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Abstract—This paper aims at computing tight upper bounds
for the maximum a posteriori threshold of low-density par-
ity check codes in the asymptotic blocklength regime for the
transmission over binary-input memoryless symmetric-output
channels. While these bounds are already known, we propose
a novel derivation based on a completely different approach:
based solely on the concept of the chain rule and the conditional
entropy, resorting to the concentration theorem for the code
ensemble to compute the syndrome entropy with low complexity
employing density evolution.

I. INTRODUCTION

Channel polarization and coupling schemes have shown how
the performance of the maximum a posteriori (MAP) decoder
can be asymptotically achieved by suboptimum decoders. This
reactivated the interest on the analysis of bounds for the MAP
decoder and the study of its link with the suboptimum ones.

On the basis of the Fano inequality, the MAP error per-
formance is bounded in terms of the equivocation introduced
by the channel. Namely, for the error to be able to approach
zero, the equivocation should also approach zero. For this
reason, research has focused on obtaining bounds on this
metric. Gallager [1] was the first to introduce a lower bound
on the equivocation for LDPC codes. Much more recently,
this bound was improved and generalized for any binary-
input memoryless output symmetric channel (BMS) [2], [3].
We follow the same approach and introduce a procedure to
bound the entropy of the syndrome associated to the received
sequence based on two simple concepts: the chain rule and
the confinement of dependencies within a tree. The latter is
essentially the principal assumption of a belief propagation
(BP) decoder, while the former seems to have been overlooked
in the asymptotic analysis of LDPC code ensembles.

The proposed method results in the computation of the area
under an entropy function and allows us to obtain asymptotic
upper bounds for the MAP threshold for LDPC codes over
any BMS channel, such as the binary erasure channel (BEC),
the binary symmetric channel (BSC) and the binary-input
Gaussian channel (BAWGN).

A related approach was developed in [4], but was mostly
justified as a mathematical tool derived from physics. More
insightful results were presented in [5], [6]. As we will see
later, the generalized extrinsic entropy (EXIT) area theorem
presented in the cited references is strongly related to the
computation proposed in this paper. They lead to identical
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results and MAP bounds and have equivalent computational
complexity. However, we believe that the proposed method is
more straightforward conceptually.

Let us introduce some definitions to simplify the notation.
For any integer i, let [i] be the set of all integers from 0 to
i—1,ie. [i] ={0,...,i — 1}. Let V = {vg, ..., vjv|-1} be a
subset of distinct integers from [i]. Without loss of generality,
we will assume vy < vy < ... < wjy|_;. Let s be a vector of
length ate least . We define the mapping operation s(V') as:
s(V) = (Sups --~»51;W‘,1)T, which corresponds to the vector
with the entries of s indexed by the elements of V.

II. MAP BOUND AND SYNDROME ENTROPY

Let us consider a LDPC code described by a parity check
matrix H of dimensions N — K x N. We denote M = N —
K. The rate of the code is R = K/N. Let x and y be the
transmitted and the received sequences respectively . Let us
assume a binary-input memoryless symmetric-output (BMS)
channel parametrized by a scalar parameter 6 such that the
capacity of the channel C' is monotonically decreasing with 6.

The MAP threshold is defined as the maximum channel
parameter value for which the MAP decoder error probability
converges asymptotically to 0. Thanks to the Fano inequality
it can written in terms of the system equivocation as:

far =min {0 | Jim CH(y) >0} (D)

Thus, upper bounds on the MAP threshold can be obtained
by lower bounding the equivocation. In order to do this, we
follow the procedure presented in [3] and express it in terms
of the entropy of a generalized syndrome s:

H(xly) = N(1 - C) — H(s|w) @)

The generalized syndrome is defined as the syndrome for
a BSC channel that introduces an error sequence equivalent
to the hard decision of the received symbols in the original
channel when the all zeros codeword was transmitted. The
vector w in the equation corresponds to the magnitudes of the
log-likelihood ratios (LLR) for those symbols. The bound in
(2) applies to the BEC, BSC and BAWGN channels among
others.

III. BOUNDING THE SYNDROME ENTROPY

Establishing an order among the syndrome bits, their joint
entropy can be expressed following the chain rule as:

M—-1

H(slw) = Y H(sils([i]),w) 3)

i=0



In general, the computation of the statistics of s; has an
exponentially growing complexity since we are conditioning
it to the value of all preceding syndrome bits. However, we
will crop the dependency to a limited subset of precedent bits
such that we can assume that the resulting subgraph is a tree.
Then, the conditional probabilities of the syndrome bits can
be computed by means of BP and their corresponding entropy
by means of density evolution (DE).

