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Abstract—Renewable power plants must comply with certain
codes and requirements to be connected to the grid, being the
ramp-rate compliance one of the most challenging requirements,
especially for photovoltaic or wind energy generation plants.
Battery-based energy storage systems represent a promising
solution due to the fast dynamics of electrochemical storage sys-
tems, besides their scalability and flexibility. However, large-scale
battery energy storage systems are still too expensive to be a mass
market solution for the renewable energy resources integration.
Thus, in order to make battery investment economically viable, the
use of second life batteries is investigated in the paper. This paper
proposes a method to determine the optimal sizing of a second life
battery energy storage system (SLBESS). SLBESS performance is
also validated and, as an ultimate step, the power exchanged with
the batteries is calculated during one-year operation. The power
profile obtained is further used to define the cycling patterns
for laboratory testing of second life batteries and to study their
ageing evolution when used for the power smoothing renewable
integration application. Real photovoltaic energy generation data
from a Spanish plant were used for the study.

Index Terms—Batteries, energy storage, optimization, second
use, solar energy.

NOMENCLATURE

Cbat Battery nominal capacity.
Cbatglobal(t) Global battery nominal capacity.
Cref (t) Battery instantaneous reference capacity.
Ebat(t) Second life battery energy storage system

(SLBESS) instantaneous energy.
measfreq Sampling frequency.
OCV Open circuit voltage of the cell at a certain state

of charge (SOC).
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Pbat(t) SLBESS instantaneous power.
Pcell Cell charging/discharging power capability.
PPlant(t) Plant’s output power.
PPV(t) Photovoltaic (PV) output power.
RRC Ramp Rate Compliance.
Rin Internal resistance of a cell.
RR limit Ramp Rate limit.
SOCini Initial SOC of the batteries.
SOCmax Maximum SOC of the batteries.
SOCmin Minimum SOC of the batteries.
SOHini Initial state of health (SOH) of the batteries.
SOHmin Minimum SOH of the batteries in the second

life application.
Sumdisch Sum of daily discharges.
Vmin Minimum voltage of the cell at the end of a 10 s

charge/discharge pulse.
Z Capacity fade coefficient.

I. INTRODUCTION

INTEGRATING large renewable energy sources (RES)
power plants into the grid presents both economic and envi-

ronmental benefits [1], [2]. Meanwhile, it also raises technical
challenges for the grid stability and integrity due to the highly
variable and intermittent characteristic of RES.

A solution to mitigate the effects of RES high variability and
enhance the stability of grids with high penetration levels of
renewable power plants is to use battery energy storage systems
(BESSs) connected to the grid at the same point as the RES [3].
The BESSs have a response time in the range of milliseconds [4],
[5] and are able to compensate in real time the high variability
of the renewable resource [6]–[8]. These systems are able to
smooth the power output of the plant by reacting to the high
variations in power generation and to deal with these variations
by operating in charging/discharging mode in order to keep the
output power ramp rate of the plant inside admissible values [4].

Before being allowed to connect and inject power into the
grid, all power plants need to pass compliance tests [5]. These
tests impose constraints related to the operation of the plant
and their response to different grid events. Moreover, compli-
ance tests are compulsory for the grid connection of the plants.
While passing the tests add no economic benefits, the violation
of the stated limits will bring penalties to the plant operator.
In order to comply with these tests, the solution requiring the
smaller initial investment is the best suited for this application.
Several alternatives such as diesel generators, natural gas tur-
bines, or electrochemical energy storage can be used. For the
particular case of the lithium-ion (Li-ion) battery energy storage



Fig. 1. Block diagram of PV variability output power smoothing application
with BESS.

considered in this study, this can be achieved, for example, by
optimizing the size of the battery and by reducing the initial
investment cost of the storage system [9]–[18].

This paper focuses on the operation of a Li-ion-based BESS
capable of limiting the variability of a photovoltaic (PV) power
plant. In this way, three main goals are covered: 1) operation
and control of the BESS; 2) optimization of the BESS size;
and 3) definition of the cycling patterns for laboratory testing
of Li-ion batteries. The work presented in this paper is part
of the European project Batteries 2020 [19] that proposes the
use of second life (SL) Li-ion batteries (retired from their first
life automotive service) for a BESS (SLBESS), which provides
the RES smoothing application. SL batteries are considered
to be significantly cheaper than new Li-ion batteries while still
retaining most of the performance capabilities of fresh Li-ion
batteries [20]–[23]. Thereby, the major driver for using SL bat-
teries is the possibility of reducing costs and minimizing the
environmental impact, by avoiding the manufacturing of new
Li-ion batteries to cover the same application. In order to obtain
realistic results, this paper considers an initial state of health
(SOH) for the SL application of 80% of the initial BESS capac-
ity [23]–[25]. The capacity decay trend and other performance
characteristics of SL batteries have also been considered.

