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Abstract

This project proposes a reliable Model Predictive Control (MPC) applied to drinking water networks

(DWNs). The system reliability is calculated by structural analysis of the whole system taking into in

account the network topology. In this form it is possible to describe the system reliability as a func-

tion of actuators reliability. Therefore by using CSP the system reliability can be controlled by impos-

ing some new control actions bounds. This approach maintain the convexity of optimization problem

avoiding problems with local-minima.

The methodology, tested by simulation in the Barcelona DWN, shows that it is possible to control

the evolution of the reliability level of the system by tuning only one parameter and also to describe a

trade-off between reliability and operational costs.

Other approaches that include reliability inside the controller that are based on the actuators reliability

does not consider the connections between the actuators and therefore new control bounds are estab-

lished without taking into in account possible parallel paths. With this new approach presented in this

project the results shown how through the redundancy of optimal solutions it is possible to increase

reliability levels without economic cost.

Model predictive control, reliability control, structural analysis, drinking water networks, con-
straint satisfaction problem
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Notation

General Operators and relations

| such that

∈ is element of

∀ for all

← assign right-hand side to the left-hand side

→ mapping

General Sets and Spaces

R set of real numbers

R+ set of non-negative real numbers, defined as R+ ,R\(−∞,0]
Rn space of n-dimensional (column) vectors with real entries

Rn×m space of n by m dimension matrix with real entries

Z set of integer numbers

Z+ set of non-negative integer numbers

⊂ subset

General Sets and Spaces

min minimum

max maximum
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MT Transpose of a matrix or vector

Systems and Control Theory and Reliability analysis

nx number of states, nx ∈Z+

nu number of inputs, nx ∈Z+

nd number of disturbances, nx ∈Z+

x state vector, x ∈Rnx

u input vector, u ∈Rnu

d disturbance vector, d ∈Rnd

X set of admissible states,X ⊂Rnx

U set of admissible inputs, U ⊂Rnu

u minimum admissible input vector, u ∈Rnu

u maximum admissible input vector, u ∈Rnu

uCSP minimum admissible input vector after the CSP, u ∈Rnu

uCSP maximum admissible input vector after the CSP, u ∈Rnu

Rt total system reliability

Rd demand reliability, Rd ∈Rnd

Rdpath Path reliability, Rdpath ∈R
npath ∀ d = [1, ...,nd]

Ra Actuator reliability, Ra ∈Rnu
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Chapter 1

Introduction

Drinking water is provided by means of a drinking water network (DWN) to consumers and industry.

DWNs are large-scale systems that can be structurally organised into several layers [5]

• Supply layer, composed of water sources, large reservoirs and also natural aquifers.

• Transportation layer, linking water treatment and desalination plants with reservoirs distributed

all over the city.

• Distribution layer, used for meeting consumer demands and linking reservoirs with consumers.

This project is focused in the transportation layer also called Drinking Water Transport Network

(DWTN). This networks are large-scale, expensive and strategical systems that need a sophisticate

control strategies in order to achieve performance and robustness. This project presents a Reliable

Model Predictive Controller based on topology reliability with the purpose to incorporate in a further

step a fault tolerant control.

1.1 Motivation

Water is essential for life. For this reason is considered a human right and a strategical resource. Wa-

ter is a renewable resource, however the overpopulation in the large urban areas make the water sup-
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ply something critical. Therefore it is essential to work on improving the supply, treatment and trans-

port of water in other to have always good quality water and saving operational cost.

For this reason it is necessary to improve the actual control systems and adapt them in order to work

with a DWTN. At this moment exist lot of literature talking about DWTN. Specifically for Barcelona

DWTN exist literature that implement MPC to Barcelona DWTN endowing inside the MPC reliability

analysis and fault tolerant control. Since this project the system reliability has been controlled actua-

tor by actuator without taking into in account the topology of the network.

Therefore the motivation of this project is to include inside the controller the reliability of the whole

system taking into in account the topology of the network. In this form is possible establish a criteria

that regulate not only the actuators reliability but the total system reliability. This reliability is un-

derstood as the probability to reach all of demands in a period of time that is interesting in order to

guarantee the continuous water demand flow.

1.2 Project Objectives

This project is based on extended MPC for large-scale networked systems subject to constraints and

to persistent stochastic disturbances. Particularly, the management of DWNs within a multiobjective

optimisation framework will be studied, considering water demands as system disturbances.

The objectives of the project are:

[1.]To establish a criteria and equations to determine the reliability of the whole system based

on the reliability of the actuators and taking into in account the network topology. Defining re-

liability as the probability to reach all water demands. To design a method to control the loss of

DWTN reliability in a certain time. To include the reliability inside the MPC controller based

on the control actions contraction. To implement the MPC with Reliability constraints on the

Barcelona DWTN as a real case of study and to extract relevant results.

1.3 Project structure

The dissertation is organized as follows:
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Chapter: 2 Background

This chapter introduces some relevant information about MPC and the application of MPC to a drink

water transport networks. Moreover has been presented a discussion about the state of the art of relia-

bility, more specifically about how to describe a reliability of drinking water transport networks from

different approaches.

Chapter: 3 Model Predictive Control with Reliability constraints

This chapter presents mathematical preliminaries related with the inclusion of the reliability con-

straint inside the MPC. During the chapter have been explored different solutions and finally has been

explained the selected one. As example of the selected solution has been included a test example with

a simple drinking water transport network describing how the solution works and analyzing the im-

plementation results.

Chapter: 4 Implementation in the Barcelona DWTN

In this chapter a description of the case of study has been provided. Moreover have been analysed the

results obtained from the Barcelona drink water transport network as a case of study after the applica-

tion of the proposed solution.

Chapter: 5 Environmental Impact

This chapter analyses the environmental impact of the project taking into in account different possible

consequences if the solution is finally implemented in a drinking water transport network.

Chapter: 6 Budget

In this chapter it is possible to see a budget breakdown of this project.

Chapter: 7 Concluding Remarks

This chapter summarises the contributions made in this project and discusses the main concluding

ideas and ways for future research.
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Chapter 2

Background

This chapter presents the basic ideas and a literature review of the different topics related with the

project.

2.1 Fundamentals of Model Predictive Control

2.1.1 General Consideration

Model Predictive Control (MPC) is one of the most successful control technologies due to the capa-

bility to incorporate constraints and define a multiobjective cost function. The use of a cost function

allows to describe the desired system behaviour and to specify preferences in a multi-objective opti-

mal control problem. It is possible to specify whatever cost function but is highly recommended in the

literature to use convex cost functions, like linear or quadratic ones.

The most important part inside an MPC is the dynamic model of the system. This model is similar

to one constraint of the optimisation problem but the dynamical model can be linear or non-linear,

deterministic or stochastic, discrete, continuous or hybrid. More details about theory and dissing of

MPC can be found in [1] and [8].

Since a DWTN is a large-scale system it is highly recommended to guarantee the optimization prob-

lem convexity. In this form a fast solvers can be applied and problems with local minima can be

avoided. For this reason the dynamics of the system are simplified as a control oriented linear ones
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and the cost functions are in a linear and quadratic form.

2.1.2 Problem Statement

A generic MPC uses information about the present and the past to predict the system evolution over a

given period of time (prediction horizon) and solve an open-loop optimization problem to compute a

sequence of control actions that achieve maximum performance satisfying the problem constraints.

After the prediction only the first control action is applied. Therefore the procedure is repeated in

each step.

The optimization problem can be described as:

Cost Function,

J∗ = min
uk ,...uk+Hp−1

Hp−1∑
i=0

li(uk+i ,xk+i) (2.1)

Subject To:

Dynamics,

xk+i+1 = f (xk+i ,uk+i) + dk (2.2)

And physical constraints,

xk+i ∈X (2.3)

uk+i ∈U (2.4)

Hp is the prediction horizon, xk is the system state vector, uk is the control input vector, li is the stage

cost, fi is the state system evolution, dk is the disturbances vector and X,U are the physical bounds.

Since the Hp ,∞ the optimization problem is a finite horizon open-loop optimization problem.
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2.2 Model Predictive Control of Drinking Water Transport Networks

A DWTN can be described as a large-scale flow system which is composed of different hydraulic ele-

ments [2] like: valves, pumps, tanks, pipes, etc. With the purpose of transport water from the sources

to the demands, satisfying pressure and potability levels. From the side of control is possible to sepa-

rate the elements into two classes, active elements like pumps or valves or passive elements like nodes

or tanks. In this form is possible to construct a model by associating a control action for each active

element and a state for each passive elements. On the other hand DWTN requires a instrumentation

in order to obtain sufficient information about the system state and a telemetry system in order to do a

tele-control of the system, which is indispensable due to the scale of a DWTN.

DWTN are redundant systems with a lot of states and actuators, moreover the demands of water can

be predicted in a stochastic form. Therefore an optimal management of this systems becomes a hard

task. Moreover DWTN are expensive and strategical systems and the operational cost are also impor-

tant. For this reason in the last years important projects around DWTN have been strongly supported.

2.2.1 Control Model

DWTN can be synthesized as a interconnection of nr sources, nx tanks, nu actuators (pumps and

valves), nd demands and nq intersection nodes.

