calor de combustió (kJ/kg) i
\(\rho_c \) és la densitat del combustible (kg/m³)

Un cop determinada \(\tilde{R} \) s’utilitzen els gràfics representats en la Figura 8.3 i la Figura 8.4 per a obtenir el pic de sobrepressió adimensional \(\tilde{\Delta P_s} \) i el temps en fase positiva
adimensional \bar{t}_+. Amb aquests dos valors es pot trobar el pic de sobrepressió i el temps en fase positiva respectivament amb les següents equacions:

$$\Delta P_s = \Delta \bar{P}_s \cdot P_0$$

$$t_+ = \bar{t}_+ \cdot \left[\frac{(E/P_0)^{1/3}}{c_0} \right]$$

Figura 8.3. Pic de sobrepressió adimensional $\Delta \bar{P}_s$ en front de la distància normalitzada \bar{R}
En cas que dos focus d'explosions es trobin a prop l'un de l'altre, les seves ones haurien de ser sumades. La manera més conservativa de fer-ho és adoptar un valor de força igual a 10 i sumar ambedues energies de combustió. En el cas que els resultats de l'estudi siguin altament conservadors, s'haurà d'estimar l'energia inicial d'una manera més específica; ja sigui de forma experimental o mitjançant una anàlisi històrica.

Aquí rau, doncs, el gran problema que sorgeix en l'aplicació d'aquest mètode. L'usuari encarregat de realitzar l'estudi és també qui ha de decidir i fer la selecció del grau de severitat de l'explosió basant-se en el nivell de confinament. Aquí, doncs, l'experiència és un factor important.

Com a conclusió, pertoca dir que el mètode multi-energia és capaç de realitzar uns càlculs referents a les explosions amb una precisió i exactitud més elevades que els obtinguts mitjançant el mètode del TNT equivalent; atès que té en compte la influència del confinament.

8.2.1. Exemple de resolució

Es vessa el propà que conté un tanc d'emmagatzematge de GLP. El tanc té un diàmetre de 20 m i té 10 m d'alçada. Per minimitzar la transferència de calor del tanc al terra, aquest es suporta sobre 267 pivots cilíndrics de formigó. Cada pivot té 1 metre d'alçada i té un diàmetre de 0,3 m. Pot assumir-se que tot el volum per sota del tanc es troba ple d'una mescla estequiomètrica de propà i aire. Pot assumir-se, també, un rendiment del 100%
Cal determinar la sobrepressió i el temps en fase positiva a una distància de 50 m de l’explosió considerant que aquesta succeeix en el centre del núvol.

\[V_{total} = \frac{\pi}{4} \cdot D^2_{tan} \cdot H = \frac{\pi}{4} \cdot (20 \text{ m})^2 \cdot 1 \text{ m} = 314,2 \text{ m}^3 \]

\[V_{obst} = 267 \cdot \frac{\pi}{4} \cdot D^2_{piv} \cdot H = 267 \cdot \frac{\pi}{4} \cdot (0,3 \text{ m})^2 \cdot 1 \text{ m} = 18,9 \text{ m}^3 \]

\[E = \frac{\eta_c \cdot V_{confinat} \cdot \Delta H_c}{\rho_c} = 1 \cdot (314,2 \text{ m}^3 - 18,9 \text{ m}^3) \cdot 3,5 \frac{MJ}{m^3} = 1033,6 \text{ MJ} \]

\[\bar{R} = \left(\frac{E}{P_0} \right)^{1/3} = \left(\frac{50 \text{ m}}{101325 \text{ Pa}} \right)^{1/3} = 2,3 \]

Utilitzem els gràfics corresponents per establir els valors de \(\Delta P_s \) i \(\bar{t} \), i calcular els resultats.

\[\Delta P_s = \Delta \bar{P}_s \cdot P_0 = 0,13 \cdot 101,325 \text{ kPa} = 13,2 \text{ kPa} \]

\[t_+ = \bar{t} \cdot \left[\left(\frac{E}{P_0} \right)^{1/3} \right] = 0,4 \cdot \left[\frac{(1033,6 \cdot 10^6 \text{ J})}{340 \text{ m/s}} \right]^{1/3} = 0,0255 \text{ s} = 25,5 \text{ ms} \]

\[i = \frac{1}{2} \cdot \frac{\Delta P_s}{t_+} = \frac{1}{2} \cdot \frac{13200}{0,0255} = 258,82 \text{ Pa} \cdot \text{s} \]

8.3. Avaluació de la dispersió i explosió del núvol inflamable

Amb el programa ALOHA (Areal Locations Of Hazardous Atmospheres), s’ha realitzat una simulació de la fuita de propà en les condicions descrites en l’exemple anterior, però sense contemplar l’existència del confinament, calculant les condicions de sobrepressió en l’entorn de l’explosió.

Algunes característiques de l’explosió, com per exemple la temperatura ambient o el vent existent s’han pres de forma predeterminada en l’ALOHA. Així doncs, les dades referents al lloc, la substància química, l’atmosfera, la fuita i la conseqüent explosió estan catalogades a la Figura 8.5. Per altra banda, la Figura 8.6 mostra el gràfic de l’àrea afectada per l’explosió. Com pot observar-se, els resultats pel que fa a la sobrepressió en funció de la distància són clarament inferiors als obtinguts mitjançant el mètode de multi-energia. Això és causat per la no existència en aquest cas del confinament.
FIGURA 8.5. RESUM DE DÀTATS DE LA SIMULACIÓ ACOMPLÈN ALOHA

FIGURA 8.6. REPRESENTACIÓ DE L'ENTORN DE L'EXPLOSIÓ DE LA MESCÀ PROPÀ-AIRE
9. **ESTUDI DE LA VULNERABILITAT A LES EXPLOSIONS**

Un cop coneguts el valor de la sobrepressió en una explosió i els seus possibles efectes, s’han de determinar les conseqüències, és a dir, s’ha d’establir com reacciona l’entorn de l’incident a aquest. En aquest apartat es mostraran els procediments per estimar els danys que poden provocar les explosions en persones, edificis i equipament.