The rest of the paper is structured as follows. Section II
presents the requirements of the power variability smoothing
service for PV plants connecting to the grid, Section III presents
the proposed algorithm for controlling the SLBESS in order to
provide the service. Section IV presents the methodology for
rating the SLBESS according to the considered application.
Section V presents and discusses the simulation results.
Section VI summarizes the battery test profile definition, and
Section VI presents the conclusion derived from the work.

II. SLBESS POWER VARIABILITY SMOOTHING

The block diagram of the system under study for power vari-
ability smoothing is presented in Fig. 1. The plant controller is
responsible for measuring the current value of the PV output
power (PPV ) and controls the SLBESS power exchange (Pbat)
in order to maintain the plant’s output power (PPlant) between
admissible limits, according to

PPlant (t) = PPV (t) + Pbat (t) . (1)

Different system operators have different requirements for
connecting RES power plants to the grid. This paper focuses

on the RES variability smoothing and ramp-rate limits imposed
for the power plants grid connection. A ramp-rate limit con-
sidered for many studies is the one defined by the Puerto Rico
Electric Power Authority (PREPA) codes [26] as a maximum
value of 10%/min. for the ramp rates [4]. In addition, in [8], the
“Asociación de Productores de Energı́a Renovable” (APER,
Renewable Energy Producers Association) has defined compli-
ance tests for integrating RES power plants into the grid and to
facilitate the interaction between the PREPA and the companies
developing and operating the plants.

Of special interest for this paper is the ramp-rate compli-
ance (RRC) as it is defined by the APER: the facility will be
considered to be noncompliant and a curtailment penalty will
be applied to the plant if the RRC is less than 98.5% during
each full week. The penalty will consist of a reduction in the
contracted capacity of the plant for the next week [26].

For a given time interval, the total number of compliant scans
may be expressed as a percentage of all scans, which is known
as RRC [8]

RRC = 100% − (# of scans in violation of RR)
(# of scans while facility is generating)

.

(2)
The aforementioned criterion is used at the end of the paper

to validate the results obtained based on the proposed rating
methodology and power smoothing algorithm. Moreover, the
criterion is also included in the developed battery energy man-
agement algorithm, presented in the following section.

III. BATTERY ENERGY MANAGEMENT ALGORITHM

The first part of the process of assessing the required rating
of the SLBESS is to determine the control algorithm that
controls the battery for providing the variability smoothing
service [27]–[29].

In this paper, based on the least-squares estimator (LSE) de-
scribed in [5], a mixed least-squares estimator ramp-rate com-
pliant (MLSERRC) algorithm is developed to smooth the plant
output power, PPlant . The idea behind this algorithm is to in-
clude the LSE based on a parabolic estimation instead of a linear
estimation (LSE) complemented with the RRC limit.

This algorithm executes at each sample time the process pre-
sented in the diagram of Fig. 2(a). It starts updating the evalu-
ation time horizon. As it is a least-squares estimator, the time
horizon must be fixed and updated at every time step. Then,
the new PV power value (PPV(t)) is read to allow updating
the least-squares approximation. At this moment, a parabolic
least-squares estimation of the past time horizon’s fixed values
is computed to obtain the current value of the plant’s output
power, PPlant(t). Based on this data, the difference between
the last two values of the plant output power is calculated to
determine in the next step if this difference is lower than the
ramp-rate limit. If this difference is lower than the limit, the
considered value of the plant output power is the one obtained
from the parabolic least-squares estimation. On the contrary, if
the difference exceeds the ramp-rate limit, the PPlant(t) value
is limited by the RRC. Therefore, considering the instantaneous
plant output power and the PV power, the storage system power



Fig. 2. SLBESS smoothing operation algorithm: (a) Algorithm’s diagram, PV plant output power for (b) sunny day; (c) high irradiance variable day, battery
power profile; (d) sunny day; (e) high irradiance variable day, battery energy profile; (f) sunny day; and (g) high irradiance variable day.

value can be determined, and from this value, the energy re-
quirements can also be calculated, as shown in Fig. 2.