Then the system can be described with a control-oriented lineal discrete-time model for all time in-

stant k:

xk+1 = Axk +Buk +Dddk (2.5)

0 = Euuk +Eddk (2.6)

xk ∈ Rnx are the tanks water volume, uk ∈ Rux are the control inputs and dk ∈ Rnd are the demands.

Eq. (2.5) describes the dynamics of the tanks volume and (2.6) is the statics equation that describes

the mass balance into the nodes of the system. Therefore A ∈ Rnx×nx ,B ∈ Rnx×nu ,Dd ∈ Rnx×nd ,Eu ∈
R
nq×nu and Ed ∈ Rnq×nd are time-invariant matrices that describe the relation between states, actua-

tors and disturbances.
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On the other hand system are subject to physical constraints. One is the minimum and maximum con-

trol inputs:

u ∈Rnu | umin ≤ u ≤ umax (2.7)

The other is the minimum and maximum tanks water volume:

x ∈Rnx | xmin ≤ x ≤ xmax (2.8)

xmin ∈Rnx and xmax ∈Rnx denote the minimum and maximum tank volumes in

The management criteria is based in a multi-objective cost function. This cost function has been pro-

vided by AGBAR and therefore take into in account their Barcelona DWTN knowledge [3]. It is pos-

sible to appreciate 3 different objectives that are the economic, the safety and the smoothness.

Economic: To minimize the economic cost associated to the transport of the water. The economic cost

is due to two main factors, the cost of the electricity associated to pumping water and the cost of the

water that can vary depending on the source.

JE,k = ||(α1 +α2,k)T uk ||1We (2.9)

JE,k ∈ R1 is the economic cost, α1 ∈ Rnu are the water production cost and α2,k ∈ Rnu are the pump-

ing cost, that depends on k because the electricity tariff change depending the hour of the day.

Safety: To guarantee the water demands satisfaction taking into in account that the futures demands

are estimations and therefore are not a deterministic values. For this reason exist a security level for

each tank and a cost associated to not reach it.

JS,k = ||εk ||22Ws (2.10)

JS,k ∈ R1 is the security cost associated to the εk ∈ Rnx that are the infraction of the security level in

terms of volume of water.

Smoothness: To operate with smoothness since the actuators are heavy.
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J∆U,k = ||∆uk ||22Wu (2.11)

J∆U,k ∈R1 is the penalization to control signal variations ∆uk = uk −uk−1 ∈Rnu

We, Ws and Wu are diagonal matrices that weight each decision variable.

The resulting objective function is a simply sum of the 3 costs (2.9), (2.10) and (2.11). Therefore the

optimal has been obtained by minimising the total cost for each control action in each step during the

prediction horizon.

J∗ = min
uk ,...,uk+N−1

N−1∑
i=0

[JE,k+i + JS,k+i + J∆U,k+i] (2.12)

2.3 Reliability

The reliability of one system (or component) can be defined as the probability of that system succeed

during the execution of one task during a period of time. The reliability study can be useful in order

to manage the operational risk of a system. On the other hand it is possible to study not only the reli-

ability but also the reliability evolution. In this form it is possible to define how the possible actions

affects the system reliability and therefore, penalizing actions that subtract more system reliability.

2.3.1 Reliability in Drinking Water Networks

In a large city like Barcelona all of people expect to have drinking water at home always. For this

reason DWTN reliability is very important.

As stated in [6], reliability assessment in DWNs can be classified in two main categories: the hy-

draulic reliability, refers to transport of desired quantities and qualities of water at required pressures

to the appropriate locations at the appropriate times. The topological reliability, refers to the probabil-

ity that a given network is connected, given its components mechanical reliabilities, i.e. the compo-

nents probabilities to remain operational at any time.

In the literature it is possible to see studies related with the reliability on DWTN from different point
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of view. Some are related with the hydraulic reliability of the DWTN, [3], focusing in satisfy de-

mands when the demands prediction are not correct. On the other hand a reliability assessment can

be computed by a Bayesian Network [12], [10], [9]. In this form it is possible to include inside the

cost function some weighed parameters that involve the reliability of the system.

However this project is based on the Reliability described by [4]. In this form the total reliability of

one system can be described by different parallel and serial connection of elemental subsystems. It

means that if possible to describe the whole DWTN as a serial and parallel connection of actuators.

It is used by [7] for the control of a DWTN describing the whole network as a serial and parallel con-

nection of different elementary subsystems that are, in this case, the hydraulic actuators.

During the last years is prove that using MPC in DWTN have problems with respect to the network

reliability. It is because the MPC is based on an optimization problem, so it is normal that the opti-

mal solution in order to satisfy the demands is always similar or the same. On one side the optimal

solution is based on pump water during the night when the electricity are cheaper, but more reliabil-

ity is preserved when the total water is pumped with a constant flow. On the other side if one path is

cheaper in order to satisfy one demand the optimal control always transport the water for that path.

This fact reduce a lot the reliability of only few actuators instead of reduce a bit the all actuators relia-

bility and in some cases the fact reduce a lot the total system reliability.

For this reason it is necessary to include the system reliability inside the controller in order to mini-

mize the degradation of the system but preserving a low operational cost.
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Chapter 3

Model Predictive Control with Reliability
Constraints

This chapter presents the modelling principles and common management criteria of DWTNs and in-

troduces the application of predictive control on these large-scale systems. Moreover has been in-

troduced the idea of DWTN reliability in terms on probability that exits at least one path in order to

supply all the demands of the system in a specific time by using a reachability analysis.

3.1 Formulation of MPC with Reliability Constraints

In this project reliability is understood as the probability that the DWTN are able to reach all water

demands in a period of time. Therefore this reliability depends on the reliability of the actuators.

The first of all is to describe the reliability of the whole system Rg in terms on the reliability of the ac-

tuators. As has been said before in this project the global reliability can be described by decomposing

the whole system into subsystems [4]. First of all the system has been decomposed into a serial sub-

systems, one for each demand. Then each demand has been decomposed into a parallel subsystems

that correspond to all of possible paths that are able to satisfy the demand. Finally each path has been

decomposed into a serial connection of actuators.

In order to merge different parallel subsystem np and different serial subsystems ns have been used
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(3.1) and (3.2).

Rp = 1−
i=1∏
np

(1−Ri) (3.1)

Rs =
i=1∏
ns

(Ri) (3.2)

As has been said before it is possible to describe the reliability of a DWTN Rg as a union of serial

subsystems that represents each one of the reliabilities demands of the network Rd (3.3). Rd are the

probabilities to reach each demands separately.

Rg(k) =
i=1∏
nd

(Rdi (k)) (3.3)

Each demands nodes have a several number of path that are able to to satisfy the water demand. Each

one of this paths can be describe as a parallel subsystems (3.4).

Rd(k) = 1−
i=1∏
ndpath

(1−Rpathi (k)) (3.4)

Actually each path is a serial union of actuators, so the reliability of one path can be describe as the

serial of actuators reliabilities (3.5).

Rpath(k) =
i=1∏
npatha

(Rai (k)) (3.5)

Finally the Reliability of each actuator follow a exponential law, eq. 3.6.

Ra(k) = Ra0e
−λa(k)t (3.6)

t is time and Ra0 is the initial reliability of the actuator.
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The failure rate of actuators may vary in function of the control action. In this study the failure rate

has been divide into two parts [7]. On one side the nominal failure rate λ0a , represents the degrada-

tion of one actuator without control actions, in other words represents a temporal degradation. On the

other hand the control actions also have effect on the degradation. It means that higher control actions

degrade the system more. Therefore a trade off between closed-loop performance and reliability ap-

pears.

The nominal failure rate change cause of control action following a exponential law (3.7).

λa(k) = λ
0
ae

(βaua(k)) (3.7)

Combining eq. 3.6 and eq, 3.7:

Ra(k) = Ra0e
−λ0

ae
(βa |ua |(k))t (3.8)

At this point it is possible to compute the reliability of the whole network in terms on the probability

that exist at least one path in order to satisfy each demand.

Now the problem is how to include the reliability inside the MPC. One possibility is to include the re-

liability in the objective function of the optimisation problem and weigh the cost of the degradation in

order to minimise the degradation but maintaining performance. With this solution due to the system

reliability is non-lineal the optimisation problem becomes non-convex. A non-convex optimization

problem leads to deal with local minima and long computational times solving the optimization prob-

lem and it is more important in large systems like the Barcelona DWTN.

Other possibility is not to include the reliability in the cost function but to add a total reliability con-

straint directly inside the optimization.

αRt0 ≥ Rt (3.9)

Rt is the final reliability after the prediction horizon, Rt0 is the initial reliability and α is the maxi-

mum system degradation in terms on initial system reliability Rt0 .

However to add this constraint directly to the problem also makes the optimisation non-convex.
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3.2 Proposed solution

On the other hand it is possible to convert the reliability bound to a control action bound since the

system reliability only depends on control inputs and some constants values.

In this project is proposed to use a CSP to find the new actuators for which is preserved the reliability

constraint.