Let us assume a regular (1,r) LDPC code represented by
a Tanner graph G. According to the syndrome generation, the
variable nodes are associated to the errors introduced by the
equivalent BSC channel and the check nodes to the syndrome
bits. This corresponds to having an additional variable node
of degree one for each check node. To avoid more variable
definitions, we will refer to the check nodes as the syndrome
bits themselves {s;}.

Let us define the distance d(s;, s;) between two check nodes
s; and s; as the minimum number of bit nodes that we cross
in any path between them. For example, two checks nodes
connected to the same bit are at distance 1. Then, we define
the dependency set of depth D of the i-th check node, V.7,
as the indexes of the check nodes that are at distance lower
or equal than D of the node s; and are precedent to it', i.e.

VP ={neli | d(sisn) <D} @)

For N — oo and fixed D, the subgraph spanned by the checks
s; and s(V;P) is a tree with probability going to one. We will
call it the D-depth subtree of the i-th check node. It is rooted
on the check node s; and contains the check nodes s(V,”) and
all bits in the code graph G connected to them. Note that the
topology of the subtree may not correspond to the one of the
ensemble computation tree since the degree of the bit nodes
depends on which adjacent check nodes are precedent to the
i-th one in the chain. Then, the same node in two different
orderings may have different subtrees. For the i-th syndrome
bit, we compute H (s;|s(V;”),w) instead of H(s;|s([i]),w).
Adding all contributions, we obtain an upper bound on the
syndrome entropy:

M-1
> H(sils(ViP),w) > H(slw) )
i=0

where the inequality holds because conditioning can only
reduce the entropy.

IV. AVERAGE ENSEMBLE BOUNDS

According to the concentration theorem, the performance
of BP for a LDPC code converges with probability going to
one to the performance described by density evolution over
the code ensemble average when the blocklength goes to
infinity. Since the probabilities p(s;|s(V,”),w) correspond to
the LLRs of the syndrome bits computed by BP over the D-
depth subtrees defined before, the same kind of convergence
is expected for the syndrome entropy bound in equation (5).

Notice that, as for the definition of distance, we are having into account
only check nodes when we talk about depth.

The proof of the concentration of the entropy here would be
equivalent to the one for the extrinsic entropy of an LDPC
code ensemble [9].

Let us assume a fixed order among check nodes that does
not change from one code realization to another. Let us
consider the ¢-th check node of this sequence. For a given code
realization C, it roots a D-depth subtree with a certain topology
and produces an entropy contribution He(s;|s(V,P),w). Its
average over the code ensemble, Ec{H (s;|s(V;P),w)}, can
be computed, as done for LDPC code ensembles for N — oo,
by means of DE over the ensemble average subtree. Then,
instead of analyzing the subtrees with different topologies that
can happen for a specific code realization and averaging over
them, we analyze the average topology, assuming a constant
degree profile but introducing the absence of check nodes
depending on the position of the root check node within the
computation chain. The conditioning on w is also absorbed
by the average ensemble computation when we introduce
the distribution corresponding to the channel for the received
LLRs.

Let us assume a D-depth computation tree, whose topology
is described by the degree profile of the LDPC ensemble. As
the i-th check node is preceded by ¢ — 1 others, the probability
of a check node to be actually present in the average ensemble
subtree is v; £ “ZL. Then, we can write the evolution of
the p.d.f’s of the ratios computed by BP in the bit nodes in
an ensemble tree as done in the usual DE but assuming that
a bit node of a given layer receives through every edge the
message coming from a check node in the previous layer with
probability 1 — v; and nothing with probability v; (when no
information about the bit is provided, representing the absence
of the check node).

Let us denote this p.d.f. as p; ,,({), where the subindex n =
0, ..., D indicates the layer in the subtree, which is also the
temporal index in the DE process. Then:

pin() =p(l) & (v B pin_1(l) + (1 —13)8(1)) (6)

where p(l) is the channel LLR p.d.f., () is the Dirac delta
function and ® and ® the convolution operations for the bit
and check node updates described in [9].