The MLSERRC algorithm is used as it returns better results
than the least-squares estimator based on an LSE and also than
the moving average (MA) filter algorithm. Compared to the
MA and LSE algorithms, the use of the MLSERRC algorithm
reduces the size of the SLBESS required to provide the out-
put power smoothing service in addition to providing the RRC
service. The compared operation results between the use of the
MA, LSE, and MLSERRC algorithms are presented in Fig. 2
for two types of days: sunny (b, d, and f) and for a day with
highly variable irradiance (c, e, and g).

Fig. 2(b) presents the PV output power (PPV ), the plant’s
smoothed output power when using the MA filter (PMA ), when
using the LSE filter (PLSE ), and when using the MLSERRC
algorithm (PMLSERRC ) under the same weather conditions. For
providing these plant output power characteristics, the require-
ments for the storage system in terms of power and energy are
shown in Fig. 2(d) and (f), respectively. As it is presented in

Fig. 2, both power and energy requirements obtained for the
MLSERRC algorithm are lower than the ones obtained for the
LSE and MA filters.

Similar conclusions can be drawn by analyzing the cloudy
and the high-irradiance variable day figures, [see Fig. 2(c),
(e), and (g)], where the MLSERRC algorithm is again the
most performant, especially in the case of SLBESS energy
requirement.

As a summary, for both types of days, the use of the
MLSERRC algorithm shows better results than LSE filter and
MA filter, respectively. This translates into smaller battery
capacity needed and smaller power converter size needed for
providing the power smoothing service and assuring RRC, at
the same time.

IV. OPTIMAL SIZING OF THE SLBESS

For determining the optimal rating of the SLBESS, measure-
ments taken from a real PV power plant over one-year interval



TABLE I
DESIGN VARIABLES

Design Variable Description

Cb a t Battery nominal capacity
C r e f (t) Battery instantaneous reference capacity
Pb a t (t) Battery instantaneous power
Eb a t (t) Battery instantaneous energy

were used. These values are normalized according to the maxi-
mum output power recorded in the measurement vector.

The optimal sizing process is separated in two main steps,
comprising two different optimization processes. Nevertheless,
both optimizations are carried out by means of a linear program-
ming (LP) optimization. The LP optimization was formulated as

min
x

cT x such that

⎧
⎨

⎩

A · x ≤ b,
Aeq · x = beq ,
lb ≤ x ≤ ub.

. (3)

The first step (or the first optimization process) calculates the
optimal rating of the battery for each day of the year, as well
as the power exchange profile. The second step (or the second
optimization process) calculates the global optimal size of the
SLBESS considering the optimal values calculated for each day
(obtained in the first step). After the rating of the battery is
determined, the proposed MLSERRC algorithm will be used to
validate the results.

A. First Step: Daily Optimization

The problem of optimally sizing the storage system is closely
connected to the operation algorithm of the SLBESS. For that
reason, in the formulation of the optimization process, the oper-
ation of the battery is also optimized, assuming perfectly known
conditions—similar to the operation of a model predictive con-
trol with perfect predictions.

For the daily optimization problem, the following design vari-
ables are used, as specified in Table I. These design variables
compose the vector x of the linear optimization presented in (3).

The use of these design variables will provide the optimal
battery nominal capacity for the beginning of the SL application;
this represents the necessary capacity of the SLBESS to be used
in the output power smoothing application. In addition, three
series (vectors) of data are also generated: these are the battery
instantaneous reference capacity, which due to degradation will
decay in time, the battery instantaneous power, and the battery
instantaneous energy.

The last two design variables, Pbat and Ebat , as part of the
optimization result, are describing the operation of the battery
for the current simulation scenario. This result reflects the op-
timal operation mode of the battery, considering all the input
signals (the solar generation values) a priori known. Based on
this power exchange (Pbat) and capacity (Cbat), the energy level
of the battery (Ebat) is also provided, for each moment of the
simulation interval.

