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ABSTRACT: In this paper, we present a novel control design methodology for structural vibration control
of large buildings. The main idea consists in decomposing the overall building system into decoupled single-
story subsystems and modeling the subsystem interactions as external disturbances. Then, a complete set of
local decentralized controllers can be efficiently computed using the existing LMI solvers. In the proposed
approach, two different levels of decentralization can be distinguished: decentralized design and decentralized
implementation, which are both of critical importance in large-scale control problems. From the design point
of view, the local controllers are independently synthesized using only the low-dimensional subsystem models.
The implementation phase is through the overall decentralized controller defined by the set of local controllers,
which can drive the actuation devices using only local state-feedback information. To illustrate the proposed
methodology, decentralized H∞ controllers are designed for the seismic protection of a five-story building and
a twenty-story building. A proper set of numerical simulations is carried out to demonstrate the effectiveness
of the proposed decentralized controllers and the computation times are considered to assess the computational
effectiveness of the decentralized design methodology.

1 INTRODUCTION

For vibration control of large structures, the idea of
a distributed control system formed by a large num-
ber of small control devices that work jointly to miti-
gate the overall vibration response is certainly an ap-
pealing concept. From a technical point of view, de-
signing control devices that combine actuation mech-
anisms, sensors, communication units and computa-
tional capabilities seems to be a clearly solvable prob-
lem (Housner et al. 1997, Spencer and Nagarajaiah
2003). In contrast, designing suitable controllers to
drive a large number of such devices is certainly a
challenging and complex problem (Zečević and Šiljak
2010), which is characterized by three basic elements:
large dimensionality, high computational cost, and
severe information constraints (Palacios-Quiñonero
et al. 2010, Karimi et al. 2013). For this kind of
problems, design strategies based on linear matrix in-
equality (LMI) formulations make it possible to com-
pute advanced controllers (Boyd et al. 1994, Wang
et al. 2009, Palacios-Quiñonero et al. 2014). However,

these strategies are only computationally effective in
problems of moderate dimension. Moreover, the cen-
tralized design of decentralized controllers by setting
a particular zero-nonzero structure on the LMI vari-
able matrices frequently leads to infeasibility issues.

In this paper, we present a novel controller design
methodology for vibration control of large buildings
equipped with a distributed system of interstory con-
trol devices. The main objective is to provide a de-
centralized design methodology to compute decen-
tralized controllers for the considered large-scale con-
trol problem. The underlying idea consists in decom-
posing the building model into a set of single-story
decoupled subsystems and modeling the subsystem
interactions as external disturbances. For each sub-
system, a local controller is computed, which drives
the corresponding interstory actuation device using
the information provided by the local sensor. To il-
lustrate the proposed methodology, decentralized H∞
controllers are designed for the seismic protection of a
five-story building and a twenty-story building. Also,
centralized H∞ controllers are designed and taken
as a natural reference in the performance assessment
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Figure 1: n-story building structure equipped with a complete
system of interstory actuation devices.

of the proposed decentralized controllers and in the
study of the computational effectiveness of the de-
centralized design procedure. The rest of the paper
is organized as follows: In Section 2, a mathemati-
cal model for an n-story building is provided. In Sec-
tion 3, the derivation of the decoupled subsystems is
presented. In Section 4, decentralized and centralized
H∞ controllers for a five-story building and a twenty-
story building are designed and compared. Finally,
some brief conclusions are presented in Section 5.

2 BUILDING MODEL

Let us consider the n-story building schematically de-
picted in Figure 1, where ki and ci are the stiffness and
damping coefficient of the ith story, respectively, w(t)
denotes the seismic ground acceleration and ui(t) is
the control action exerted by the interstory actuation
device ai implemented between the stories si−1 and
si, which produces a pair of opposite structural forces
as indicated in the figure. By considering the vector
of displacements

q(t) =
[
q1(t), . . . , qn(t)

]T
, (1)

where qi(t) is the lateral displacement of the story si
with respect to the ground level s0, the lateral motion
of the structure can be described by the differential
equation

M q̈(t) + Cd q̇(t) + K q(t) = Tuu(t) + Tww(t), (2)

where

u(t) =
[
u1(t), . . . , un(t)

]T (3)

is the vector of control actions, M, Cd and K are the
mass, damping and stiffness matrices, respectively,
Tu is the control location matrix and Tw is the ex-
citation input matrix. The mass matrix is a diagonal
matrix