3.2.1 CSP concept

A Constraint Satisfaction Problem (CSP) is defined as the problem of finding a fixed set of vari-

ables satisfying a given set of constraint. In CSP the variables v1,v2, ...,vn are defined as a finite sets

D1,D2, ...,Dn. This sets are also called the variables domains.

CSP can be formulate as a 3-tupla H = V ,D,C on:

1.2.3.4.• V = {v1, ...,vn} is a finite set of variables

• D = {D1, ...,Dn} the domains set of the variables

• C = {c1, ..., cm} the set of constraint related with the variables V

The solution of a CSP S(H) is a set of solutions {Z1, ...,Zn} ⊂ D that satisfy the set of constraints C.

One variable is consistent if for (z1, ..., zn) ∈ S(H), [11]:

∀zi ∈ Zi ⊂Di ∃(z1 ∈D1, ..., zn ∈Dn) (3.10)

3.2.2 Including the CSP inside the MPC

Therefore, the idea is to synthesise the network as a connection of actuators from each source to each

demand by using (3.3), (3.4) and (3.5). After that by using (3.6) is possible to describe the whole sys-

tem reliability in terms on reliability of each actuator. Moreover the actuator reliability only depends

on two factors: a temporal factor and a control input factor. So finally it is possible to associate the

total system reliability to the control inputs of all actuators.
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Now, transferring the CSP theory to the case of study the CSP has been described as follows:

• V = {u1, ...,unu ,α}, the control actions and the reliability degradation

• D = {U1, ...,Unu , [α,α]}, the actuators and reliability bounds

• C = {α = f (u)}, the function that connects reliability and control actions.

As a result is obtained a set of solutions Z that are the new control inputs bounds.

On the other hand the reliability is computed each step closing the CSP loop, Figure 3.1.

Figure 3.1: Methodology Flowchart

Therefore it is possible to contract the control inputs in order to preserve a desired level of reliability.

Therefore this method preserve the convexity of the optimization problem.

umin→ CSP → umincsp (3.11)

umax→ CSP → umaxcsp (3.12)
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3.3 Algorithmic implementation

In this subsection the general algorithmic implementation and the problematic around the CSP com-

putation has been explained. Algorithm 1.

Algorithm 1 Computation of new actuator bounds
1: set(α)
2: set(Ra0)
3: Rt0 ← Network Topology(Ra0)
4: for k = 1 to Horizon of Simulation do
5: uk← solve(CSP )
6: uk← solve(MPC)
7: Rak ← Reliability Computation(uk)
8: Rtk ← Network Topology(Rak )
9: end for

3.3.1 Reachability analysis

First of all before the CSP it is necessary to compute the reliability equations that describe the system.

As has been said before in 3.1 the total system reliability has been calculated by decomposing the

system into a small subsystems. These subsystems are the different paths that exist in order to satisfy

each demand from each source. It is possible to extract the equation of the reliability by hand if the

system are not too much large. In 3.4 has been explained a test model on it is possible to compute the

reliability equation by hand. However it is not the case of the Barcelona DWTN that are a large-scale

and complex system. For this reason has been implemented an algorithm in order to identify each

path for each demand and then construct automatically the reliability equations.

The first step is to describe the network as a matrix by using (2.5) and (2.6). With the matrix descrip-

tion it is possible to construct a graph of the network. A graph is a description based on the connec-

tion of the system elements. In a graph each vertex is connected to others vertexes trough edges. For

this system the vertexes are the tanks, the nodes and the sources and the edges are the actuators.

The connection of the states has been establish by using the matrix B and E (2.5). In these matrices

the union between the states (tanks and nodes) and the actuators is represented using numerical non-

zero values. So, the algorithm goes over all actuators (columns) an look for non-zero values, then by

looking the sign of the values it is possible to determine also the direction of the connection. There-
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fore for each actuator has been established a link between the states taking into in account the direc-

tion of the connection. Moreover in these variables ,called in the code links, are added the actuator

that connect the states as extra information. In the same way the connection between the sources and

the states has been added.

The following step is to create a matrix that describe the relation between the states by using the

links computed above. This relation takes into in account the direction of the actuator. Its means that

maybe is possible to go from state "i" to state "j" but is not possible to go from state "j" to state "i."

Now it is necessary to determine the initial vertexes that in this case are the vertexes that have direct

relation with the disturbances. The relation between states and disturbances has been described by the

matrices Bp and Ed (2.6) in 2.2.1.

Starting from each disturbances (initial vertexes) the code analyze the connections that exist with

other vertexes and write down a matrix with one column for each possible path. The algorithm takes

the vertexes found in the last step and repeat the process growing the matrix. Finally when the vertex

analyzed correspond to a source vertex the algorithm break the loop and continue looking for an other

branch. Finally all paths end in a source vertex its means that all of possible paths in order to satisfy

one demand have been found. Therefore the algorithm is repeated for each demand (disturbance) in

order to find all paths of all demands.

Moreover the algorithm takes into in account the possibility that exist one or more loops in the net-

work. A loop is an infinite close path that the connection between the states form. To avoid loops,

when the paths are found, the code reject all paths that have more than one time the same vertex. The

MatLab code of this algorithm can be found in Appendix B.

This process has been executed one time since the topology of the system is always the same. There-

fore it is possible to use the paths matrices extracted from the code in other projects if is it necessary.

On the other hand the code is useful in order to determine the paths of other systems with no effort

since the code are made for the general case and not specifically for the Barcelona DWTN.

3.3.2 Writing down the input file for IBEX

The solver selected to compute CSP is the IBEX. IBEX is a C++ library and is execute outside Mat-

Lab. The C++ program is waiting one flat text file with the inputs of the procedure on the inputs are
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the constants values, the variables and the constraints. Full code is in Appendix C

Due to the reliability constraint is made for each step and the values of the actuator reliability varies

in each step the input file also varies in each step. Therefore becomes essential one code that auto-

generate the input file in each step.

The code write the actual reliability of each actuator as a constants values and the physical bounds of

the actuators as a variables. Then it write two equations one is the eq. that constraint the maximum

total reliability degradation. The second equation is the total reliability in terms on the actuators tak-

ing into in account the topology of the system. This equation are write by using the paths matrices

obtained above. Therefore each path for each demand has been taken and using the 3.8, step by step,

the total equation is written down. To get an idea, for the 17 tanks model of Barcelona DWTN, this

equation occupies 100 pages in Arial 10 points.

3.3.3 C++ IBEX program

As has been said before the selected solver to compute the CSP is the IBEX library. Before to explore

this solution others solutions has been explored like for example Interval Peleer but finally with the

others solutions the results thus achieved are not good when the problem become too heavy.

IBEX is a C++ library for constraint processing over real numbers based on interval arithmetic. IBEX

library is easy to install in a Linux or iOS and is possible to install in a Windows computer following

the documentation in the IBEX web page "www.ibex-lib.org".

IBEX is a ideal library to work with this kind of problems. Moreover include a set of defined func-

tions that simplifies a lot the task of compute a CSP. In this case the C++ code consists in: to read of

the input file, to set the solver parameters, to call the solve function, to read and simplify the solutions

and to write the solutions in a text file. Code in Appendix D.

The main problem with IBEX is that uses box variables and compute a multidimensional solution. It

means that the new actuators bounds depend on each other and the possible solution is an hypervol-

ume inside of a polytope. This would be a problem because the purpose is to maintain the optimisa-

tion problem as a convex problem and it is not guaranteed in this case. Therefore after the computa-

tion of the CSP the solution is simplified taking only the higher minimum and the lower maximum

introducing a conservative policy in the method.
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In Figure 3.2 has been drawn a representation of this problem for a 2 actuator system. In the left side

is represented the solution extract from the IBEX solver that is a two dimensional solution. In this so-

lution the maximum value for the actuator 1 depends on the value of the actuator 2 and vice versa. It

has sense since the total reliability depends on the combination of control actions so, if one actuator is

degrading the system a little maybe the rest can degrade more the system and even satisfy the reliabil-

ity constraints.

(a) Multidimensional solution (b) Multiple one-dimensional solution

Figure 3.2: CSP solution simplification

Then the solution is simplified as has been said before obtaining the blue area. It is possible to see

that for the blue area the actuator 1 and 2 maximums are a constant values and no depends on the

other actuator value. Therefore the solution can be represented like in the right side as a two uni-

dimensional solution. However also is possible to see how the simplification despise the grey area

that are a set of valid solution.

This example can be extrapolated to an n-dimensional one. In the Barcelona DWTN there are 61 actu-

ators therefore with this simplification it is possible to convert a complex 61-dimensional space into a

61 one-dimensional space.

Moreover into the optimization problem is use the same control input bound for all the prediction

horizon, that are also conservative. At this point seems difficult to control the reliability of the system

analytically due the the fact that the method is very pessimistic. On the other hand it is possible to
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tune experimentally α in other to obtain the desired reliability.

It is important to mention that the evolution of the reliability depends on the actual reliability of all

the actuators. For this reason it is necessary make the new actuators bounds computation on each iter-

ation. It is specially important when the differences between actuators reliability are high.

3.4 Application to Test model

The purpose of this section is to implement the method that has been described above in a test system.