The objective of the optimization process is to minimize the
required capacity of the SLBESS as presented in (4) for the PV

power plant ramp reduction service

min
Cb a t

Cbat . (4)

In order to ensure the proper functioning of the optimiza-
tion algorithm, and with the objectives of setting the operation
boundaries of the several elements implied in the diagram shown
in Fig. 1, a set of constraints has been defined. Considering the
ramp limiting objective of the SLBESS, a double inequality was
defined

PPV (t) − PPV (t − 1)+Pbat (t) − Pbat (t − 1) ≤ RR limit

(5)

−PPV (t)+PPV (t − 1)−Pbat (t)+Pbat (t − 1) ≤ RR limit

(6)

where PPV [p.u.] is the output power of the PV plant, Pbat
[p.u.] is the output power provided by the SLBESS, and t is the
time instant of the day considered. In a similar way, (7) and (8)
ensure that the battery operates within the SOC limits defined

− 1
measfreq

Pbat (t) + Ebat (t) − SOCmax· Cref (t) ≤ 0 (7)

1
measfreq

Pbat (t) − Ebat (t) + SOCmin · Cref (t) ≤ 0 (8)

where Pbat [p.u.] is the power exchanged with the battery, Ebat
[p.u.] is the battery instantaneous energy, SOCmax [%] and
SOCmin [%] are the maximum and minimum allowed operation
State of Charge (SOC), respectively, and Cref [p.u.] is the capac-
ity reference at each sample of time, which takes into account
the battery degradation effect over the initial installed capacity
rating Cbat [p.u.]. Additionally, measfreq [h–1] accounts for the
measurement frequency or the sampling time considered that in
this case is 2 min.

Further battery operation restrictions include battery SOH
limits, as it can be observed in (9) and (10). According to these
two equations, the instantaneous capacity Cref at each sample
time—which takes into account battery degradation—must be
within the maximum SOH, which is its initial SOHini [%] and
minimum SOHmin [%] limits established

SOHmin · Cbat − Cref (t) ≤ 0 (9)

−SOHini · Cbat + Cref (t) ≤ 0. (10)

The instantaneous capacity Cref is calculated according to (3)
and (12). Equation (3) ensures that a capacity increase from one
instant to the next is never possible, whereas (12) calculates the
capacity decay according to the energy throughput between two
consecutive time instants and the constant degradation factor Z
[–] as defined by Riffonneau in [30]

Cref (t) − Cref (t − Δt) ≤ 0 (11)

Cref (t)−Cref (t − Δt)−Z · [Ebat (t − Δt) − Ebat (t)] ≤ 0.

(12)



The initial condition of both equations is calculated as

Cref (1) − SOHini · Cbat ≤ 0 (13)

−Z · [Ebat (1) − SOHini · SOCini · Cbat ] ≤ 0. (14)

Equation (15) restricts the power flow of the PV plant plus
SLBESS, so that no negative resultant power output is allowed;
this ensures that the power is only injected into the grid, and
that no grid power absorption is allowed

−Pbat + PPV (t) ≤ 0. (15)

These inequalities complete the matrix A and the vector b of
the optimization problem is presented in (3). Each row of the
matrix A and vector b is composed of the following inequalities:
(5)–(11) with the initial conditions defined by (12) and (13) also
with the initial conditions in (14) and (15), respectively.

Finally, taking into account the equality constraints, the bat-
tery operation equation is defined, so that the power demanded
to the battery during a certain period of time equals the change in
the instantaneous energy available in the battery at the beginning
and the end of that period of time

Ebat (t) − Ebat (t − Δt) − Pbat (t) · Δt = 0. (16)

The initial condition of (16) is modeled as

Ebat (1) − SOHini · SOCini · Cbat − Pbat (1) · Δt = 0.
(17)

These constraints are included in the matrix Aeq and vector
beq of the optimization problem defined in (3).

The correct assignment of some of these variables entails
knowing some of the most relevant battery performance char-
acteristics. Considering that in this case, the scope of the sizing
process is to obtain representative power profiles and cycling
patterns for a later battery testing, it is difficult to provide pre-
cise values for some of these variables.

In this way, the maximum and minimum SOH limits (SOHini
and SOHmin , respectively) have been assigned according to typ-
ical values reported in the literature for SL batteries. According
to the industry, the most widespread criterion is that electric
vehicle batteries are retired from their automotive use when
they reach 80% of the nominal capacity [23]–[25]. Thereby,
once transferred to the SL, the initial SOH available would be
SOHini = 80%. In addition, the SOH value at which the bat-
teries would be retired from the SL use has been established
as SOHmin = 64% of the nominal battery capacity. This sup-
poses that an additional 80% of the battery capacity initially
available in the SL (SOHini) is only consumed during the SL
use. This SL battery retirement criterion was contrasted with the
literature, and it is slightly above the 50% (with respect to the
nominal capacity) retirement criterion established by Neubauer
and Pesaran in [23].