Instead of obtaining the entropy for this p.d.f. at n = D
as we would do to characterize the extrinsic entropy function
(EXIT) of the code after D iterations, we do a final update
for the root check node:

p; (1) = @pi,p(l)

The D-depth ensemble subtree entropy for the i-th syn-
drome bit can be computed from it as:

oo l
HP (v;) / pi’ (Dhe <1_";€l) di ™

We have expressed the entropy parametrized by v; with a
purpose. For the blocklength going to infinity, this fraction of
preceding check nodes tends to a continuous variable in the
interval [0, 1), that we will call v. The entropy of the average
ensemble subtrees for the i-th check node becomes a function



€ \ 0.42 0.44 0.47 0.49
H;T’w ‘ 0.9035 0.9527 0.9694  0.9769
Table I

AVERAGE SYNDROME BIT ENTROPY FOR THE CODE ENSEMBLE (3, 6) AND
DIFFERENT BEC CHANNELS.

of this parameter, H” (v;) — HP” (v) and then the sum for all
the chain converges to the area under this function.

From the concentration theorem, the syndrome entropy
bound (5) for a given code realization converges to the
ensemble average asymptotically and, thus, can be expressed
-normalized per syndrome bit- as the area:

M—1 1
1
D& iy 1s(VP). w) — D
Hslw—]\;% igo H(s;|s(V;7),w) /0 H”(v)dv (8)

This area computation can be employed to obtain a MAP
upper bound according to equations (1) and (2).

V. MAP BOUNDS

In this section, we present some results for the BEC, BSC
and BAWGN channels. The values presented here are in all
cases identical to those obtained by means of the generalized
area theorem [6], which are slightly tighter than those of [3]
and [4].

A. BEC channel

Let us consider a BEC with erasure probability e. The
p-d.f’s in DE in this case are always a single delta function, so
it is usually expressed as a single variable update, the erasure
probability, that propagates along the graph. For a fraction of
precedent check nodes v, this probability becomes:

zn(v) =€¢(1—(1— zn_l(u))rflv)lfl 9)

where z is the erasure probability at the bit nodes propagated
along the tree, which we parametrize as a function of the layer
index (n € (0, D)) and v. We omit the trivial dependence on
e for the sake of clarity. The root check node entropy (of the
corresponding syndrome bit) is then obtained from zp(v) as

HP(v) =1~ (1—2p(v))

and replacing it in the area equation (8), the average entropy
bound per syndrome bit can be expressed as
1
Hs?w = / 1—(1—2zp)"dv (10)
0

which remains as function of e. Since we are assuming the
blocklength to go to infinity, we can bring also the depth to
infinity to obtain the tightest of these bounds (H ;"‘; ).

Figure 1 represents the average subtree entropy function
H®(v) and the corresponding area for a (3,6) code and
several erasure probabilities. The entropy function is always
decreasing with respect to v. For erasure probabilities below
the BP threshold (e.g. ¢ = 0.42), there is a threshold also on v
for which the entropy falls to zero, which means that the last
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Figure 1. Average co-depth subtree entropy for a check node as function of
the fraction of precedent check nodes v for a (3,6) LDPC code and several
BEC channels. The shaded area corresponds the average syndrome entropy.

Il » D=0 D=1 D=2 D=0 BP Sh

3 6 0491 0.489  0.4885 0.4881  0.4294 0.5

3 5 05933 0.5917 0.5912  0.5910 0.5176 0.6

4 6 0.6658 0.6657 0.6656  0.6656  0.5061 0.667

4 8 0498 0.4978 0.4977 0.4977 0.3834 0.5
Table II

MAP UPPER BOUNDS ON THE ERASURE PROBABILITY OF A BEC FOR THE
TRANSMISSION EMPLOYING DIFFERENT REGULAR LDPC CODES OF
DEGREES (I, 7).

syndrome bits of the chain provide no information. Above the
BP threshold, however, the entropy stays always above zero
and approaches one when e increases, so the area grows too.
Table I lists the obtained areas which are shaded in the figure.
Table II lists MAP bounds for LDPC codes with different
degrees and rates and for different subtree depths {0, 1,2, 0o}.
It can be seen again how it decreases with respect to the depth,
being the tightest bound for D = oo . The BP threshold and
the Shannon limit are also shown for comparison purposes.

B. BSC channel

For a BSC with probability of error p, density evolution is
initialized with the channel p.d.f.

psc(l) =p-6(1+Ly) + (1 —p)-6(l = Ly)

whith L, = log((1 — p)/p).