9.1. Anàlisi probit – Conseqüències sobre persones

En primer lloc, per dur a terme l’esmentada estimació de les conseqüències és necessària una funció que relació la magnitud de l’accident (en el cas d’aquest treball, la sobrepressió d’una explosió) amb el grau de dany que aquesta provoca. Els models que tenen la capacitat d’establir aquesta relació són els models de dosi i resposta. Actualment, el model més utilitzat és el de l’anàlisi probit (probit = “probability unit” en anglès) que relaciona la variable “probit” amb la probabilitat.

La funció probit es caracteritza amb la variable \(Y \) i mesura el percentatge de població vulnerable sotmesa a un incident d’una intensitat determinada \(V \) que rep un dany determinat (o la probabilitat que un determinat percentatge rebi aquest dany). La relació entre la població vulnerable \(Y \) i la probabilitat \(P \) ve donada per l’equació següent:

\[
P = \frac{1}{(2\pi)^{1/2}} \int_{-\infty}^{Y-5} \exp \left[-\frac{V^2}{2} \right] dV
\]

La distribució que estableix aquesta equació té una mitjana de 5 i una desviació normal d’1. Aquesta relació té la capacitat de transformar la funció sigmoidal (en forma de S) que correspon a la corba dosi-resposta normal en una línia recta quan es representa la funció probit en una escala lineal, tal i com es mostra en la Figura 9.1. Això permet ajustar les constants més fàcilment.

![Figura 9.1. Relació dosi-resposta. Transformació de la funció sigmoidal en recta](image-url)
La probabilitat (que varia entre 0 i 1) acostuma a ésser substituïda pel percentatge (entre 0 i 100), que és més pràctic a l'hora de realitzar una anàlisi de risc. Per establir una relació entre la funció probit i aquest percentatge s'utilitza l'expressió següent:

\[Y = a + b \cdot \ln(V) \]

on \(a \) i \(b \) són constants empíriques, que es determinen experimentalment a partir d'informació procedent d'accidents. En la Taula 9.1 s'inclouen diverses equacions probit per a explosions on s'hi poden trobar els valors de les constants \(a \) i \(b \) per a cada un dels tipus de dany a persones. La dosi \(V \), com bé s'ha esmentat anteriorment, és una mesura de la intensitat d'allò que causa el dany. Aquesta és constituïda per un paràmetre anomenat variable causativa, també representada en la Taula 9.1.

Taula 9.1. Correlació existent entre els danys en persones i els paràmetres probit. [7]

<table>
<thead>
<tr>
<th>Tipus de dany</th>
<th>Variable causativa</th>
<th>Constants probit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Morts per hemorràgia de pulmó</td>
<td>Sobrepressió (N·m(^2))</td>
<td>-77,1 6,91</td>
</tr>
<tr>
<td>Trencaments de timpà</td>
<td>Sobrepressió (N·m(^2))</td>
<td>-15,6 1,93</td>
</tr>
<tr>
<td>Morts per impacte</td>
<td>Impuls (N·m(^2)·s)</td>
<td>-46,1 4,82</td>
</tr>
<tr>
<td>Ferides per impacte</td>
<td>Impuls (N·m(^2)·s)</td>
<td>-39,1 4,45</td>
</tr>
<tr>
<td>Ferides per fragments voladors</td>
<td>Impuls (N·m(^2)·s)</td>
<td>-27,1 4,26</td>
</tr>
</tbody>
</table>

En la mateixa línia, es pot trobar representada la relació entre els valors de probabilitat, expressats com a percentatge, i les unitats probit, en la Taula 9.2 i la Figura 9.2.

Taula 9.2. Relació entre la funció probit i el percentatge
A l'hora d'estudiar els efectes que produeix una explosió sobre les persones, s'han de tenir en considerar els danys directes i els indirectes.

Els **danys directes** són aquells que vénen causats únicament pels efectes de la sobrepressió. Aquests tenen lloc essencialment en aquelles parts del cos susceptibles de ser aixafoades (els espais buits), especialment quan es produeix un augment de pressió sobtat sense que existeixi un temps d'adaptació. Aquests espais buits són la caixa pulmonar i el conducte auditiu.

Les pitjors circumstàncies en les que s'aprecien els danys causats per la sobrepressió són aquelles en què el cos es troba a prop d'una superfície plana perpendicular a la direcció de propagació de la sobrepressió (una paret) que la reflecteix. Unes circumstàncies més favorables a l'hora de trobar-se davant una ona de sobrepressió és quan la persona involucrada té l'eix longitudinal perpendicular a la direcció de propagació de la sobrepressió (sense efectes de reflexió). Finalment, la situació en la que es produeix el menor impacte sobre l'ésser humà és aquella en la que l'eix longitudinal del cos es troba posicionat en la mateixa direcció que l'ona. Aquests tres casos esmentats poden veure's exposats en la Figura 9.3.
Tal i com s’ha esmentat anteriorment, els danys provocats a la caixa pulmonar són una de les conseqüències probables quan una persona està sotmesa a l’acció de l’ona de sobrepressió. Així doncs, es produeix una hemorràgia pulmonar provocada per l’aixafament de la caixa toràcica. La mortalitat d’aquest tipus d’incident pot ésser calculada mitjançant la funció probit i la taula de la Taula 9.1 quedant una expressió com la següent:

\[Y = -77,1 + 6,91 \cdot \ln(\Delta P) \]

L’altre efecte directe anomenat és el trencament de timpà. De la mateixa manera que s’ha fet amb l’hemorràgia pulmonar s’utilitza la funció probit i la taula de la Taula 9.1 per determinar el tipus de danys que provocarà la sobrepressió en les persones.

\[Y = -15,6 + 1,93 \cdot \ln(\Delta P) \]

A diferència que en les estructures i en els equips, s’han de tenir en compte altres factors a més a més de la sobrepressió. Aquests altres factors són els anomenats efectes secundaris o danys indirectes. Aquests poden ser classificats en tres grups: aquells causats pels fragments, aquells causats pel desplaçament i aquells causats per l’esfondrament d’habitatges.
En primer lloc, els efectes **causats pels fragments**, que poden ser despresos per l’explosió o bé pot tractar-se de cossos desplaçats per l’ona de sobrepressió. Poden considerar-se dos tipus de fragments: els que punxen i tallen, com per exemple els que es desprenen de les finestres; i els que únicament colpegen, com pedres o maons. En la Taula 9.3 i la Taula 9.4 es veuen reflectits els criteris aplicables segons la velocitat a la que els fragments impacten amb el cos d’una persona.