The motivation to do this is twofold. For one side the test model is simple and do not take to much

computational time in other to simulate them, therefore it is easier to extract results and to test some

variations. The second motivation is to explain the method and the equations in a not too much com-

plex example.

3.4.1 Case of study description

The test model consist in a small part of the Barcelona DWTN.
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Figure 3.3: Test model diagram

The test model has 4 demands nd = 4, 3 tanks nx = 3, 2 nodes nq = 2, 6 actuators nu = 6 and 2 sinks

nr = 2. Figure 3.3. It is important to remark that not all of actuators have the same bounds and also

tanks have different capacities.

The optimisation of the control action is achieved through the minimisation of the operational cost,

that includes the electrical cost associated with the transport and the cost associated with the exploita-

tion of the water resources, satisfying the demands in each consume sector. On the other hand the

electricity tariffs change depending on the time of the day.

Due to the fact that the water demands describes a cycle of 24 hours the prediction horizon (Hp) is 24

hours and the sampling time (Ts) is 1 hour.

3.4.2 Implementation over the test model

Following the method the first step is to describe the reliability of the whole system decomposing

the system in connections of smaller subsystems. It is possible following the methodology explained

before in 3.1



40 CHAPTER 3. MODEL PREDICTIVE CONTROL WITH RELIABILITY CONSTRAINTS

The total reliability of the system Rg is represented by using (3.3). For this system with 4 demands:

Rg(k) = Rd1Rd2Rd3Rd4 (3.13)

Then using (3.4) is possible to decompose the demand reliability Rd .

For demand 1:

Rd1(k) = 1− (1−R1path1)(1−R1path2) (3.14)

Now is possible to compute the reliability of the both path (R1path1 and R1path2) that demand 1 has in

terms on the reliability of actuators Ra by using the (3.5).

R1path1(k) = Ra4 (3.15)

R1path2(k) = Ra1Ra2Ra5 (3.16)

Combining (3.15) and (3.16) with (3.14),

Rd1(k) = 1− (1−Ra4)(1−Ra1Ra2Ra5) (3.17)

On the other hand demands 2, 3 and 4 do not have parallel paths, Figure 3.3. Therefore is possible to

simplify the (3.4) :

Rd2(k) = Ra1Ra2 (3.18)

Rd3(k) = Ra1Ra6 (3.19)
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Rd4(k) = Ra1Ra3 (3.20)

So finally substituting (3.17), (3.18), (3.19) and (3.20) in (3.13) the system reliability equation in

terms on actuators reliability is obtained.

Rg(k) = (1− (1−Ra4)(1−Ra1Ra2Ra5))Ra1Ra2Ra1Ra6Ra1Ra3 (3.21)

Furthermore it is possible to describe the actuators reliability as:

Ra1(k) = Ra10 e
−λ0

1e
(β1 |u1 |(k))t (3.22)

Ra2(k) = Ra20 e
−λ0

2e
(β2 |u2 |(k))t (3.23)

Ra3(k) = Ra30 e
−λ0

3e
(β3 |u3 |(k))t (3.24)

Ra4(k) = Ra40 e
−λ0

4e
(β4 |u4 |(k))t (3.25)

Finally is possible to use (3.22), (3.23), (3.24) and (3.25) with (3.21) obtaining a expression of the

reliability of whole system only in terms on initial reliability of actuators, constant parameters of ac-

tuators and the control action. Is suppose that the actual reliability of each actuator is know or can be

estimated. Therefore it is possible to relate directly the system reliability with the control actions.

By using (3.3.2) is possible to determine the new bounds of Rt(k +N ) by fixing the tune parameter

α and computing the actual system reliability Rt(k). Therefore using CSP the Rt(k +N ) bounds are

propagated by using (3.22), (3.23), (3.24), (3.25) and (3.21) obtaining finally a new actuators bounds.

Of course as it have been said before this bound contraction has been computed in each iteration.

In this point is possible to see how the method works by present some results. As it has been said be-

fore the reliability constraint is actually convert into a control action constraint. For loose reliability
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constraints it is possible that the control action bounds are no affected but if the reliability constraints

are heavier then it is expected that the control action maximums become smaller. This effect is shown

in Figure 3.4. As More restrictive reliability constraint as less control action maximum.

Is important to keep in mind that the constraint is the reliability of the whole system. It means that

not all the control actions are affected in the same manner. It depends, for example, in: the number

of path through the actuator, the number of parallel paths for one demand that involves the actuator,

the actual actuator reliability, the degradation parameters β and λ, etc. For example in eq. 3.21 the

term Ra1 appears several times, it is because all of demands can be achieved by using the actuator 1,

therefore seems logical that the reliability of this actuator is very significant for the total reliability.

This effect is shown in Figure 3.4 where the actuator 1 is more affected than the actuator 3.

(a) Control input 1 (b) Control input 3

Figure 3.4: Maximum control input along the simulation

However, it is possible that the contraction of actuators bounds does not have any effect on the system

behaviour. It happens if the optimal solution is not for uopt = umax. On the other hand due to the re-

dundancy of the system is possible that exist other solution with equal cost, (two global minima). In

the first case the cost and the reliability of the system for this actuator is not affected due to the relia-

bility constraints, in the second case is possible to improve the reliability of the system but maintain

the same operational cost. With αu = 3 ×10−3 the reliability of the actuator has been improve because

of the new actuator bound fixed by the reliability constraint of the system. Fig, 3.5. It is because the

area of control action is the same (same total flow), but the maximum values of control action are less

than the maximum values before the reliability constraint. Since the actuators degradation are expo-

nential the reliability of this actuator has been improved. Moreover this actuators is a valve, therefore
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Figure 3.5: Control input 3 comparison (with vs. without) Reliability constraints. α = 3× 10−3

do not have associated operational cost. Its means that is possible to increase the reliability of this

actuator without increasing the operational costs.

In order to endow to the system the possibility to work with more restrictive constraints avoiding pos-

sible infeasibility problems has been decide make the new actuator constraint as a soft constraints.

With this method the new actuators bounds are not longer a hard constraints but are penalised in the

optimisation problem cost function. In Figure 3.6 it is possible to see one example with α = 1× 10−3.

However the actuator 3 is a valve, fig 3.3. For the valves is not important work during the day or the

during night because are no affected by the electricity cost. It is not the case of the actuator 6, that is

a pump. Pumps try to work during the night, when the electricity is cheaper. But the new actuators

constraints take out the possibility to only work during the night, Figure 3.7. Therefore the actuator is

working during the day increasing the electric operational cost.

Different control action implies different evolution of the tank volumes. Fig, 3.8. In this case the evo-

lution of the states follow the same pattern with small differences. It is because the objective func-

tion is the same so the optimal evolution is similar but with the adaptation to the new control action

bounds.

The objective of the study is to increase the system reliability. In Figure 3.9 is shown the total system
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Figure 3.6: Control input 3 comparison (with vs. without) Reliability constraints. α = 1× 10−3

Figure 3.7: Control action 5 comparison (with vs. without) Reliability constraints. α = 1× 10−3

reliability evolution. Along the simulation time (8 days) the system is able to preserve more reliability

with reliability constraints.

Putting some numbers, with αu = 2 × 10−3 it is possible to save the 11.9% of the loss of reliability in
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Figure 3.8: Tank volume comparison (with vs. without) Reliability constraints

Figure 3.9: Total system reliability evolution

8 days. Moreover this saving becomes more important as longer the simulation is. It has sense since

the degradation of the actuators are exponential, therefore the reliability of the system decrease faster

if it is lower. It is possible to see also in fig, 3.9.
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(a) Control action 3 (b) Control action 3 (Zoom in)

Figure 3.10: Maximum control input 3 compitung CSP per every hour (blue), once per day (green)
and once per week (red)

Introduce the contraction of the control action bound in each iteration increase the computational cost.

Although the actual system is small an the computation time is not a problem it can be a problem with

the real system. For this reason has been test some variation of the algorithms. In order to save com-

putation cost the contraction of the actuators bound is not longer made in each iteration but with a

lapse time.

The results, fig 3.10, give useful information. It is possible to see that only contracting the bounds in

the first simulation step the results are no sufficient good. Otherwise contracting the bound one time

each day (24 simulation steps) it is possible to save a 96% of computation time expend in contraction

without relevant results changes.
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Chapter 4

Implementation in the Barcelona DWTN

4.1 Case of study description

The MPC approaches presented in this project will be assessed with a case study of a large-scale real

system, specifically the Barcelona DWTN. The general role of this system is the spatial and tempo-

ral re-allocation of water resources from nature to human society, keeping in mind quantitative and

qualitative aspects of water availability and human needs.

In a DWTN the water enter into the system from the sources. In Barcelona DWTN the water is taken

from both: superficial sources(i.e., rivers) and underground sources (i.e., wells), providing together a

ow of around 7 m3/s. The water flow from any of the sources is limited and has an associated price

depending on the required treatment and legal extraction canons.