Similarly, determining the BESS maximum and minimum
power capabilities implies assuming certain hypotheses that will
not be validated until the batteries are subjected to real testing.
However, considering batteries’ pulse power capabilities, mea-
sured by means of pulse power characterization testing at the
beginning of life (BOL) of the cells considered in this analysis

Fig. 3. Battery discharging (a) and charging (b) pulse power capabilities
measured at BOL for different temperatures.

(presented in Fig. 3), it was decided to establish an operating
range from SOCmin = 20% to SOCmax = 80%. The cells used
for this analysis are 20 Ah high-energy NMC-based commer-
cial cells. These cells will be later subjected to SL testing with
the power profiles obtained from the results of the sizing study
presented in this paper.

As shown in Fig. 3, the power capabilities of such cells,
calculated according to (18) are considerably lowered below
20% SOC [31]. In absolute values, this will be even more evident
as cells degrade. This paper models the SOC referring to the
current capacity of the battery and not with the initial one. On
the other hand, it was also considered that the useful life of the
SL batteries will be enhanced by limiting the operation range to
a maximum 60% cycle depth, which leads to the mentioned 20–
80% SOC interval. Even though the operating limits established
may seem conservative taking BOL characteristics into account,
it is expected that cell power and energy capabilities will be
considerably lowered before being used in the considered SL



application

P = Vmin · (OCV − Vmin)
Rin

(18)

where P [W] is the charging/discharging power capability of
the cell, Vmin [V] is the voltage of the cell at the end of a 10 s
charge/discharge pulse, OCV [V] is the open circuit voltage of
the cell at a certain SOC, and Rin is the charge/discharge internal
resistance measured at the considered conditions (temperature
and SOC).

On the other hand, determining an accurate capacity fade
coefficient (Z) requires inevitable cell testing and a battery age-
ing model. Thus, considering the particularity of the case here
explained, this coefficient needs to be somehow established be-
fore the cells are subjected to ageing tests. It was decided to use
the capacity fade coefficient calculated for the first life ageing,
assuming that the ageing mechanisms governing cell perfor-
mance in the first life will continue being the same along the
SL. However, this assumption needs to be validated after SL
battery testing.

As a result, the daily optimal size of the SLBESS is obtained.
Depending on the conditions of each day, these values can differ
significantly from cases where the use of the battery is not
necessary, to days that require a 0.06 (p.u.) of battery storage,
as shown in Fig. 5.

An initial assumption that the battery SOC has the same initial
value at the beginning of each day can be justified by the fact
that the battery’s controller can easily bring the battery to this
SOC value during the day when power is available from the PV
system. The battery enters an “initial SOC” mode of operation
and charges from the PV or discharges into the grid the energy
difference until SOCini is reached. The described optimization
process is developed in MATLAB.

B. Second Step: Global Optimization

Once the daily optimal size of the SLBESS is obtained,
another linear optimization is carried out to calculate the global
optimal size of the SLBESS, in order to respect the constraints
imposed by the individual solutions for each day over the whole
year.

In this case, there is a single design variable, that is the battery
nominal capacity, Cbatglobal(t). This design variable composes
the vector x of this second LP optimization.

The objective function is similar to the previous case, but
this time, the algorithm search for the minimum capacity value
that since the first day of the year is capable of fulfilling the
requirements of the whole year. This is represented as

min
Cb a t g lo b a l

Cbatg lo b a l (1). (19)

The constraints, in this case, are the following: First, the
optimal capacity value for every day of the year (Cbatg lo b a l (t))
must be equal or greater than the capacity need obtained in the
previous optimization for every day (Cbat(t)); and second, the
capacity decay according to the energy throughput between two
consecutive days must be considered. The equations that model
these criteria are presented in (20) and (21), and are included in

Fig. 4. Yearly output power ramp-rate analysis: The output power ramp rate
of the PV system and of the plant when the MLSERRC algorithm is used.

the matrixes A, Aeq , and vectors, beq , respectively,

−Cbatg lo b a l (t) ≤ −Cbat (t) (20)

Cbatg lo b a l (t)−Cbatg lo b a l (t − Δt)=Z ·Sumdisch (t).(21)

The initial condition of (21) is calculated as

SOHmin · Cbatg lo b a l (1) − Cbatg lo b a l (365) = 0. (22)

This initial condition ensures that the battery capacity decay
during the whole year will not be greater than the maximum
capacity decay allowed for the SLBESS. In other words, (22)
ensures that the SL battery retirement SOH is not reached prior
to completing, at least, one year of operation. The second opti-
mization process is also developed in MATLAB.