<table>
<thead>
<tr>
<th>Velocitat d’impacte (m/s)</th>
<th>Criteri</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Llindar de ferida a la pell</td>
</tr>
<tr>
<td>30</td>
<td>Llindar de ferides greus</td>
</tr>
<tr>
<td>55</td>
<td>Ferides greus (50%)</td>
</tr>
<tr>
<td>90</td>
<td>Ferides molt greus (100%)</td>
</tr>
</tbody>
</table>

Un altre tipus de danys indirectes són aquells **causats pel desplaçament** del cos. La sobrepressió pot fer que una persona sigui desplaçada i que aquesta xoqui contra una superfície o contra algun objecte provocant-li així un dany. A l’hora de predir el dany que sofrirà l’afectat, existeixen diverses discordances depenent de l’estudi que s’observi.

Alguns assenyalen que la part més sensible de sofrir un cop és el cap (patir una fractura de crani). Altres estableixen que tot i ser el crani un element sensible també és molt resistent i que, per tant, s’ha de tenir en compte qualsevol part del cos, d’una manera aleatòria. Així doncs s’estableixen uns criteris en referència al tipus de dany que sofrirà un cos exposat als efectes de la sobrepressió en la Taula 9.5 i la Taula 9.6.
Incidència dels accidents majors a la Unió Europea. Anàlisi del cas de les explosions d’atmosferes inflamables.

Taula 9.5. Criteri per al dany al cap (fractura en la base del crani). [1]

<table>
<thead>
<tr>
<th>Velocitat d’impacte (m/s)</th>
<th>Criteri</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Segur</td>
</tr>
<tr>
<td>4</td>
<td>Lindar</td>
</tr>
<tr>
<td>5,5</td>
<td>50%</td>
</tr>
<tr>
<td>7</td>
<td>100%</td>
</tr>
</tbody>
</table>

Taula 9.6. Criteri per a la mortalitat per impacte de tot el cos. [1]

<table>
<thead>
<tr>
<th>Velocitat d’impacte (m/s)</th>
<th>Criteri</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Segur</td>
</tr>
<tr>
<td>6,5</td>
<td>Lindar</td>
</tr>
<tr>
<td>16,5</td>
<td>50%</td>
</tr>
<tr>
<td>42</td>
<td>100%</td>
</tr>
</tbody>
</table>

Apart de les dades mostrades en les dues taules anteriors s’ha trobat a la literatura especialitzada les equacions probit següents:

Mortalitat per impacte al cap:

\[Y = 5 - 8,49 \cdot \ln \left(\frac{2430}{\Delta P} + \frac{4 \cdot 10^8}{\Delta P \cdot i} \right) \]

Mortalitat per impacte a tot el cos:

\[Y = 5 - 2,44 \cdot \ln \left(\frac{7380}{\Delta P} + \frac{1,3 \cdot 10^9}{\Delta P \cdot i} \right) \]

on \(\Delta P \) és la sobrepressió i \(i \) és l’impuls de l’explosió.

Finalment, cal considerar els incidents causats per l’esfondrament d’habitatges, que es produeixen quan un edifici és destruït per l’acció d’una ona de sobrepressió. La vulnerabilitat d’aquesta mena d’accidents varia segons les persones que es trobin dins; per exemple, no serà el mateix els danys causats en nens petits que en adults. Així doncs, tot i que les conseqüències varien depenent del tipus d’habitatge, es pot determinar que l’esfondrament provoca aproximadament un 20% de morts i un 80% de ferits aproximadament.
9.1.1. **Exemple de resolució**

En els apartats 8.1.1 i 8.2.1, es resolen dos exemples numèrics emprant dos mètodes d’estimació dels efectes de les explosions de núvols de vapor. En aquest apartat se’n determinen les conseqüències arrel dels valors de sobrepessió i d’impuls obtinguts.

En primer lloc, en el mètode del TNT equivalent s’han obtingut uns valors tals que $\Delta P = 74,57 \text{ kPa}$ i $i = 1,26 \text{ Pa} \cdot \text{s}$. Així doncs, en referència a les diferents conseqüències en les persones:

- **Hemorràgia pulmonar**

 $Y = -77,1 + 6,91 \cdot \ln(74570) = 0,43 \rightarrow 0\%$ d’afectats

- **Trencament de timpà**

 $Y = -15,6 + 1,93 \cdot \ln(74570) = 4,5 \rightarrow 31\%$ d’afectats

- **Mortalitat per impacte al cap**

 $Y = 5 - 8,49 \cdot \ln\left(\frac{2430}{74570} + \frac{4 \cdot 10^8}{74570 \cdot 1,26}\right) = -66 \rightarrow 0\%$ d’afectats

- **Mortalitat per impacte de tot el cos**

 $Y = 5 - 2,44 \cdot \ln\left(\frac{7380}{74570} + \frac{1,3 \cdot 10^9}{74570 \cdot 1,26}\right) = -18,27 \rightarrow 0\%$ d’afectats

Així doncs, el nombre teòric de morts per una explosió de 4500 kg de metà a 50 m serà de 0 persones, mentre que un 31% de la gent patirà un trencament de timpà.