Figure 2 represents the curves H” (v) for the (3, 6) regular
ensemble for several depths for a channel with p = 0.1.
The entropy values (in decreasing order) for the syndrome
bits obtained for a specific matrix realization are plotted for
comparison [10]. The latter has a noticeable staircase shape
for D = 1 since the number of different subtree topologies
is very limited. For low v values, some check nodes have
higher entropy bound than the average ensemble one while the
opposite happens for higher values. However, if we observe
the average over an interval of syndrome bits within the chain,
it coincides with the ensemble average for the corresponding
fraction of precedent check nodes, validating the application
of the concentration theorem. It can be observed also that the
curve converges rapidly with D, which happens because BP
converges fast to a fixed point for this channel error.
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Figure 2. Average D-depth subtree entropy for a check node as function of
the fraction of precedent check nodes v for a (3,6) LDPC code and a BSC
channel with p = 0.1 for D = {1, 3, c0}. The D-depth subtree entropy of
check nodes versus the normalized node index for a matrix realization is also
depicted.

If we plotted the curves for infinite depth and different
channel error probabilities, we would observe a behavior
completely analogous than the one for the BEC, with the
entropy decreasing with respect to v and falling to zero if
we are below the BP threshold.

Table III contains the MAP bounds for different LDPC
codes in a BSC. As it can be seen, a depth of just D = 2
produces already a bound very close to the tightest one
(D = 0), identical for codes (4,6) and (4, 8).

C. BAWGN channel

For a BAWGN channel with noise variance o2 and trans-
mitted symbols £1, the channel LLR p.d.f. is

/0.2 —o2 ;22
pBAWGN(l): 8771.6 8 (l 622)

Table IV shows the MAP bounds for the BAWGN channel
for the same regular LDPC codes as before. We present it in
terms of Eb/No, so they become lower bounds in this case.
The dependency on v of the average subtree entropy function
HP(v) is analogous to the described one for the BEC and
BSC.

It is well known that the BEC and BSC correspond to
the two extremes of the capacity of all BMS channels and
the MAP performance of linear codes transmitting through
them [8]. We can observe that this holds for the BAWGN
channel comparing its corresponding entropy function H*(v)
with the one for the BEC and BSC. Figure 3 depicts H>(v)
for the three channels, all them with a fixed capacity of 0.53

Il » D=0 D=1 D=2 D=0 BP Sh

3 6 01024 0.1006 0.1001 0.0997  0.084 0.11

3 5 01397 0.1382 0.1376  0.1373  0.113 0.146

4 6 01726 0.1725 0.1724 0.1724 0.116 0.174

4 8 0.1076 0.1072 0.1071 0.1071 0.076 0.11
Table III

MAP UPPER BOUNDS ON THE ERROR PROBABILITY OF A BSC FOR THE
TRANSMISSION EMPLOYING DIFFERENT REGULAR LDPC CODES OF
DEGREES (I, 7).

I r D=0 D=1 D=2 D= BP Sh

3 6 0.372 0.426 0.446 0.458 1.1 0.184

3 5 —-0.074 -0.026 —0.020 —0.013 0.89 —0.237

4 6 —0.466 —0.461 0.459 —0.458 1.67 —0.495

4 8 0.240 0.247 0.250 0.250 1.53 0.184
Table IV

MAP LOWER BOUNDS ON THE EB/NO (IN dB) OF A BAWGN FOR THE
TRANSMISSION EMPLOYING DIFFERENT REGULAR LDPC CODES OF
DEGREES (I,r).

bits/channel use, and a (3,6) LDPC code. For this same code,
the MAP bounds from tables II, III and IV correspond to
capacities of 0.512, 0.532 and 0.52 respectively. In both cases,
the BAWGN performance lays between that one of the BEC
and of the BSC.

VI. ALTERNATIVE AREA EXPRESSIONS

The bound expressed in terms of an area in equation (8)
arises as the limit of the chain rule decomposition of the
entropy of the syndrome bits. Since the result is the integration
of an entropy function, It reminds of the area theorem for
the EXIT function of a code. The area theorem was known
since the introduction of EXIT charts [7] for the BEC and was
generalized for other channels in [6]. Even if the form of the
area equations looks similar and the numerical results match
exactly, the connection between them is not obvious, as they
follow a completely different approach. The integration for
the proposed computation depends on the parameter v, which
indicates the position of the syndrome bits in the computation
chain, instead of the channel parameter. Moreover, it employs
the syndrome entropy (with the check nodes as root of the
computation trees) and not the EXIT function or its derivative.