M =

 m1

· · ·
· · ·

mn

 , (4)

where mi, i = 1, . . . , n, denotes the ith story mass
and the stiffness matrix has the following tridiagonal
structure:

K=


k1 + k2 −k2
−k2 k2 + k3 −k3

· · · · · · · · ·
· · · · · · · · ·

−kn−1 kn−1 + kn −kn
−kn kn

.
(5)

When the damping coefficients are known, a tridi-
agonal damping matrix can be obtained from (5) by
replacing the stiffness coefficients ki by the damp-
ing coefficients ci. However, in most practical situa-
tions the damping coefficients cannot be properly de-
termined and an approximate damping matrix Cd is
computed from M and K by setting a suitable damp-
ing ratio on the building modes (Chopra 2007). The
control location matrix is a square matrix of size n
with the following upper-diagonal band structure:

Tu =


1 −1

1 −1
· · · · · ·

· · · · · ·
1 −1

1

 , (6)

and the excitation input matrix has the form

Tw = −M [1]n×1, (7)

where [1]n×1 denotes a vector of dimension n with all
its entries equal to 1. Next, by introducing the inter-
story drifts{
r1(t) = q1(t)

ri(t) = qi(t)− qi−1(t) for i = 2, . . . , n,
(8)

the interstory velocities

vi(t) = ṙi(t), i = 1,2, . . . , n (9)

and the state vector

x(t) = [r1(t), v1(t), . . . , rn(t), vn(t)]
T (10)



A =103 ×



0 0.0010 0 0 0 0 0 0 0 0
−0.6831 −0.0023 0.5251 0.0011 0 0.0002 0 0.0001 0 0.0000

0 0 0 0.0010 0 0 0 0 0 0
0.6831 0.0014 −1.0652 −0.0029 0.4732 0.0009 0 0.0002 0 0.0001
0 0 0 0 0 0.0010 0 0 0 0

0.0000 0.0003 0.5402 0.0011 −0.9515 −0.0028 0.4300 0.0009 0 0.0001
0 0 0 0 0 0 0 0.0010 0 0

0.0000 0.0001 0.0000 0.0002 0.4783 0.0009 −0.8645 −0.0027 0.4102 0.0008
0 0 0 0 0 0 0 0 0 0.0010
0 0.0001 0 0.0001 0 0.0002 0.4346 0.0009 −0.7258 −0.0026

,

B =10−5 ×



0 0 0 0 0
0.4647 −0.4647 0 0 0
0 0 0 0 0

−0.4647 0.9427 −0.4780 0 0
0 0 0 0 0
0 −0.4780 0.9611 −0.4831 0
0 0 0 0 0
0 0 −0.4831 0.9714 −0.4883
0 0 0 0 0
0 0 0 −0.4883 0.8641

 , E =



0
−1
0
0
0
0
0
0
0
0

.

Figure 2: System matrices for the five-story building model.

Table 1: Parameter values for the five-story building model.
story 1 2 3 4 5

mass (×105 Kg) 2.152 2.092 2.070 2.048 2.661
stiff. (×108 N/m) 1.470 1.130 0.990 0.890 0.840
relative damping 5%

that groups together the interstory drifts and velocities
of a same level, one obtains the following first-order
state-space model:

ẋ(t) = A x(t) + B u(t) + Ew(t), (11)

where

A = P Â P−1, B = P B̂, E = P Ê, (12)

Â =

[
[0]n×n In
−M−1K −M−1Cd

]
, (13)

B̂ =

[
[0]n×n

M−1Tu

]
, Ê =

[
[0]n×1

−[1]n×1

]
, (14)

In is the identity matrix of order n, [0]n×m represents
a zero-matrix of the indicated dimensions and P is
the change-of-basis matrix corresponding to the state
transformation

x(t) = P
[

q(t)
q̇(t)

]
. (15)

For the five-story building parameter values in Table 1
(Kurata et al. 1999), we obtain the system matrices
presented in Figure 2. It should be observed that, in
these matrices, the value 0.0000 indicates a relatively
small but nonzero element.