En l’exemple resolt amb el mètode multi-energia els resultats de sobrepessió i impuls són $\Delta P = 13,2 \text{ kPa}$ i $i = 258,82 \text{ Pa} \cdot \text{s}$. Per tant, les conseqüències que sofriran les persones seran:

- **Hemorràgia pulmonar**

 $Y = -77,1 + 6,91 \cdot \ln(13200) = -11,54 \rightarrow 0\%$ d’afectats

- **Trencament de timpà**

 $Y = -15,6 + 1,93 \cdot \ln(13200) = 2,71 \rightarrow 1\%$ d’afectats

- **Mortalitat per impacte al cap**

 $Y = 5 - 8,49 \cdot \ln\left(\frac{2430}{13200} + \frac{4 \cdot 10^8}{13200 \cdot 258,82}\right) = -35,45 \rightarrow 0\%$ d’afectats
• Mortalitat per impacte de tot el cos

\[Y = 5 - 2,44 \cdot \ln \left(\frac{7,380}{12000} + \frac{1,3 \times 10^9}{12000 \cdot 258,82} \right) = -9,5 \Rightarrow 0\% \text{ d’afectats} \]

Per tant, el nombre teòric de morts d’una explosió d’un vessament d’un tanc ple de propà a 50 m serà de 0 persones, mentre que un 1% de la gent patirà un trencament de timpà.

9.2. Vulnerabilitat estructural

Per tal de determinar els danys estructurals que sorgiran després d’ocórrer una explosió s’utilitzen freqüentment taules obtingudes a partir de dades històriques o experimentals ja que és molt complicat conèixer l’evolució de la càrrega que actua sobre una estructura segons el temps.

Taula 9.7. Danys estimats sobre estructures comunes basats en la sobrepressió. [7]

<table>
<thead>
<tr>
<th>Pressió (kPa)</th>
<th>Danys causats</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,14</td>
<td>Soroll molest (137 dB)</td>
</tr>
<tr>
<td>0,21</td>
<td>Trencament ocasional de vidres grans sotmesos a tensió</td>
</tr>
<tr>
<td>0,28</td>
<td>Soroll molt fort (143 dB)</td>
</tr>
<tr>
<td>0,69</td>
<td>Trencament de vidres petites sotmesos a tensió</td>
</tr>
<tr>
<td>1,03</td>
<td>Pressió tímica de trencament de vidres</td>
</tr>
<tr>
<td>2,07</td>
<td>"Distància segura". Existeix un 95% de probabilitats de no sofrir danys greus. Trencament del 10% de les finestres</td>
</tr>
<tr>
<td>2,76</td>
<td>Detriment estructural de baix nivell</td>
</tr>
<tr>
<td>3,4-6,9</td>
<td>Trencament de finestres petites i grans</td>
</tr>
<tr>
<td>4,8</td>
<td>Perjudicis poc severs en l’estructura d’una llar</td>
</tr>
<tr>
<td>6,9</td>
<td>Demolició parcial d’una casa. Inhabitable</td>
</tr>
<tr>
<td>9</td>
<td>Distorsió de bigues d’acer</td>
</tr>
<tr>
<td>13,8</td>
<td>Col-lapse parcial de les parets i sostres d’una llar</td>
</tr>
<tr>
<td>13,8-20,7</td>
<td>Trencament de parets de formigó no revestit</td>
</tr>
</tbody>
</table>
A més a més, es poden determinar altres danys estructurals a partir del probit utilitzant les constants que es mostren en la Taula 9.8.

<table>
<thead>
<tr>
<th>Tipus de dany</th>
<th>Variable causativa</th>
<th>Constants probit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danys estructurals</td>
<td>Sobrepressió</td>
<td>-23,8 2,92</td>
</tr>
<tr>
<td>Trencament de vidres</td>
<td>Sobrepressió</td>
<td>-18,1 2,79</td>
</tr>
</tbody>
</table>

La càrrega generada sobre una estructura com a interacció d’aquesta amb l’ona de sobrepressió ve causada per dos efectes: la difracció i el desplaçament. En primer lloc, la difracció s’entén com l’efecte resultat de la diferència de pressió generada en l’estructura, quan l’ona de sobrepressió passa per damunt d’ella. Quan entren en contacte l’ona de sobrepressió i l’objecte o estructura, es genera una ona que és reflectida i que, en col·lidi amb els vents que segueixen l’ona inicial provoca una sobrepressió molt elevada. Conforme el temps avança, l’ona inicial envolta totes les cares de l’estructura i genera altres ones reflectides de forma que la pressió s’uniformitza.

Per altra banda, el desplaçament ve causat per la pressió dinàmica explicada en l’apartat 7.3. Per a explosions amb una sobrepressió superior a 480 kPa (grans explosions) la pressió dinàmica és superior al pic de sobrepressió, de manera que la càrrega més gran sobre l’estructura està causada per l’efecte del desplaçament.
Un cop considerats aquests dos efectes, s'ha de tenir en compte que, majoritàriament, és el pic de sobrepressió el que es troba per damunt de la pressió dinàmica i, per tant, la difracció té un efecte superior sobre l'estructura que no pas el desplaçament.

9.2.1. Exemple de resolució

Un cop resoltes les conseqüències que tindran els accidents —definits en els apartats 8.1.1 i 8.2.1— en les persones en l'apartat 9.1.1, han de determinar-se les conseqüències en els edificis i les instal·lacions industrials.

En el primer dels problemes, el del mètode del TNT equivalent, la sobrepressió final és de 74,57 kPa. Així doncs:

- Danys estructurals
 \[Y = -23,8 + 2,91 \cdot \ln(74570) = 8,84 \Rightarrow 100\% \text{ de l'estructura derruida} \]

- Trencament de vidres
 \[Y = -18,1 + 2,79 \cdot \ln(74570) = 13,20 \Rightarrow 100\% \text{ dels vidres trencats} \]

A més a més, tenint en compte la Taula 9.7 els danys generals que es produiran seran “Destrucció completa d'edificis i maquinaria pesada (3500 kg)”

En el problema del mètode multi-energia, la sobrepressió obtinguda és de 13,2 kPa, que comporta les conseqüències següents:

- Danys estructurals
 \[Y = -23,8 + 2,91 \cdot \ln(13200) = 3,81 \Rightarrow 12\% \text{ de l'estructura derruida} \]

- Trencament de vidres
 \[Y = -18,1 + 2,79 \cdot \ln(13200) = 8,37 \Rightarrow 100\% \text{ dels vidres trencats} \]

A més a més, tenint en compte la Taula 9.7 els danys generals que es produiran seran “Demolició parcial d'una casa. Inhabitable.”
10. EXPLOSIONS HISTÒRIQUES

Al llarg de la història, milers d’indústries d’arreu del món han sofert accidents de tota mena: des de la més petita esquerda fins a l’explosió devastadora d’un núvol de vapor. Ja que durant aquest treball s’ha especificat una incidència més elevada en les explosions d’atmosferes inflamables, en aquest capítol es detallaran dos de les explosions de núvols de vapor més destructives de la història moderna.