The approach proposed in this paper, based on the chain
rule decomposition, provides a straightforward interpretation
of the computation and a methodology that can also be applied
to different entropy metrics other than the syndrome one. In
this section, we apply it to obtain an alternative area expression
for the BEC that coincides with the EXIT area theorem.

Starting from the mutual information of the system ex-
pressed by the chain rule as:

N—

Iexsy) = Y B ly(G) — Y- Hllay)

—
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Figure 3. Average oo-depth subtree entropy for the check nodes as function
of the fraction of precedent check nodes v for a (3,6) LDPC code and BEC,
BSC and BAWGN channel, all them with capacity 0.53 bits/channel use.



we arrive, after some manipulations, to 2.

N-1 N—-1

H(zily([1])) —
j=0 j=0

H(z;ly(l7+1]) (D

were it is expressed as a difference of conditional entropies:
for each coded bit (j € [IV]), the entropy conditioned to the
precedent received symbols (y([j])) minus the entropy con-
ditioned to the precedent and the corresponding j-th received
symbol (y([j + 1])).

Let us particularize this equation for a BEC channel
with erasure probability €. In this case, the conditional en-
tropy H(z;|y([j + 1])) can be expressed as a function of

H{(z;ly([4])) as:
H(z;ly([j + 1)) = eH (;]y([7]))

and, replacing it in equation (11), we obtain:

N-1

Ix;y)=(1—¢) ) _ H(zjly([s])
=0

12)

We follow the same asymptotic method proposed before
for the syndrome entropy and analyze the entropy terms in
the summation averaged over the code ensemble. The average
ensemble subgraph rooted in the j-th bit has a tree structure up
to a certain depth described by the code degree profiles but
with the bits being present with probability ¥, the average
fraction of precedent bits. The analysis of this subtree is
equivalent to the one of the ensemble computation tree but
having an additional BEC with erasure probability equal to
uw=1- % concatenated in series with the original channel.
In the asymptotic regime for N — oo, this parameter becomes
continuous p € [0, 1), while the depth of the subtree can be
assumed to go also to infinity.

Let us assume that we observe the output of the fictitious
concatenated channel, y. Let us call the BP extrinsic entropy of
the coded bits for this channel as Hy|y.. (€, 1), where the sym-
bol « indicates that the symbol corresponding to the analyzed
bit is removed from the received sequence and we indicate
the dependence with respect to the original and the additional
BEC erasure probabilities. Applying the concentration theorem
over the subtrees seen by every received symbol in the ordered
chain, we can introduce the entropy function of the fictitious
channel in (12) and obtain the bound:

1
lim NI(X

N—o0

1
;y) < (1— 6)/ Hyjgo(e,p)dp— (13)
0

This is defined over the equivalent concatenated channel, so
the entropy function depends on both i and e. However, the
series concatenation of the two BECs is equivalent to another
BEC with overall erasure probability equal to ¢ =1 — (1 —
€)(1 — ). Let us call Hyjy .(€¢') to the BP EXIT function

2For the proof, we need to introduce the equality:

H(y;ly (1) = H(y;ly ([5]), 25) + H(z;ly([3])) — H(z;ly (7 + 1))

corresponding to the transmission through a BEC with erasure
probability ¢’ . Then

Hx|§lv~(€7:u) = Hx\ym (1 - (1 - 6)(1 - U))

and, introducing ¢ in the integration (13) by a change of
variables, we obtain:

1

1
lim —1I(x;y) S/ Hyyo(€")de

N—oo N (19

which is equivalent to the area theorem for the EXIT
function [6].

VII. CONCLUSIONS

In this paper we have proposed the computation of upper
bounds for the MAP threshold of LDPC codes over BMS
channels in the asymptotic blocklengh regime. It is based
on the chain rule decomposition of the joint entropy of the
syndrome bits, which becomes an integration in the limit -an
area computation- and the cropping of dependencies such that
the conditional entropy function can be computed by means
of DE over subtrees of certain depth. The results are identical
to the ones obtained from the generalized area theorem [6],
which makes us suspect of their equivalence despite coming
from different approaches.

We have also indicated how the proposed approach can be
employed to obtain alternative expressions in terms of the area
of entropy functions, which in the case of the BEC turns out
to be the already known EXIT function area theorem.
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