3 DECOUPLED MODEL

The dynamics of the ith story can be described by the
first-order model

ẋ(i)(t)=
n∑

j=1

Aijx(j)(t) +
n∑

j=1

Bijuj(t)+ Eiw(t), (16)
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Figure 3: Fully decoupled one-story subsystem. The interac-
tions with neighboring stories are included in the external dis-
turbances wi−1 and wi+1.

where x(i)(t) = [ri(t), vi(t)]
T is the local state vector,

and Aij , Bij and Ei are submatrices of A, B and E,
respectively, with the following form:

Aij =

[
a2i−1,2j−1 a2i−1,2j

a2i,2j−1 a2i,2j

]
, (17)

Bij =

[
b2i−1, j

b2i, j

]
, Ei =

[
e2i−1

e2i

]
. (18)

The matrices Aij with j ̸= i represent mechanical in-
teractions with other stories and the matrices Bij with
j ̸= i correspond to the effect of control actions ex-
erted by actuation devices located in other building
levels. As it can be clearly appreciated in the system
matrices presented in Figure 2, a natural approxima-
tion of the model in (16) can be obtained by remov-
ing the interactions with non-neighboring stories. Ac-
cordingly, we consider the following approximate lo-
cal models:

ẋ(1)(t)=
2∑

j=1

Aijx(j)(t) +
2∑

j=1

Bijuj(t)+ E1w(t), (19)

ẋ(i)(t)=
i+1∑

j=i−1

Aijx(j)(t) +
i+1∑

j=i−1

Bijuj(t), (20)



Gc =107×


−1.7423 −0.8344 −0.3992 −0.2537 0.7455 −0.1031 0.1025 −0.0594 −0.5784 −0.0876
0.7055 −0.3504 −0.5307 −0.7770 −0.7766 −0.3094 0.4851 −0.1328 −0.0248 −0.0870
2.8608 −0.2258 −0.5375 −0.3924 −2.0913 −0.8686 1.0442 −0.1412 −0.0417 −0.1141
1.6864 −0.1962 2.0728 −0.2071 −3.5912 −0.4925 2.1535 −0.4925 −1.3030 −0.1957
1.2026 −0.1179 1.0279 −0.1453 −0.5679 −0.2365 −1.3511 −0.2112 0.9141 −0.4272


Figure 4: Centralized H∞ control gain matrix for the five-story building model.

for i = 2, . . . , n− 1, and

ẋ(n)(t)=
n∑

j=n−1

Aijx(j)(t) +
n∑

j=n−1

Bijuj(t). (21)

Next, by interpreting the interactions with neighbor-
ing stories as external disturbances (see Figure 3), a
set of n fully decoupled one-story models can be ob-
tained:

ẋ(i)(t)=Ai x(i)(t) +Bi ui(t)+ Ēiw̄(i)(t), (22)

where x(i)(t) is the local state vector, ui(t) is the local
control action, the local system matrices are

Ai = Aii, Bi = Bii, i = 1,2, . . . , n, (23)

the disturbance vectors have the form

w̄(1)(t) =

 r2(t)
v2(t)
u2(t)
w(t)

, w̄(n)(t) =

[
rn−1(t)
vn−1(t)
un−1(t)

]
, (24)

w̄(i)(t) =


ri−1(t)
vi−1(t)
ri+1(t)
vi+1(t)
ui−1(t)
ui+1(t)

, i = 2, . . . , n− 1, (25)

and the disturbance input matrices have the following
block structure:

Ē1 = [A12 B12 E1], Ēn = [An,n−1 Bn,n−1], (26)

Ēi = [Ai,i−1Ai,i+1Bi,i−1Bi,i+1], i = 2, . . . , n− 1. (27)
In order to compensate the different order of magni-
tude in the disturbance vector components, the fol-
lowing formulation of the decoupled models can be
considered:

ẋ(i)(t)=Ai x(i)(t) +Bi ui(t)+ Ẽiw̃(i)(t), (28)

where the disturbance vectors

w̃(i)(t) = Si w̄(i)(t), i = 1, . . . , n, (29)

are properly scaled by means of the diagonal matrices

S1=diag(βr, βv, βu, βw), Sn=diag(βr, βv, βu), (30)

Si=diag(βr, βv, βr, βv, βu, βu), i = 2, . . . , n− 1 (31)
and the scaled input disturbance matrices have the
form

Ẽi = Ēi S−1
i , i = 1,2, . . . , n. (32)
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Figure 5: North-South Kobe 1995 seismic record scaled to an
acceleration peak of 1m/s2.
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Figure 6: Response of the five-story building model correspond-
ing to the scaled North-South Kobe 1995 seismic record for the
uncontrolled configuration (black line with circles), the central-
ized controller u(t) = Gcx(t) (red line with squares) and the de-
centralized controller u(t) = Gd x(t) (blue line with asterisks).
(a) Maximum absolute interstory drifts. (b) Maximum absolute
control efforts.