Per una banda, l’acció ocorregut a Flixborough en 1974, que va ser el causant de la major explosió a Anglaterra fora dels anys en què es trobava en guerra. Per altra banda, l’explosió a Pasadena l’any 1989 que va suposar un gran nombre de morts i ferits i va causar la creació d’un procediment similar a la Directriu Seveso implantada en la Comunitat Europea.

10.1. Flixborough

El dissabte 1 de juny de 1974 a les 16:53 va ocórrer la major explosió a Anglaterra en temps de pau. L’explosió es va produir en la secció de reactors de la planta de caprolactama ($\text{C}_6\text{H}_{11}\text{NO}$) i va tenir una magnitud equivalent d’entre 15 i 45 tones de TNT. [10]

Al ser un dissabte, la fàbrica no es trobava al seu màxim de capacitat i van ser afectades 64 persones, de les quals 28 van morir. Als volants de la fàbrica, 53 persones van sofrir alguna lesió però, afortunadament cap va resultar mortalment ferida. En quant als danys materials, gairebé 2000 edificis entre llars i botigues del poble més proper van patir d’alguna manera els efectes de l’acció.

El desastre ocorregut a Flixborough va ser de vital importància en el desenvolupament de la prevenció en seguretat i pèrdues (Safety and Loss Prevention) al Regne Unit. Va provocar que tant la indústria com la població fossin més conscients del perill que comportaven les grans plantes químiques. Així doncs, es va incrementar la demanda de controls en les grans indústries per part de la societat; fet que va dur a la formació del ACMH (Advisory Committee on Major Hazards) a finals d’aquell mateix any.

10.1.1. El procés i la planta

La planta de producció de ciclohexanona a partir de ciclohexà, mostrada en la Figura 10.3, consistia en un conjunt de sis reactors en sèrie on es produïen un conjunt de reaccions. La característica particular d’aquesta planta és que la ciclohexanona necessària per produir la caprolactama s’obtenia mitjançant l’oxidació del ciclohexà en comptes de fer-ho a través de la hidrogenació del fenol. Fins l’any 1972 s’utilitzava el procés d’hidrogenació de fenol però, a partir d’aquest any, es va canviar per el d’oxidació
del ciclohexà ja que, tot i ser més perillós prometia produir 70000 tones de caprolactama a l’any. Tot i tenir les expectatives de producció elevades, finalment es va arribar a produir amb una capacitat de 47000 tones de caprolactama a l’any. Les reaccions que formaven part d’aquesta producció es veuen representades en les següents figures (Figura 10.1 i Figura 10.2).

![Figura 10.1. Oxidació del ciclohexà per obtenir ciclohexanona](image1)

![Figura 10.2. Producció de la caprolactama a partir de la ciclohexanona](image2)

El fet de produir la caprolactama mitjançant aquest procediment, així com el disseny de la planta, va fer que el ciclohexà estigués present en grans quantitats, amb una sèrie de reactors de gran volum que operaven a pressions i temperatures molt elevades. Al tractar-se d'un producte inflamable, és obvi que qualsevol fuita de la planta es podia convertir en un perill potencial.

L'alimentació dels reactors era una mescla de ciclohexà nou i material reciclat. El producte dels reactors contenien un 94% de ciclohexà. En fases posteriors, el producte de la reacció es destil·lava per tal de separar el ciclohexà que no havia reaccionat (que es reciclava de nou cap als reactors) de la ciclohexanona i el ciclohexanol que es convertien en caprolactama. Les condicions en els reactors eren de 9 bar de pressió i 155 ºC. Es tractava d'una reacció exotèrmica.

La calor necessària per a l’esclafament inicial i per al manteniment de la temperatura durant l’operació venia donat per un bescanviador de calor (C2544). Per una banda del bescanviador, entraix l'alimentació de ciclohexà dirigida als reactors i pel sentit contrari, circulava el vapor sorgit dels reactors que provenia de la vaporització del ciclohexà líquid i d'injeccions de nitrogen i oxigen no-reaccionat. Després de passar per l'intercanviador de calor, el vapor de ciclohexà es condensava i s'enviava mitjançant un control de vèlvenes a un cremador de gas o torxa (Flare stack). Aquest nitrogen era utilitzat també per controlar la pressió dins dels reactors.
Figura 10.3. Diagrama de flux simplificat de la planta d’oxidació de ciclohexà a Flixborough

10.1.2. Esdeveniments previs a l’explosió

Durant el vespre del 27 de març de 1974, es va descobrir una esquerda en el reactor número 5 que provocava una fuita de ciclohexà. Aquest important defecte va provocar que es tanqués la planta i es realitzés una investigació completa. Aquesta va determinar que l’esquerda superava els 1,5 m. La resolució del pla d’acció enfront aquesta fissura va esdevenir en l’extracció del reactor de la planta i la instal·lació d’un bypass que connectés els reactors 4 i 6.

Les obertures d’entrada i sortida d’ambdós reactors tenien un diàmetre de 28 polsades (71 cm aproximadament) però la canonada més gran de la que disposaven per realitzar el bypass tenia un diàmetre de 20 polsades (50 cm aproximadament). A més a més, els cantells de cada reactor es trobaven a alçades diferents. En aquesta situació es va decidir modificar la forma de la canonada i soldar els seus extrems als cantells dels reactors tal i com es veu en la Figura 10.4.
Al tractar-se d’una solució fora del comú, es van fer diferents càlculs sobre la canonada per tal de comprovar que seria capaç d’aguantar la producció de la planta. En primer lloc, es va determinar que la canonada era prou gran per al cabal que havia de circular. Per altra banda, es va disposar que era capaç de suportar la pressió de la mateixa manera que una canonada recta. Tot i això, no es va calcular si la canonada seria capaç d’aguantar les vibracions provocades per un augment sobtat de la pressió.