Barcelona DWTN is a real system with real demands, actuators bounds, and tanks. For this study has

been considered 9 water sources, that includes 5 underground and 4 superficial, 17 water tanks, 61

actuators (valves and pumps), 12 nodes and 25 demands. Figure 4.1 shown the topology of the net-

work. Both the demand episode and the calibration set-up of the network are provided by AGBAR.

The current AGBAR control centre has a tele-control system for the network management.

The Barcelona DWTN is also comprised of more than 98 remote stations, which manage in real time

about 450 elements such as ow meters, pumping stations, valves, chloride dosing instruments, among

others. The objective of the MPC as has been explained before is to minimise the multiobjective cost



48 CHAPTER 4. IMPLEMENTATION IN THE BARCELONA DWTN

function (2.12).

As has been explained before the economical cost is associated to 2 factors (2.9). One of them is the

electrical cost that is related with the electrical tariff. In Barcelona the cost of a kWh is not always

the same and it is cheaper during the night. For this reason and in order to save money more electric-

ity is expended during the night. The prediction horizon is 24 hours because the system and also the

electrical tariff have periodicity of 1 day. The sampling time is 1 hour.

Figure 4.1: Barcelona DWTN 17 tank model

4.2 Results

In this section have been explained the results obtained from the application of the approach ex-

plained during the project to the Barcelona DWTN.

The first result is the analysis of the computation time expend during the simulations. All of simu-

lation are computed in the same PC with an AMD phenom X6 1090T at 3.2 GHz CPU and 8 GB of
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DDR3 RAM, without the support of video card. Also all of simulation have the same simulation hori-

zon (192 hours), Table 4.1

Table 4.1: Computational Time
Time MPC (min) % MPC Time CSP (min) % CSP Total Time (min)

With α = 2× 10−3 48 18.3 214 81.7 262

With α = 5× 10−3 40 16.6 201 83.4 241

With α = 2× 10−2 38 15.5 206 84.5 244

Without CSP 39 100 0 0 39

The percentage of the time used in order to compute the CSP will be discussed below in the conclu-

sions chapter, but the main conclusion is that the solver used to solve the CSP is non-optimal for this

application and for this reason the CSP computation is time-costly. On the other hand the time expend

to solve the simulation is practically the same for all simulation with the exception of the simulations

with a very restrictive reliability constraints. When the reliability constraint are more important, due

to have lower values of α or because the system reliability is low, the computational time increase

significantly.

The next point is the umax analysis. As it happens the previous simplified model not all the actuators

bounds are affected with the same severity. For example actuator 5 (Figure 4.1) is important because

is the only way to satisfy the demand 3. Other actuators are also important because are involved in a

lot of demand paths, for example actuators 12, 16 or 61. Others actuators like actuator 35 are not so

important because exist a parallel path in order to satisfy the demand, in this case demand 11.

Therefore the degradation of each actuator affects to the degradation of the system in different ways

and magnitudes. For this reason the new control action bounds resulting from the reliability con-

straints are different for each actuator.

As has been said before the actuator 35 reliability is not so relevant because exist a parallel actua-

tor. In Figure 4.2 it is possible to see that the actuator bounds are not affected by the reliability con-
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(a) Control input 35 (b) Control input 61

Figure 4.2: Maximum control input along the simulation

straints. On the other hand the actuator 61 is important because is involve in a lot of demands. For

this reason the actuators bounds decrease as more restrictive reliability constraint are impose.

In Figure 4.2 also is possible to see that the bounds become more restrictive along the simulation

time. As it has been said before the reliability of the actuators are exponential, its means that as less

reliability more reliability the actuator lost for the same control action. This fact bring the result, as

more work time, less reliability and more restrictive bounds in other to constraint the reliability of the

whole system.

On the other hand a new more restrictive control action bounds maybe not suppose a change in the

control action along the simulation. It means that the actuator have a surplus and the new restriction

no affects their behaviour. In this case the actuator is not affected by the reliability constraint, there-

fore the reliability for the actuators is not preserved. It is the case of actuator 61, fig 4.3.

The previous case can be a problem if it is the case of all of actuators because, if it happens, the new

reliability constraint not longer affects the system behaviour. If it not the case interesting, the result is

quite interesting because only the more sensible actuator, those who affect in a more relevant manner

to the reliability of the system, change their behaviour in order to maintain the system reliability. On

the other hand, since it is a dynamic system, it is possible that the evolution of the actuator bounds

change and in some point the behaviour of the actuator must change in order to preserve the reliability

constraints.

On the other hand actuator 5 is affected by the new bounds, Figure 4.4. The new bound increase the
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Figure 4.3: Control action 61 comparison (with vs. without) Reliability constraints

Figure 4.4: Control action 5 (with vs. without) Reliability constraints (= 1× 10−2)

final reliability of the actuator and therefore the final reliability of the whole system.

In Figure 4.4 the actuator is able to pump almost all water during the night and scarcely during the

day. Increasing the reliability constraint this is not longer possible, Figure 4.5. Therefore the opera-

tional cost increase in other to increase the reliability pumping water during the day.
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Figure 4.5: Control action 5 (with vs. without) Reliability constraints (α = 5× 10−3)

Figure 4.6: Total system reliability evolution

So finally we can compare the system reliability evolution for different constraints. As it is expected

as more restrictive constraint as more final reliability the system have. Also it is possible to see that as

more time lapse more increment on the reliability.

In Figure 4.4 and 4.5 it is possible to see that no all of constraint affects in the same manner to the

system behaviour. Due to the fact that the system have more than one optimal solutions with the same

economical cost is possible to change the behaviour of the system without an increment on the oper-

ational cost. For example pumping water from two pump instead of only one, therefore reducing the
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Figure 4.7: Final System Reliability vs. Economical Cost for different α

effort of actuators but with similar cost. Or pumping water during more hours of the night with the

same cost. This is a relevant result because actually is possible to increase the reliability of the system

at cost 0.

On the other hand if the reliability is crucial is possible to increase the restriction and preserve more

reliability. It is possible by tuning αu parameter. In this case the problem converts into a trade-off

between reliability and operational cost. Figure 4.7 and Table 4.2.

Table 4.2: Final System Reliability vs. Economical Cost
Final Relibility (Rt(192)) Economic Cost for 192 h.

α = 2× 10−3 0.89691 114.37
α = 3× 10−3 0.89737 111.2
α = 5× 10−3 0.89027 108.01
α = 7× 10−3 0.88161 106.19
α = 1× 10−2 0.87989 106.09
α = 2× 10−2 0.86801 106.09
α = 3× 10−2 0.85767 106.03
α = 5× 10−2 0.85767 106.03
α = 1× 10−1 0.86229 106.06
Without CSP 0.86229 106

At this point can be interesting to see what happens if the reliability of the system is lower that in the
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previous cases.

Figure 4.8: Control input 5 (with vs. without) Reliability constraints (αu = 5× 10−3) and Ra0 = 0.9

Comparing fig 4.5 and 4.8 is possible to see that for the same α with less system reliability the relia-

bility constraints affects more and the bounds are more restrictive. Also is possible to see that during

the hour 116 it is not possible to respect the new bounds, due to the fact that the new actuator con-

straint is a soft constraint the system is able to continue working.

Fig 4.9 are the results when all of actuator of the system have a initial reliability equal to 0.7. Of

course the bound are more restrictive and it is not possible to satisfy the new bound constraint. On

the other hand and other relevant result in Figure 4.9 is how the bound evolves along the simulation

time. As less reliability the system have more faster the bounds become more restrictive.

Finally in Figure 4.10 we have the evolution of the cost versus the reliability of the whole system.

It has sense that for more system reliability less cost since the bounds are less restrictive when the

reliability are higher.
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Figure 4.9: Control action 5 (with vs. without) Reliability constraints (α = 5e−3 and Ra0 = 0.7)

Figure 4.10: Final System Reliability vs. Economical Cost for different Ra0
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Chapter 5

Environmental Impact

Water is a fundamental and limited resource. During the last years the overpopulation in the cities has

resulted in a over-exploitation of this resource and nowadays supply the demand becomes a challenge.

For this reason is very important to invest founds in order to improve the water networks and to de-

velop new modern control systems that allow to save water and energy.

Since the application of the new control techniques to the DWTN, like MPC, the performance of

these has increase a lot, saving energy and water. With the new proposal explained in this project it

is possible to achieve a new long term saving by using the reliability analysis in order to increase the

life time and improving the state of the actuators.

Increase the life time of something is always good in terms on environmental impact. Moreover ac-

tuators in better conditions implies less energy consumption and less water loses. On the other hand

increase the life time of the actuators implies less number of failures. A failure in this kind of systems

implies the waste of energy in order to satisfy the demands since the optimal paths are not able and in

some cases the waste of water.
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Chapter 6

Budget

In this chapter a budget breakdown is shown. In the budget has been included the tools and licenses

necessary to develop and to implement the project as well the references like papers and books. Also

has been include the salary derived from the number of hours of an engineer used to research and to

develop the implementation.