4 NUMERICAL RESULTS

4.1 Five-story building controller design

To compute a centralized state-feedback H∞ con-
troller

u(t) = Gc x(t) (33)

for the first-order system (11) under the bounded-
energy external disturbances, we introduce the con-
trolled output

z(t) = C x(t) + D u(t), (34)

defined by the matrices

C =

[
I2n
[0]n×2n

]
, D = α

[
[0]2n×n

In

]
, (35)

where α is a scaling factor that compensates the dif-
ferent magnitude of the state components and the
control forces. The control gain matrix Gc can be
computed by solving the following LMI optimization
problem (Boyd et al. 1994):

P∞ :

{
maximize η

subject to X > 0, η > 0 and the LMI in (36)



Table 2: Parameter values for the twenty-story building model.
story 1-5 6-11 12-14 15–17 18-19 20

mass (×106 Kg) 1.10 1.10 1.10 1.10 1.10 1.10
stiff. (×108N/m) 8.62 5.54 5.54 2.91 2.56 1.72
relative damping 5%[
AX + XAT + BY + YT BT + ηEET *

CX + DY −I

]
< 0, (36)

where X and Y are variable matrices, I is an iden-
tity matrix of suitable dimension and * represents the
transpose of the element in the symmetric position.
If an optimal value is attained for the LMI matrices(
X̃, Ỹ

)
, then an optimal control matrix can be written

in the form

G = ỸX̃−1. (37)

By solving the LMI optimization problem P∞ with
the system matrices A, B and E presented in Figure 2,
and the matrices C and D in (35) with α = 10−6.7, we
obtain the control gain matrix Gc displayed in Fig-
ure 4. Next, to compute a set of decentralized local
H∞ controllers

ui(t) = G(i)x(i), i = 1,2, . . . , n, (38)

for the decoupled local models in (28), we consider
the controlled outputs

z(i)(t) = Cix(i)(t) + Diui(t), i = 1,2, . . . , n, (39)

defined by the matrices

Ci =

[
I2
[0]1×2

]
, Di = αi

[
[0]2×1

1

]
. (40)

Solving the n LMI optimization problems defined by
the matrices Ai, Bi in (23); the matrix Ẽi in (32) corre-
sponding to the scaling coefficients βr = 102, βv = 10,
βu = 10−6 and βw = 1; and the matrices Ci and Di in
(40) with αi = 10−6.3, i = 1, . . . ,5, we obtain the fol-
lowing set of local control matrices:

G(1) = 107 × [−0.0334 − 0.9009],

G(2) = 107 × [−0.6997 − 1.2932],

G(3) = 107 × [−0.7954 − 1.3296],

G(4) = 107 × [−0.6732 − 1.3836],

G(5)= 107 × [−0.2296 − 1.2987], (41)

which define a decentralized controller for the overall
structure with the block diagonal control matrix

Gd = blockdiag
[
G(1) G(2) G(3) G(4) G(5)

]
. (42)

To demonstrate the behavior of the proposed con-
trollers, we have carried out a suitable set of nu-
merical simulations using the scaled North-South
Kobe 1995 seismic record as ground acceleration in-
put (see Figure 5). The maximum absolute interstory

Table 3: Local control matrices for the twenty-story building.

i G̃(i) (×107) i G̃(i) (×107)

1 [−0.1083 − 1.5687] 11 [−0.6089 − 2.6124]

2 [−0.3358 − 2.1744] 12 [−1.2012 − 2.8793]

3 [−0.3316 − 2.1254] 13 [−1.5448 − 2.8967]

4 [−0.3302 − 2.1089] 14 [−1.2972 − 2.8347]

5 [−0.2882 − 2.0726] 15 [−1.4760 − 3.3913]

6 [−1.3724 − 2.6726] 16 [−0.8543 − 3.6934]

7 [−0.6221 − 2.6328] 17 [−0.7325 − 3.7018]