El bypass estava suportat per una estructura de barres i tarimes tal i com es mostra en la Figura 10.4, una solució totalment provisional i insuficient. Després de tot aquest muntatge no es va realitzar cap test de pressió sobre la canonada o sobre el circuit de reactors. Així doncs, la planta va iniciar de nou el seu procés de producció de caprolactama sense que el muntatge del bypass donés cap problema. Tot i això es va trobar que s’utilitzava una quantitat estranyament més elevada de nitrogen.

Passats 2 mesos, el 29 de maig de 1974 es va trobar que una de les vàlvules d’aïllament de la planta tenia fuites. Es va aturar la planta i es va reparar la Vàlvula.

L’1 de juny, la planta va iniciar-se com qualsevol altre dia. La seqüència precisa d’esdeveniments és massa complexa per determinar-se però es sap que el detonant important de l’explosió va ser un augment inesperat de la pressió a la que treballaven els reactors (9 bar). A primera hora del matí va haver-hi una crescuda sobtada de la pressió fins a 8,5 bar quan la temperatura del reactor núm. 1 encara era de 110 ºC. Més tard, quan les temperatures dels reactors van arribar a les de treball, la pressió va arribar als 9,2 bar. El control d’aquest augment de la pressió no va poder realitzar-se a causa de les grans quantitats de nitrogen que es necessitaven.
10.1.3. L'explosió

Així doncs, al cap d'unes hores es va produir el trencament de la canonada de 20 pòsades provocant així una fuita de ciclohexà. Tot i ser aquest el problema principal de l'accident, no se sap si un incendi ocasionat en una petita canonada de 8 pòsades mostrada en la Figura 10.3 (situada entre els separadors S2538 i S2539) hi va contribuir.

La fuita de ciclohexà va provocar la formació d'un núvol de gas que va originar una gran explosió que va arrasar tot el que va trobar al seu pas en un radi de centenars de metres. En la Figura 10.5 i la Figura 10.6 es poden observar tots els danys que va causar l'explosió a la planta química. Un dels punts més afectats de la zona va ser la sala de control, que va col·lapsar i va quedar completament destruïda: l'ona de xoc va trencar totes les finestres i va provocar que es desplomés el sostre causant la mort de 18 persones que s'hi trobaven dins. 10 persones més que es trobaven en diversos punts de la planta també van morir en l'accident.

![Figura 10.5. Fotografia aèria de la planta de Flixborough abans de l'accident](image-url)
Una altra de les conseqüències de la gran explosió va ser l’aparició de fosc per tot arreu. Els serveis de bombers van trigar dues setmanes en aconseguir apagar el gran incendi que s’havia ocasionat.

La investigació que es va dur a terme després de l’explosió va dur a la redacció del *Flixborough Report* on els experts Gugan (1976) i Sadée, Samuels i O’Brien (1976-77) van determinar que la quantitat de ciclohexà disponible en els reactors era de 120 tones. Es va trobar, però, que restaven encara 80 tones de ciclohexà sense reaccionar així que la màxima quantitat possible involucrada en l’explosió era de 40 tones. Els mateixos van estimar que 30 d’aquestes 40 tones van ser les que van sortir dels reactors abans de l’explosió i per tant utilitzaren aquesta quantitat com a base dels seus càlculs.

La forma precisa del núvol és desconeguda i no és coneix exactament quina va ser la font d’ignició. Però, segons les precipitacions de carbó trobades al terra, es va estimar la seva forma tal i com es mostra en la Figura 10.7. Es va deduir, també, que la font d’ignició podia haver estat la planta d’hidrogen. En quant a l’interval de temps existent entre la ruptura de la canonada i l’explosió, es va estimar que aquest tenia una durada de 45 segons.

Els efectes de l’explosió van ser valorats per Sadée, Samuels i O’Brien i van quedar reflectits en la gràfica de la Figura 10.8, on cada una de les barres individuals representa els rangs de sobrepresió màxima determinats a partir del dany estructural enfront la distància del epicentre de l’explosió.
La majoria d'estimacions de l'energia alliberada es basen en el model més simple, el model del TNT equivalent. Aquestes estimacions es troben entre les 15 i les 45 tones de TNT. Un altre model de dos paràmetres descriu l'accident en termes de massa de TNT i
d'alçada de l'explosió. Utilitzant aquest model, Sadéé et al. van estimar que l'explosió era equivalent a 16±2 tones de TNT a una alçada de 45±24 metres per damunt del terra. Es dedueix doncs l'equivalència de 16 tones de TNT en tones de ciclohexà:

\[
W_{TNT} = \frac{\eta \cdot W_c \cdot \Delta H_c}{E_{TNT}} = \frac{W_{ceq} \cdot \Delta H_c}{E_{TNT}}
\]

\[
16000 = \frac{W_{ceq} \cdot \left(\frac{1 \text{ mol}}{0.084 \text{ kg}} \right) \cdot 3920 \text{ kJ/mol}}{4684 \text{ kJ/kg}}
\]

\[
W_{ceq} = 1605 \text{ kg}
\]

\[
\eta = \frac{W_c}{W_{ceq}} = \frac{30000}{1605} \approx 0.05
\]

Per tant, si el núvol contenia 30 tones de ciclohexà i va donar una explosió d'aproximadament 1,6 tones, l'eficiència de l'explosió va ser del 5%; aquest rendiment, força elevat, fou provocat pel confinament parcial. La sobrepressió màxima al centre del núvol no pot determinar-se exactament; es va estimar, a partir de l'anàlisi dels danys estructurals, una sobrepressió màxima de 70 kPa causada per la reflexió de l'ona de sobrepressió. Tot i això es va establir una sobrepressió de 100 kPa en el límit del núvol (Cloud boundary) tal i com es mostra en la Figura 10.8.