Table 6.1: Budget Breakdown

Concept Unitary Price Units Total Cost

Salaries 30 e/h 280h 8,400 e

Laptop 700 e 1 700 e

MatLab License 2,000 e 1 2,000 e

YALMIP License LGPL 1 0 e

Ibex library LGPL 1 0 e

IBM ILOG CPLEX Optimization Studio 8,689.50 e 1 8,689.50 e

TOTAL 19,789.50 e
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Chapter 7

Concluding Remarks

7.1 Contributions

This project has proposed an MPC including inside the optimisation problem the reliability con-

straints through the contraction of the actuators bounds by using CSP. It has been shown, through a

real case study, the effectiveness of the proposed MPC designs, which enhanced a certainty equivalent

MPC approach, by incorporating forecast demand and system health monitoring, to assure reliability

in DWTNs and to minimise operational costs.

Some final remarks are drawn below.

• This method incorporates the reliability into the MPC taking into in account the whole system

reliability. It is a important improvement compared to other approaches that describe the health

of the system in terms on reliability of all of actuators without take into in account the network

topology.

With the new description not all actuators affect in the same way the system reliability. There-

fore it is possible to increase the system reliability without operational cost by using for exam-

ple parallel path in order to supply one demand.

• After simulation it is possible to compute the trade-off between cost and reliability. Therefore

it is possible to select the system reliability level in terms of operational cost and to tune the

reliability parameter in order to obtain this level.
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• The proposed robust MPC controller that handle actuator health management, present higher

long term economic performance since take into in account not only the economic cost of water

and transport but also the economic cost associated with the maintenance.

• The model of the system treated in this thesis fits in the framework of flow networks, hence,

the proposed controllers could be applied to other complex systems such as transport networks

(e.g., gas, oil, energy), supply-chain problems, production planning, industrial processes with

flows and storage control, among others.

7.2 Directions for Future Research

• In this project reliability is describes as the probability of exist at least one path to arrive to all

of demands and does not take in consideration the possibility that this path are not able to sat-

isfy the 100% of the demand. Therefore the next step is to use the same idea of CSP but in this

case using the predicted demands to compute the security tanks level, of course taking into in

account the network topology.

• The computational cost has been increased a lot after incorporate the contraction of the con-

trol inputs. However it is because the solver that has been used during the project in order to

compute the CSP is not specifically designed for this purpose. It is shown that by using other

solvers it is possible to save around the 98% of computational time expended in contraction,

therefore before a real implementation of this method it is necessary the development of a dedi-

cated solver for this problem.

• This project has the purpose to develop and to simulate a Reliable MPC for the Barcelona

DTWN. The next step could be to merge the reliability control method proposed in this project

with a Fault Tolerant Control (FTC) that is already developed for the Barcelona DWTN. Thus

it is possible to improve the reliability analysis by using FTC techniques and to select optimal

control strategies in order to maintain the reliability level even in a fault condition.
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Acronyms

MPC Model Predictive Control

NMPC Nonlinear Model Predictive Control

FTC Fault Tolerant Control

DWN Drinking Water Network

DWTN Drinking Water Transport Network

CSP Constraint Satisfaction Problem
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Appendix A

Main Code, Reliable Model Predictive
Control

1

2 % 17 de Abril de 2016

3 % IRI-UPC

4

5 close all

6 clear all

7 yalmip(’clear’)

8 clc

9

10 h = waitbar(0,’Creating problem structure, please wait...’);

11

12 %% Source data & System Description

13 % load(’Data3tanks.mat’); % 3 tanks network

14 load(’Data17tanks.mat’); % 17 tanks network

15 % load(’Data63tanks.mat’); % 63 tanks network

16 % load(’x_initial.mat’);

17

18 % load(’Sources3tanks.mat’);

19 load(’Sources17tanks.mat’);
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20 % load(’Sources63tanks.mat’);

21

22

23 %----------------------------------------------%

24 %------------ Begin Model-MPC data ------------%

25 %----------------------------------------------%

26

27 A = S.A; B = S.B.*3600; Bp = S.Bp.*3600; % x_{k+1} = Ax_{

k} + Bu_{k} + B_{p}d{k}

28 Eu = S.E.*3600; Ed = S.Ed.*3600; d = S.d; % 0 = E_{u}u_{k}

+ E_{d}d_{k}

29 % A = S.A; B = S.B; Bp = S.Bp; % x_{k+1} = Ax_{k} + Bu_{k

} + B_{p}d{k}

30 % Eu = S.E; Ed = S.Ed; d = S.d; % 0 = E_{u}u_{k} + E_{d}d_

{k}

31 alpha1 = S.alpha1; alpha2 = repmat(S.alpha2,9,1); % costs data

32 umax = S.umax’; umin = S.umin’; % limits for control

actions

33 xmax = S.xmax’; xmin = S.xmin’*0; % limits for control

states

34 xs = S.xpenal’; % safety volumes

35

36 % Reliability Parameters

37 Lamda=ones(1,size(S.umin,2))*0.00002; %delta: temporal

degradation

38 Beta=log(50)./S.umax; %beta in terms on (u/umax).

log(x) x= max degradarion due to inputs respect to temporal

degradation

39 % Alpha=0.998; % R(n)=Alpha*R(0)

40 uAlpha =5e-1; %Maximun allowed degradation

due to the control actions

41 Ra(:,1)=ones(size(S.umin,2),1)*1; %Initial actuator

Reliability
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42 Rt(1)=1; %initial whole system

Reliability

43 bReliability = ’true’; %’True’ for performing

realibility bounding

44 CSPtime=24; %Time between contraction:

CSPtime=1 allways, =0 only one time, =24 one per day

45

46 dd= [d ; d];

47

48 nx = size(A,2); % number of states

49 nu = size(B,2); % number of control actions

50 nd = size(Bp,2); % number of demands

51 ne = size(Eu,1); % Number of nodes (equality constraints)

52 ns = size(Sources,1); % Number of sources

53

54 p = [100;10;1;1000]; % vector priority weights

55 p1 = p(1); p2 = p(2); p3 = p(3); p4 = p(4); % priority weights

56

57 days=8; % days for the simulation

58 Hp = 24; % horizon of prediction

59 Hs = 24*days; % horizon of simulation

60

61 coefs = 0.8*xmax; % coeficients for initial conditions

62 x0 = [xmin’ + coefs’]’; % initial conditions

63

64

65 %% Run The pathfinder

66

67 FindPath();

68

69 %% ------------ Begin MPC controller ------------%

70

71 uopt=zeros(nu,1); % u{0} initial optimal control action
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72

73 for t=1:Hs

74 ti = clock;

75 t % publish current iteration

76

77 du=sdpvar(repmat(nu,1,Hp),repmat(1,1,Hp)); % \Delta u{k}=u{k

}-u{k-1}

78 u=sdpvar(repmat(nu,1,Hp),repmat(1,1,Hp)); % u{k}

79 xi=sdpvar(repmat(nx,1,Hp+1),repmat(1,1,Hp+1)); % \xi{k}

80 ui=sdpvar(repmat(nu,1,Hp),repmat(1,1,Hp));

81 x=sdpvar(repmat(nx,1,Hp+1),repmat(1,1,Hp+1));

82

83 const = [];

84 obj = 0;

85 x{1}=x0;

86

87 % Run CSP

88 if ((t==1) || (strcmp(bReliability,’false’)))

89 umin_csp(t,:)=umin;

90 umax_csp(t,:)=umax;

91 elseif ((strcmp(bReliability,’true’)) && (t==2))

92 fprintf(’Contracting actuators bounds’)

93 % Compute new actuators bounds

94 [alphamin(t,:),alphamax(t,:),umin_csp(t,:),umax_csp(t,:)]=

ContractorCSP(Alpha,umin’,umax’,Lamda,Beta,Hp,Ra(:,t),’

solver_in.bch’,nd,nu,act_path,Rt(t));

95 elseif ((strcmp(bReliability,’true’)) && (mod(t,CSPtime)==1))

96 fprintf(’Contracting actuators bounds’)

97 % Compute new actuators bounds

98 [alphamin(t,:),alphamax(t,:),umin_csp(t,:),umax_csp(t,:)]=

ContractorCSP(Alpha,umin’,umax’,Lamda,Beta,Hp,Ra(:,t),’

solver_in.bch’,nd,nu,act_path,Rt(t));

99 else



Nonlinear Model Predictive Control of a Quadrotor 69

100 umin_csp(t,:)=umin_csp(t-1,:);

101 umax_csp(t,:)=umax_csp(t-1,:);

102 end

103

104 % Run MPC

105 for k = 1:Hp

106

107 dis=dd(t-1+k,:)’;

108 x{k+1} = A*x{k} + B*u{k} + Bp*dis;

109

110 du{k}=u{k}-uopt;

111 if k>1

112 du{k}=u{k}-u{k-1};

113 end

114

115 f1=(alpha1+alpha2(t-1+k,:))*u{k};

116 f2=du{k};

117 f3=xi{k};

118 f4=ui{k};

119 obj=obj+norm(p1*f1,1)+norm(p2*f2,2)+norm(p3*f3,2)+norm(p4*f4

,2);

120 const=[const, Eu*u{k}+Ed*dis==0];

121 const=[const, xmin <= x{k} <= xmax];

122 const=[const, umin <= u{k} <= umax];