8 [−0.6209 − 2.6558] 18 [−0.0966 − 3.6969]

9 [−0.6203 − 2.6225] 19 [−1.2106 − 3.6909]

10 [−0.6197 − 2.6188] 20 [−0.6788 − 4.0830]

Table 4: Computation time (in seconds) corresponding to cen-
tralized and decentralized controller designs.

controller centralized decentralized
five-story building model 0.6655 0.05756
twenty-story building model 163.0967 0.19885

drifts obtained in these simulations are displayed in
Figure 6 (a), where the black line with circles rep-
resents the uncontrolled response, the red line with
squares corresponds to the centralized H∞ controller
defined by the control matrix Gc and the blue line
with asterisks describes the decentralized controller
defined by the block diagonal matrix Gd in (42). The
corresponding maximum absolute control efforts are
displayed in Figure 6 (b), using the same colors and
symbols. Looking at the plots in Figure 6, it can be
appreciated that both controllers attain a good level
of reduction in the interstory drift peak-values with
practically the same force peak-values. A moderate
performance loss can be observed for the decentral-
ized controller at the first-story level, which is consis-
tent with the slightly smaller force peak-value in this
level.

4.2 Twenty-story building controller design

To provide a better insight into the characteristics of
the proposed controller design methodology, we con-
sider in this section a twenty-story building model
corresponding to the parameter values presented in
Table 2 (Wang et al. 2009). Proceeding as in the pre-
vious section, we first compute a centralized H∞ con-
troller

u(t) = G̃c x(t) (43)

by solving the LMI optimization problem P∞ with the
matrices A, B and E corresponding to the new set of
building parameters and the controlled-output matri-
ces C and D in (35) with n= 20 and α= 10−7.3. Next,
we design a set of decentralized local controllers

ui(t) = G̃(i)x(i), i = 1,2, . . . ,20, (44)

by solving P∞ with the corresponding system matri-
ces Ai and Bi in (23); the matrices Ẽi in (32) with the
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Figure 7: Response of the twenty-story building model corre-
sponding to the scaled North-South Kobe 1995 seismic record
for the uncontrolled configuration (black line with circles), the
centralized controller u(t) = G̃cx(t) (red line with squares) and
the decentralized controller u(t) = G̃dx(t) (blue line with as-
terisks). (a) Maximum absolute interstory drifts. (b) Maximum
absolute control efforts.

same scaling βi coefficients used in the previous sec-
tion; and the local controlled-output matrices Ci and
Di in (40) with αi = 10−6.8, i = 1,2, . . . ,20. Table 3
lists the obtained local control matrices, which define
a decentralized controller with the following control
matrix:

G̃d = blockdiag
[
G̃(1) G̃(2) . . . G̃(20)

]
. (45)

The twenty-story building response to the scaled
Kobe seismic excitation is presented in Figure 7, with
the same colors and symbols used in the five-story
building plots. Also in this case, we can observe
that the overall behavior of the proposed decentral-
ized controller and the fully centralized controller are
quite similar. Slightly larger force peak-values are
produced by the decentralized controller, what is con-
sistent with the slightly smaller interstory drift peak-
values attained by this controller. The total computa-
tion time, in seconds, required to compute the con-
trol matrices Gc, Gd, G̃c and G̃d are collected in Ta-
ble 4, where it can be clearly appreciated the com-
putational effectiveness of the proposed decentralized
design methodology. All the controllers in this paper
have been computed with the LMI solver included in
the MATLAB Robust Control Toolbox (Balas et al.
2012) and using a personal computer with a two-core
Intel i5 processor.

5 CONCLUSIONS

In this paper, a decentralized control design strategy
for structural vibration control of large buildings has

been presented. Following the proposed methodol-
ogy, the overall system can be decomposed into low-
dimensional decoupled subsystems. Then, a complete
set of decentralized local controllers can be efficiently
computed using the existing LMI solvers. This ap-
proach has been applied to design decentralized H∞
controllers for the seismic protection of a five-story
building and a twenty-story building with positive re-
sults. In summary, two main facts can be highlighted:
(i) despite the reduced feedback information, the pro-
posed decentralized controllers present a good level
of performance when compared with the full-state
centralized controllers and (ii) the computation times
required by the decentralized design procedure are re-
markably small and present only a linear increment
with the dimension increase.
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