Aquest accident és un molt bon exemple del perill associat a les modificacions en una planta, que no sempre es sotmeten als mateixos nivells d'exigència i comprovació que el disseny inicial de la planta.

10.2. Pasadena

El 23 d'octubre de 1989, poc després de les 13:00 h, es va produir una fuita a la planta de polietilè del complex químic de Houston de la companyia Phillips 66 a prop de Pasadena, Texas. Es va formar un núvol de vapor que posteriorment es va encendir i va formar una gran explosió de vapor. En l'incident van morir 22 persones i una més va fer-ho al cap d'uns dies a causa de les greus ferides que l'accident li havia provocat. El nombre de ferits es va estipular entre 150 i 300 persones.

10.2.1. El procés i la planta

En la planta on va ocórrer l'incident es produïa polietilè d'alta densitat (HDPE), un material plàstic que s'empra per fabricar ampolles de llet i altres tipus d'envasos. El procediment que utilitzava la planta de Phillips 66 era la polimerització de l'etilè utilitzant l'isobutà com a catalitzador de la reacció (tal i com es mostra en la Figura 10.9).
Abans de l'accident, el HDPE es produïa en dues plantes que generaven 1500 milions de tones de material cada any, representant entre un 15 i un 20% de la demanda dels Estats Units. Aquestes dues plantes (Planta IV i Planta V) poden trobar-se en la part inferior de la Figura 10.10, que mostra part de la planta de Pasadena. La dissolució de l'etilè s'aconseguia mitjançant la reacció de l'isobutà amb l'etilè gas en unes canonades llargues a 4800 kPa i a temperatures molt elevades. A més a més s'hi afegien alguns altres materials per tal de modificar el polietilè i així donar-li les característiques desitjades. Aquesta combinació de gasos en les condicions de pressió i temperatura elevades era extremadament inflamable.

Figura 10.10. Mapa parcial de la planta de Phillips 66 a Pasadena [12]
L’etilè dissolt reaccionava amb ell mateix en el reactor de bucle (Reactor loop) per formar partícules de polietilè que s’anaven dipositant en diferents etapes d’assentament. El polietilè s’anava eliminant lentament mitjançant una vàlvula col·locada al final de l’etapa. A l’inici de les etapes, es trobava una vàlvula de bola (DEMCO) que connectava les cada reactor de bucle amb la seva corresponent etapa d’assentament. Aquesta vàlvula romania oberta durant la producció per a que així el polietilè es pogués dipositar. L’esquema del sistema de vàlvules situades en la part inferior del reactor es mostra en la Figura 10.11.

Figura 10.11. Esquema del sistema de vàlvules en la part inferior del reactor de la planta de producció d’HDPE
Moltes vegades, el plàstic obstruïa la circulació d’algún dels trams. Això provocava que la vàlvula DEMCO de l’etapa bloquejada es tanqués mentre l’etapa es desmontava i es netejava. Durant aquest procés de desbloqueig, la reacció continuava i el producte es dipositava en les altres etapes. Així doncs, la vàlvula DEMCO romenia tancada prevenint, per tant, la fuita dels gasos a l’atmosfera.

10.2.2. Esdeveniments previs a l’explosió

El dia previ a l’explosió, es va començar a treballar en el desbloqueig de tres de les sis etapes del Reactor 6 ja que s’havien taponat. Els operaris van cedir la feina a l’empresa especialista de manteniment, *Fish Engineering*. El dia de l’incident, a les 8 del matí, es va continuar amb el treball en les etapes taponades. Com s’ha indicat anteriorment, el procediment a realitzar era tancar la vàlvula DEMCO i aturar la circulació de les corrents que es dirigissin a aquella etapa.

L’equip de manteniment va ser capaç d’extreure la major part del tap però hi va restar una petita part encaixada a uns 30-45 cm de profunditat per sota de la vàlvula d’esfera. Poca estona després, va ocórrer la fuita que provocaria la gran explosió.

Tot i que tant les normes de seguretat de la indústria com els procediments de seguretat de Phillips establien que havia d’existir un sistema de bloqueig doble, les investigacions realitzades a posteriori van posar de manifest que no era així: aquestes investigacions van determinar que la vàlvula d’esfera DEMCO es trobava oberta en el moment de la fuita. Les mànegues d’aire que es connectaven a la vàlvula per tal de determinar una posició s’havien connectat de forma inversa i això va provocar que s’obris en comptes de tancar-se. Aquest error es va donar ja que ambdues mànegues eren idèntiques i l’operari encarregat de connectar-les les podria confondre fàcilment.

10.2.3. L’explosió

A les 13:00 h del 23 d’octubre de 1989, i a causa de la posició incorrecta d’una vàlvula DEMCO, es va produir una fuita de 39000 kg d’una mescla d’etilè, isobutà, hexè i hidrogen. L’escapament de gas es va produir en molts pocs segons i va formar un núvol de vapor immens que va cobrir gran part de la planta de Phillips. Al cap d’uns 90-120 segons, el núvol de vapor va trobar una font d’ignició i va explotar i va destruir completament la sala de control i va esquerdar recipients que contenien materials inflamables. Aquesta font d’ignició no es va poder determinar amb claredat però es van establir 5 possibles opcions:

1. Un activador de catalitzador amb una flama oberta.

2. Alguna activitat de soldadura o de tall.

3. Un muntacàrregues operatiu.
4. Un engranatge elèctric a l’edifici de control i a l’edifici d’acabament.

5. 11 vehicles aturats al pàrquing a prop de la planta de polietilè.

L’informe de la OSHA (Occupational Safety and Health Administration) va determinar que l’explosió havia tingut una magnitud equivalent a 2,4 tones de TNT.

La manca de dades precisas sobre les condicions meteorològiques (velocitat del vent, estabilitat atmosfèrica), sobre les característiques exactes de l’emissió (posició del punt de fuita) i sobre els detalls dels efectes ocasionats per l’explosió no permet fer el càlcul precís de la sobrepressió que es va produir. De tota manera, sí que s’ha fet aquí una estimació en base a una sèrie de suposicions.