123 const=[const, [umin_csp(t,:)’-ui{k}] <= u{k} <= [umax_csp(t

,:)’+ui{k}]];

124 const=[const, x{k} >= [xs-xi{k}]];

125 end

126

127 sdpsettings(’solver’,’cplex’)

128

129 solvesdp(const,obj); % solve for the optimization problem

130 clc
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131 duopt=double(u{1})-uopt; % compute \Delta u{k}

132 uopt=double(u{1}); % compute u*{k}

133 xiopt=double(xi{1}); % compute xi*{k}

134

135 %---- saving array data ----%

136 ccmpc.x(t,:)=x0;

137 ccmpc.u(t,:)=uopt;

138 ccmpc.du(t,:)=duopt;

139 %---------------------------%

140 x0=A*x0 + B*uopt + Bp*dd(t,:)’; % update for states x0

141

142 % Computing cost

143 ccmpc.Water(t)= alpha1*abs(ccmpc.u(t,:)’);

144 ccmpc.Electric(t)=alpha2(t,:)*abs(ccmpc.u(t,:)’);

145

146 % Compute the new actuator Reliability

147 [Ra(:,t+1),Rc(:,:,t+1),Rd(:,t+1),Rt(t+1),Ran(:,t+1),Rcn(:,:,t+1)

,Rdn(:,t+1),Rtn(t+1)]=Reliability_computation(act_path,nd,

Beta,Lamda,ccmpc.u(t,:),Ra(:,t)’,Hp);

148

149 alphamax_2(t)=Rtn(t+1)/Rt(t+1) %%TEST

150 Alpha = alphamax_2(t)-uAlpha %TEST Alpha in terms on

temporal

151

152 % Clock

153 tf(t) = etime(clock,ti);

154 waitbar(t/Hs,h,sprintf(’Progress: %.2f%% completed \n Time

remaining: %.2f minutes’,...

155 t/Hs*100,tf(t)/60*(Hs-t)));

156

157 end

158

159 close(h,’force’)
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160

161

162 %% Results

163 figure(1)

164 subplot(2,2,1); plot(ccmpc.x,’linewidth’,2); grid on;

165 title(’Evolution of states x’)

166 xlabel(’time [hours]’)

167 ylabel(’volumes [m^3]’)

168

169 subplot(2,2,2); plot(ccmpc.u,’linewidth’,2); grid on;

170 title(’Evolution of control actions u’)

171 xlabel(’time [hours]’)

172 ylabel(’flows [m^3/s]’)

173

174 subplot(2,2,3); plot(ccmpc.du,’linewidth’,2); grid on;

175 title(’Evolution of variation of actions du’)

176 xlabel(’time [hours]’)

177 ylabel(’variations [m^3/s]’)

178

179 uisave
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Appendix B

Reachability analysis Code

1

2 % Programa para buscar todos los caminos desde todas las fuentes

hasta

3 % todas las demandas de un sistema con nodos

4

5 %% Load system

6

7 MatrizA = S.A;

8 MatrizB = sign(S.B);

9 MatrizC = eye(size(MatrizB,2));

10

11 MatrizB2 = sign(S.E);

12 MatrizA2 = eye(size(S.Ed,1));

13

14 %% Make complete matrices

15 Bcompleta=[MatrizB;MatrizB2]’;

16 Acompleta=[MatrizA, zeros(size(MatrizA,1),size(MatrizA2,2));zeros(

size(MatrizA2,1),size(MatrizA,2)), MatrizA2];

17 Ccompleta=[MatrizC, zeros(size(MatrizC,1),size(MatrizA2,2))];

18

19 %% Load sources



74 APPENDIX B. REACHABILITY ANALYSIS CODE

20 Aux(:,1) = [size(Acompleta,1)+1:size(Acompleta,1)+size(Sources,1)];

21 Aux(:,2:3) = Sources;

22

23 % Call to compute connection between states

24 E = relacion_aristas(Bcompleta’);

25 % Add source connection

26 E = [E;Aux];

27

28 %% Path finding

29

30 % Build matrix with the cnection between states

31 matnode=zeros(nx+ne+ns,nx+ne+ns);

32 for i=1:size(matnode,1)

33 orig=find(E(:,2)==i);

34 matnode(i,E(orig,1))=1;

35 end

36

37 % Determine the inital states. States connected with disturbances

38 D=[S.Bp;S.Ed]; %matrix with states and nodes, and the dist.

39 s=[];

40 for i=1:size(D,2)

41 s=[s find(D(:,i)~=0)];

42 end

43 % the initial states. sorted dist 1 -> s(1)

44

45 % Find all path

46 jj=0;

47 for s=s % For all states connected with one source

48 jj=jj+1;

49 %Inicializaci n

50

51 orig=find(matnode(s,:)==1); %Primeros nodos destino desde s

%% busca en las columnas en el rengl n de la fuente de
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abastecimiento el valor 1

52 nodepath=repmat(s,1,length(orig)); %%hace una matriz en donde

repite el valor de s, una sola vez para rengl n y del

tama o de orig para columnas

53

54 %B squeda de caminos

55 fi=0;

56 k=2;

57 nodepathcycle=[];

58 while fi==0

59 ndd=[]; %nodos destino

60 nn=[]; %n mero de nodos destino

61 inc=0;

62 for i=1:length(s) %%de 1 hasta el tama o del nodo de la

fuente (que en esta versi n es 1)

63 if s(i)~=0

64 ndd=[ndd find(matnode(s(i),:)==1)]; %%se checa en

el renglon de la fuente, la columna en donde se

hace 1, es decir el nodo destino

65 nn=[nn length(find(matnode(s(i),:)==1))];

66 else

67 nn=[nn 0];

68 end

69 end

70 nodepath2=[];nd2=[];

71 for ii=1:length(nn) %Para cada nodo destino

72 if nn(ii)~=0

73 nodepath2=[nodepath2 repmat(nodepath(:,ii),1,nn(ii))

];%% si hay varios nodos esto tiene sentido, pero

como solo hay una fuente, no hace mucho sentido

74 nd2=[nd2 ndd(1+inc:nn(ii)+inc)];

75 inc=inc+length(1+inc:nn(ii)+inc);

76 else
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77 nodepath2=[nodepath2 nodepath(:,ii)];

78 nd2=[nd2 0];

79 end

80 end

81 nodepath=nodepath2;

82 ndd=nd2;

83

84 nodepath(k,1:length(ndd))=ndd; %%en un segundo rengl n con

columnas hasta el n mero de nodos destino que hay, se

escribe el nodo destino

85 k=k+1;

86 s=ndd; %Cambio de nodos origen (destinos de la anterior

iteraci n)

87 %Comprobaci n de ciclos

88 elim=[];

89 for iii=1:size(nodepath,2)

90 nozero=find(nodepath(:,iii));

91 if sum(nodepath(nozero(end),iii)==nodepath(1:length(

nozero)-1,iii))>0 %%si la suma del valor que hay en

el nodepath con la posici n celda(n mero de

rengl n de posici n final de la matriz nozero, iii)

92 %disp(’Ciclo en este camino’); %% es

igual al valor que hay en nodepath en la celda

(1 hasta el final de nozero -1, iii)

93 elim=[elim;iii];

94 end

95 end

96 if ~isempty(elim) %%existe ciclo si elim tiene algo

contenido

97 for iiii=1:length(elim)

98 nodepathcycle(1:size(nodepath(:,elim(iiii)),1),size(

nodepathcycle,2)+1)= ...
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99 nodepath(:,elim(iiii)); %%caminos con ciclos de

cualquier ndole

100 end

101 s(elim)=[];

102 nodepath(:,elim)=[];

103 end

104 %Comprobaci n de fin de b squeda de caminos

105 if sum(nodepath(size(nodepath,1),:)==0)==size(nodepath,2) %

%hasta que los ultimos renglones son cero, que significa

que ya no se tiene conexi n con ning n otro nodo

106 fi=1;

107 end

108 end

109

110 % Convert states path into actuators path.

111 for j=1:size(nodepath,2)

112 for i=1:(size(nodepath,1)-2)

113 if (nodepath(i+1,j) ~= 0)

114 q=find(E(:,1)==nodepath(i+1,j));

115 w=E(q,2);

116 e=find(w==nodepath(i,j));

117 r=q(e);

118 act_path(i,j,jj)=E(r(1),3); %actuator of that

connection

119 else

120 break

121 end

122 end

123 end

124

125 end

126
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127 clear i ii iii iiii j jj q w e elim orig nodepath nodepath2

nodepathcycle

128 clear nozero r s MatrizA MatrizA2 MatrizB MatrizB2 MatrizC Acompleta

129 clear Bcompleta Ccompleta D E num_est ndd nd2 nn matnode inc fi Aux
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Appendix C

CSP MatLab Code

1

2 % Code to write the PEELER input data file, call C++ code to

contract the

3 % problem and read the new actuator bounds.