V. OPTIMIZATION RESULTS AND DISCUSSION

At first, an analysis of the ramp rates for the available one-
year measurement data presents the initial conditions of the PV
power plant prior to the use of the SLBESS for the variability
smoothing service. As mentioned in Section II, the ramp-rate
limit that the plant must provide is 10%/min. (or, based on the
available 2 min. sample measurements, 20%/2min.).

Fig. 4 presents the ramp rate of the PV output before using
the SLBESS as well as the results when using the smoothing ap-
plication as a result of the global optimization. Fig. 5 presents a
statistical insight regarding the frequency distribution of differ-
ent ramp rates over the one-year available data (the inlet zooms
the lower fraction of the histogram, with frequencies below 3000
samples over one year).

Using the optimization program defined in Section III, the
daily optimal values of the battery capacity for the variability
smoothing application were obtained. These values are plotted
in Fig. 6 showing that there are different values required for the
battery capacity depending on the day of the year. For achiev-
ing the ramp-rate constraints defined in Section II, the nominal
capacity of the SLBESS is obtained based on the daily optimal
values and battery energy charge/discharge profiles. This pro-
cess is illustrated in Fig. 6. The initial optimal value of the Cref



Fig. 5. Yearly output power ramp-rate analysis. The distribution diagram of
power ramp rates of different magnitudes over the entire year.

Fig. 6. Daily optimal values for Cbat and the rating of the battery according
to capacity decay.

was obtained as the minimum value that provides the necessary
capacity for the battery to achieve the power smoothing through-
out the entire year, considering the capacity fade characteristics
and the daily optimal value constraints. This figure presents the
decay of the battery starting from the initial value during one
year of operation.

The solution of the optimization problem, representing the
optimal operation case, was used to simulate the operation using
the MLSERRC algorithm presented in Section III for assessing
the real operation and validity of the obtained result.

For testing the performance of the proposed algorithm and to
validate the results obtained by utilizing the optimization pro-
gram, the RRC assessment proposed by APER in [8] was used.
As stated in Section II, a curtailment penalty will be applied to
the plant if the RRC is less than 98.5% during a week.

The PV production data used to validate the RRC were the
same than the data used for the optimization of the SLBESS siz-
ing. Although the use of different training and validation data
is generally advisable, no additional real data were available in
this case for validation purposes. Nevertheless, the operation
of one whole year was evaluated, as it is considered that the

Fig. 7. RRC for the PV plant when the plant is directly connected to the grid
and when the SLBESS is used for the output power smoothing.

seasonal changes have larger effect on PV plan output power
variability than year-to-year changes. Thereby, an SLBESS ca-
pable of fulfilling the RRC criterion over one-year operation
should also be capable of respecting the ramp-rate limits in
the upcoming years. Fig. 7 presents the RRC computed for the
plant as stated in (2). The RRC is computed for each week of the
one-year interval for two cases: the initial PV plant generating
power according to the variable nature of the solar irradiance
and the second case corresponding to the plant operating with
the SLBESS. The SLBESS is rated by utilizing the optimization
program. Although the optimization is implemented consider-
ing perfectly known energy production conditions (the optimal
case), for evaluating the performance of the SLBESS calcu-
lated on a realistic working scenario, the algorithm used was the
MLSERRC, as described in Section III.

From Fig. 7 it is seen that the RRC limits are not violated and
the plant operates without penalties.

As the optimization program considers the optimal operation
(a perfectly predicted scenario) the resulting capacity of the
battery (0.0612 p.u.) must be checked according to the defined
MLSERRC operation algorithm, for testing its evolution when
battery system is ageing (see Fig. 8) and assess the RRC as
defined in (2).

Fig. 8 presents the operation of the SLBESS during one year,
by using the initial capacity obtained from the optimization
program when using the MLSERRC algorithm for the operation
of SLBESS. The battery stored energy level is kept between the
limits imposed by the battery energy management, defined as
SOCmin (20%) and SOCmax (80%). Another aspect noticeable
in this operation scenario is the battery’s capacity decay over
time, as a result of the battery operation.