Suposant: un poder calorífic inferior de la barreja de combustibles (concentració desconeguda) de l’ordre de 41.000 kJ/kg, un rendiment de l’explosió del 4% (acceptable per al confinament parcial d’una planta química), i que —atès el curt temps ocorregut entre el moment de la fuita i el de la ignició— només una part limitada de la massa alliberada es trobava entre els límits d’inflamabilitat, que s’ha estimat en aproximadament un 20%, la quantitat equivalent de TNT resulta:

$$W_{TNT} = \eta \cdot W_c \cdot \Delta H_c \cdot \frac{E_{TNT}}{4680} = 2730 \text{ kg TNT}$$

Això implica una distància escalada a 100 m de:

$$z = \frac{d}{\sqrt[3]{W_{TNT}}} = \frac{100 \text{ m}}{(2730 \text{ kg})^{1/3}} = 7 \text{ m kg}^{1/3}$$

I, per tant, una sobrepressió de 0,22 bar. A 50 m la sobrepressió és de 0,9 bar. El gràfic corresponent indica una sobrepressió d’aproximadament 0,28 bar.

Amb aquests valors, la destrucció de la planta seria de l’ordre descrit en els informes existents.

Al cap de 10 minuts es va produir una segona explosió. Dos dipòsits d’isobutà que contenien un total de 76 m3 d’aquest material van explotar. Això va provocar una cadena d’explosions fins que als 25 minuts del primer incident explotés un altre reactor de polietilè. Un testimoni de l’accident va afirmar haver sentit 10 explosions separades en un període de 2 hores. La successió d’aquestes tres grans explosions es veu reflectida en la Figura 10.12.
L’accident va ocasionar la mort de molts treballadors de la planta i va provocar nombroses ferides en altres. A més a més, va causar danys materials per valor de 750 milions de dòlars. Es van trobar 22 treballadors morts en diferents punts de la planta de fabricació de polietilè i una 23a víctima va morir dies després a causa de les greus ferides que l’incident li havia ocasionat. D’aquests 22, 15 es trobaven a una distància inferior a 45 metres i, la resta, es trobava a menys de 75 metres. La majoria de les ferides que van esdevenir-se fora del recinte van ser causades per fragments expulsats de l’explosió.

Arrel de l’accident de Pasadena al 1989, i juntament amb el de Bhopal al 1984, entre d’altres, es va produir el desenvolupament de la regulació anomenada *Process Safety Management* (PSM) per part de la OSHA. Aquesta regulació és una eina analítica utilitzada per prevenir fuites de qualsevol substància perillosa per al medi ambient i les persones. La PSM es basa en establir una estreta relació amb les indústries de processos per tal de reduir la freqüència d’accidents així com la quantitat d’afectats per aquests. Per tant, pot concloure’s que la PSM quedaria establerta com l’homònim nord-americà de la Directriu Seveso implantada a la Unió Europea.
11. CONCLUSIONS

Aquest Treball de Fi de Grau ha permès arribar a les següents conclusions:

Els resultats obtinguts en l’anàlisi històrica realitzada sobre tres dels països més rellevants a nivell industrial a la Unió Europea conclouen que la Directriu Seveso II està molt relacionada amb la davallada de la freqüència d’accidents per any i la disminució del nombre d’afectats —morts i ferits— per aquests accidents. Tot i no haver complert en la totalitat l’objectiu principal que es basava en estudiar tots els països de la UE, es pot assumir una extrapolació dels resultats dels estats que si han estat analitzats a tots els altres.

Així doncs, es pot concloure aquest Treball de Fi de Grau afirmant que el treball realitzat per la Comissió Europea juntament amb les diferents indústries europees al llarg del segle passat ha donat els resultats esperats però que s’haurà de seguir treballant per tal de minimitzar les conseqüències i prevenir l’aparició d’accidents majors aplicant la directriu Seveso III.

L’estudi específic sobre les explosions d’atmosferes inflamables, ja siguin de gas o de vapor, ha posat de manifest que poden arribar a tenir unes conseqüències devastadores. El seu efecte principal, l’ona de sobrepressió, és el responsable de causar danys que van des del trencament mínim d’una finestra fins a la destrucció completa d’un edifici o un equipament industrial.

Els objectius relatius a les explosions que s’havien plantejat prèviament a la realització del treball s’han complert en la seva totalitat.

En primer lloc, s’han definit tots els tipus d’accidents majors i, fins i tot, s’hi ha afegit informació sobre la perdua de contenció de substàncies perilloses. Per altra banda, s’ha determinat que els mètodes d’estimació dels efectes de les explosions de vapor són aptes per ésser utilitzats en l’anàlisi de riscs. Això sí, cada un en el seu àmbit: el mètode del TNT equivalent per a les explosions no confinades i el mètode multi-energia per a les explosions confinades. A més a més, s’ha comprovat com, fins i tot a nivells de sobrepressió mínims, les persones poden quedar afectades: poden patir des d’un cop al cap fins a l’impacte d’un fragment, passant pel trencament del timpà o de la caixa pulmonar amb efectes mortals.

Per complementar tota aquesta informació referent a les explosions de vapor, s’han analitzat dos accidents de gran magnitud que han succeït en la història recent de la indústria química: l’accident de Flixborough i el de Pasadena. El tractament d’aquest tipus d’accidents i la constatació dels errors que van succeir han estat una motivació extra per a investigar i aprendre de l’accident de Seveso i la implantació de la normativa europea Seveso II.
AGRAÏMENTS

Als meus pares, per tot el seu suport durant aquest temps i per haver-me ajudat sempre que ho he necessitat.

A l’Alba Basté, per donar-me tota la motivació i tots els ànims necessaris per a seguir treballant.

Al Joaquim Casal, per haver estat un guia i un punt referència i per tota l’ajuda que m’ha donat durant la realització del treball

Al Behrouz Hemmatian i al CERTEC per proporcionar-me el material necessari per iniciar l’anàlisi històrica i ajudar-me amb ella.
BIBLIOGRAFIA

[1] Bethea, R.M. *Explosion and fire at the Phillips company Houston chemical complex, Pasadena, TX.* 79409-3121