4 % [min degradation, max degradation, input bounds]

5 % (maximun degradation, Real acutators bounds, Lamda, Beta,

Prediction horiz, Actual Reliability, CSP name, number of sources

, number of controls, caminos)

6

7 function [alphamin,alphamax,umin,umax]=ContractorCSP(Alpha,UMIN,UMAX

,Lamda,Beta,N,R_0,FILENAME,nd,nu,act_path,Rt_0)

8

9 %% Input Data

10 % UMIN=[S.umin]; %Real actuator bound

11 % UMAX=[S.umax]; %Real actuator bound

12 % R_0=Ra(:,k); %Reliability time 0

13 % FILENAME=’peeler.csp’; %PEELER file

14

15

16 %% Write .csp

17 file=fopen(FILENAME,’w’);
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18

19 % Constants

20 buffer = ’Constants’;

21 fprintf(file,’%s \n’,buffer);

22

23 %R0

24 for i=1:size(R_0,1)

25 buffer = strcat(’r’,num2str(i),’_0 = ’,num2str(R_0(i)),’;’);

26 fprintf(file,’%s \n’,buffer);

27 end

28

29 buffer = ’Variables’;

30 fprintf(file,’%s \n’,buffer);

31

32 %Alpha

33 buffer = strcat(’alpha in [’,num2str(Alpha),’,’,num2str(1),’];’);

34 fprintf(file,’%s \n’,buffer);

35

36 %U bound

37 for i=1:size(UMIN,2)

38 buffer = strcat(’u’,num2str(i),’ in [’,num2str(UMIN(i)),’,’,

num2str(UMAX(i)),’];’);

39 fprintf(file,’%s \n’,buffer);

40 end

41

42 %rt

43 buffer=strcat(’rt_’,int2str(N-1),’;’);

44 fprintf(file,’%s \n’,buffer);

45

46 %Equations

47 buffer = ’Constraints’;

48 fprintf(file,’%s \n’,buffer);

49
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50 %Eq R(u)

51 for i=1:size(UMIN,2)

52 tRa{i} = strcat(’(exp(-’, num2str(Lamda(i)),’*exp(’, num2str(

Beta(i)),’*u’,int2str(i),’)*’,int2str(N-1),’)*r’,int2str(i),’

_0)’);

53 end

54

55 %eq camino

56 for kk=1:nd

57 for i=1:size(act_path(:,:,kk),2)

58 flag=find(act_path(:,i,kk)~=0);

59 if ~isempty(flag)

60 buffer=[’(’];

61 for j=1:length(flag)-1

62 buffer = strcat(buffer, tRa{(act_path(j,i,kk))},’*’)

;

63 end

64 buffer = strcat(buffer, tRa{(act_path(length(flag),i,kk)

)},’)’);

65 tRc{kk,i}= buffer;

66 else

67 break

68 end

69 end

70

71 end

72

73 %R para demanda

74 for kk=1:nd

75 buffer=[’(1-’];

76 for i=1:size(act_path(:,:,kk),2)

77 if i==size(act_path(:,:,kk),2)

78 break
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79 else

80 flag=find(act_path(:,i+1,kk)~=0);

81 if ~isempty(flag)

82 buffer = strcat(buffer, ’(1-’,tRc{kk,i},’)*’);

83 else

84 break

85 end

86 end

87 end

88 buffer = strcat(buffer, ’(1-’,tRc{kk,i},’))’);

89 tRd{kk}= buffer;

90 end

91

92

93 buffer=[];

94 for kk=1:nd-1

95 buffer = strcat(buffer, tRd{kk},’*’);

96 end

97 buffer = strcat(buffer, tRd{kk+1});

98 buffer = strcat(buffer, ’-rt_’,int2str(N-1),’=0;’);

99 fprintf(file,’%s \n’,buffer);

100

101 %Bound Reability

102 buffer = strcat(num2str(Rt_0),’*alpha-rt_’,int2str(N-1),’=0;’);

103 fprintf(file,’%s \n’,buffer);

104

105

106 buffer = ’end’;

107 fprintf(file,’%s \n’,buffer);

108

109 fclose(’all’);

110

111 clear i j kk buffer flag
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112

113 %% Call C++ function contractor PEELER

114

115 %system(’C:\MinGW\msys\1.0\home\ivan\ibex\ibex-2.1.17\examples\

modifsolver C:/MinGW/msys/1.0/home/ivan/ibex/ibex-2.1.17/benchs/

solver_in.bch 1e-01 0.5 > solver_out.txt’ );

116

117 system(’modifsolver solver_in.bch 1e+03 0.5 > solver_out.txt’ );

118

119 %% Read the resulting bounds

120 [t1,t2,t3]=textread(’solver_out.txt’,’%s %s %s’,’headerlines’,1);

121

122 % x3 and the bound data, extract the claudators

123 t3=strrep(t3,’[’,’’);

124 t3=strrep(t3,’]’,’’);

125

126 aux=find(t3{1}==’;’);

127 alphamin=str2num(t3{1}(1:aux-1));

128 alphamax=str2num(t3{1}(aux+1:end));

129

130 for i=2:nu+1

131 aux=find(t3{i}==’;’);

132 umin(i-1)=str2num(t3{i}(1:aux-1));

133 umax(i-1)=str2num(t3{i}(aux+1:end));

134 end

135

136

137 clear i t1 t2 t3 t4
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Appendix D

CSP C++ IBEX program

1

2

3 // modified solver to obtain and provide the outer bounding box of

the solution set

4 // STS

5 // 2014/10/27

6

7 #include "ibex.h"

8 #include <sstream>

9

10 using namespace std;

11 using namespace ibex;

12

13

14 double convert(const char* argname, const char* arg) {

15 char* endptr;

16 double val = strtod(arg,&endptr);

17 if (endptr!=arg+strlen(arg)*sizeof(char)) {

18 stringstream s;

19 s << "\"" << argname << "\" must be a real number";

20 ibex_error(s.str().c_str());
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21 }

22 return val;

23 }

24

25 int main(int argc, char** argv){

26 try{

27

28 // check the number of arguments

29 if (argc<4) {

30 ibex_error("usage: modifsolver filename precision timelimit");

31 }

32

33 // load a system of equations

34 System sys(argv[1]);

35 cout << "Load file " << argv[1] << "." << endl;

36

37 // configure the solver

38 double prec = convert("prec",argv[2]);

39 double time_limit = convert("Timelimit",argv[3]);

40 DefaultSolver s(sys,prec);

41 s.time_limit=time_limit;

42 s.trace=0; // the solutions are not printed when they are found

43 cout.precision(12);

44

45 // get the solutions

46 vector<IntervalVector> sols=s.solve(sys.box);

47

48 // for each variable, obtain min and max values in the solution

set

49 if (sols.size() >0){

50 Matrix my_sol(2,sys.nb_var);

51 for (int j=0; j<sys.nb_var; j++)

52 {
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53 my_sol[0][j] = sols[0][j].lb();

54 my_sol[1][j] = sols[0][j].ub();

55 for (int i=1; i<(sols.size()); i++)

56 {

57 if (sols[i][j].lb() < my_sol[0][j])

58 {

59 my_sol[0][j] = sols[i][j].lb();

60 }

61 if (sols[i][j].ub() > my_sol[1][j])

62 {

63 my_sol[1][j] = sols[i][j].ub();

64 }

65 }

66

67 cout << "Variable_" << j << " in [" << my_sol[0][j] << ";"

<< my_sol[1][j] << "]" << endl;

68 }

69 }

70

71 cout << "Number of solutions = " << sols.size() << endl;

72 cout << "CPU time used = " << s.time << "s."<< endl;

73 cout << "Number of cells = " << s.nb_cells << endl;

74 }

75 catch(ibex::SyntaxError& e) {

76 cout << e << endl;

77 }

78 }
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Appendix E

Reliability Computation Code

1

2 %Funtion to compute the actual reliability of the whole system

3

4 function [Ra,Rc,Rd,Rt,Ran,Rcn,Rdn,Rtn]=Reliability_computation(

act_path,nd,Beta,Lamda,u,Ra0,N)

5

6 Ra=exp(-Lamda.*exp(Beta.*abs(u))).*Ra0; %Relibility for all

actuators

7 Ran=exp(-Lamda.*(N-1)).*Ra0;

8

9 % eq R_0

10 for kk=1:nd

11

12 for i=1:size(act_path(:,:,kk),2)

13 flag=find(act_path(:,i,kk)~=0);

14 if ~isempty(flag)

15 Rc(i,kk)= prod(Ra(act_path(1:length(flag),i,kk)));

16 Rcn(i,kk)= prod(Ran(act_path(1:length(flag),i,kk)));

17 else

18 break

19 end



90 APPENDIX E. RELIABILITY COMPUTATION CODE

20 end

21

22 end

23

24 Rc_aux = 1-Rc;

25 Rcn_aux = 1-Rcn;

26

27 %R para demanda

28 for kk=1:nd

29 flag=find(Rc(:,kk)~=1);

30 Rd(kk)=prod(Rc_aux(1:length(flag),kk));

31 Rd(kk)=1-Rd(kk);

32 Rdn(kk)=prod(Rcn_aux(1:length(flag),kk));

33 Rdn(kk)=1-Rdn(kk);

34 end

35

36 %R total

37 Rt=prod(Rd);

38 Rtn=prod(Rdn);
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