Results from Fig. 7 suggested that the global optimum sizing
selected is significantly oversized for the biggest part of the
year. However, these results only prove that the total energy
throughput on each day of the year is normally smaller than the
optimal capacity determined for the SLBESS. In contrast, Fig. 8
shows that the lower and upper SOC operation limits are fre-
quently reached. These two figures together prove that a typical



Fig. 8. SLBESS energy status during one year when using the MLSERRC
algorithm for variability smoothing.

Fig. 9. Casaquemada PV plant (Solucar Platform, Sanlucar la Mayor, Seville,
Spain).

day with a PV output power variability event forces the battery
to operate between the SOC limits established (20%–80% SOC
operation). In addition, the days recording several consecutive
variability events (large energy demand) pushed the optimiza-
tion to a larger SLBESS sizing. Considering the two issues
mentioned here, it can be concluded that the SLBESS calculated
is not oversized for the biggest part of the year, and that although
only few days of the year require a large energy throughput,
the size of the SLBESS is correctly adjusted to leverage the
defined SOC range during the biggest part of the year.

VI. BATTERY TEST PROFILE DEFINITION

The ultimate goal of the study performed was to obtain real-
istic cycling patterns for laboratory SL battery testing.

A real PV power plant is considered as a case study for
the evaluation of the results obtained with the presented sizing
methodology. The considered PV power plant is the Casaque-
mada PV plant, located at the Solucar Platform in Sanlucar la
Mayor (Seville, Spain) and owned by Abengoa Solar, Fig. 9.
Composed of 135 two-axis crystalline silicon technology track-
ers and 18 high concentration technology trackers, it can provide
up to 1.9 MW rated power output [32].

The optimal SLBESS sizing calculated for a PV plant with
such characteristics results into a 235.22-kWh battery sys-
tem. The configuration of the SLBESS has been calculated

TABLE II
CHARACTERISTICS OF THE PROPOSED SLBESS CONFIGURATION

Characteristics Value

Output power of the PV plant 1.9 MW
Installed BP capacity 235.22 kW
Output voltage of each battery rack 690 V (min.)
Nominal cell voltage 3.65 V
Minimum cell voltage 3 V
Cells configuration on each rack 230S1P
Capacity of 1 rack 16 Ah (1 cell)
Racks in parallel 22

Fig. 10. One-year current operation profile demanded to each SL cell of the
SLBESS.

considering a nominal voltage output of 690 V for the SLBESS,
and 16-Ah current capacity for the SL batteries used in this
application—80% of the nominal capacity after the automotive
retirement.

The resultant SLBESS calculated is composed of 22 battery
racks connected in parallel, Table II Each rack consists of 230
SL cells connected in series. This configuration leads to a total
SLBESS capacity of 242.88 kWh and 690 V nominal output
voltage. Although it is slightly larger than the optimal capacity
calculated, it was readapted in order to fulfill the limitations of
the testing equipment available.

The resultant current profile demanded to each cell of the
battery system is calculated from the total power demanded to
the SLBESS, as it can be observed in Fig. 10. This current pro-
file will be used for experimental testing of the SL batteries,
which will enable the analysis of SL battery performance capa-
bilities and their ageing evolution after the automotive first life
retirement. These results are out of this paper scope.

VII. CONCLUSION

This paper presents a sizing approach for an SLBESS provid-
ing variability smoothing service of PV power plants. The choice



of SL batteries for this service represents a cost-effective alter-
native solution for the use of new storage systems. However, the
applied optimization strategy is applicable for any kind of BESS.

By using the proposed optimization method, and based on
real power generation data taken from a PV plant, the optimal
ratings for an SLBESS are calculated. In addition, the study
uses a new variability smoothing algorithm for emulating the
operation conditions of the SLBESS during an entire year of
operation.

Furthermore, the analysis performed allows obtaining power
profiles and cycling patterns representative to the application
considered, building a basis for experimental laboratory testing
of SL batteries.

As the last step of the presented study, the obtained battery
demand power profiles will further be used for SL battery test-
ing. It is foreseen that the SL battery analysis will shed some
light over the performance capabilities of such batteries and
it will enable evaluating their ageing behavior when used for
providing PV power variability smoothing.
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