

A Ground Station Software Framework and Telemetry

Management System for Nano-satellite Missions

A Degree Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de

Barcelona

Universitat Politècnica de Catalunya

by

Christian Ballesteros Sánchez

In partial fulfilment of the requirements for the degree in

Telecommunication Systems Engineering

Advisor: Carles Araguz López

Adriano Camps Carmona

Barcelona, June 2016

 i

Abstract

This thesis addresses the development of a telecommands and telemetry management
system for nano-satellite Ground Stations, including its graphical control environment and an
interface to communicate with other existing modules. A telemetry, tracking and command
(TT&C) system must be able to control the satellite from an Earth operator, transmit uplink
commands to be processed by its subsystems, receive downlink packets with the status
information or the required scientific data of the mission and report permanently the satellite
position, computing future visibility intervals as well.

The final objective is the implementation of the designed framework on the S-band/UHF/VHF
Ground Station located on the B3 rooftop of UPC Campus Nord and should be design
modular enough to be used on 3Cat-1, 3Cat-2 and future missions.

The development of this Ground Station framework has been done with: web technologies
(for the website-based GUI) running in a LAMP platform, a Raspberry Pi SBC for the
communications module, a GNURadio software for the Morse beacon reception and
decoding and, finally, an orbit propagation library based on SGP4 algorithm to compute the
satellite passes over the Ground Station field of view.

 ii

Resum

Aquesta tesi tracta sobre el desenvolupament d‘un sistema de gestió de les telecomandes i
de la telemetria de l‘estació terrestre de nanosatèl·lits, on s‘hi inclou un entorn gràfic de
control i les interfícies necessàries per comunicar-se amb altres mòduls existents. Un
sistema de telemetria, rastreig i comandes (TT&C) ha de ser capaç de controlar el satèl·lit
des d‘un operador terrestre, transmetre comandes ascendents per ser processades pels
seus subsistemes, rebre paquets descendents amb la informació sobre l‘estat o dades
científiques de la missió i informar permanentment sobre la posició del satèl·lit, calculant a
més els propers intervals de visibilitat.

L‘objectiu final és la seva implementació a l‘estació terrestre situada al terrat de l‘edifici B3
del Campus Nord de la UPC i ha de ser suficientment modular per a ser usat tant als
projectes 3Cat-1, 3Cat-2 com a futures missions.

Seguidament, aquestes són algunes de les eines emprades en el seu desenvolupament:
llenguatges de programació web (per la GUI basada en un lloc web) sobre una plataforma
LAMP, un ordinador de placa única Raspberry Pi pel mòdul de comunicacions, un software
GNURadio per la recepció i la descodificació de la balisa (beacon) Morse i, finalment, una
llibreria per la propagació d‘òrbites basada en l‘algoritme SGP4 que permetrà calcular les
passades del satèl·lit sobre el camp de visió de l‘estació terrestre.

 iii

Resumen

Esta tesis trata del desarrollo de un sistema de gestión de telecomandos y de la telemetría
de la estación terrena de nanosatélites, el cual incluye un entorno gráfico de control y las
interfaces necesarias para comunicarse con otros módulos existentes. Un sistema de
telemetría, rastreo y comandos (TT&C) debe ser capaz de controlar el satélite desde un
operador terrestre, transmitir comandos ascendentes para ser procesados por los
subsistemas del mismo, recibir paquetes descendentes con la información sobre el estado o
datos científicos de la misión e informar permanentemente sobre la posición del satélite,
calculando además los próximos intervalos de visibilidad.

El objetivo final es su implementación en la estación situada en la azotea del edifico B3 del
Campus Nord y debe ser suficientemente modular como para ser usada en los proyectos
3Cat-1, 3Cat-2 así como en otras misiones futuras.

Seguidamente, éstas son algunas de las herramientas usadas en su desarrollo: lenguajes
de programación web (para la GUI basada en una página web) sobre plataforma LAMP, un
ordenador de placa única Raspberry Pi para el módulo de comunicaciones, un software
GNURadio para la recepción y decodificación de la baliza (beacon) Morse y, finalmente, una
librería para la propagación de órbitas basada en el algoritmo SGP4 que permita el cálculo
de los pases del satélite sobre el campo de visión de la estación terrena.

 iv

Dedication

To everyone who pushed on the 3Cat team to achieve our goals, students, professors or

external helpers. To all those people who believed that one day our little satellite could reach

the space. And, especially, to my family and my friends, who give me breath to face any

challenge.

 v

Acknowledgements

Before deepening into the theory, I think it is mandatory to name everyone that contributed

on the realization of this thesis.

To begin, I want to express my gratitude to Prof. Adriano Camps, the person who suggested

me to enroll in this project and my principal advisor.

Special thanks also to Carles Araguz, who has suffered me from the first day (since PAE),

your bright ideas and your work are priceless on this thesis and the whole project.

Finally, I would like to thank their help to all my mates from the NanoSat Lab: Pol Via, Joan

Frances Muñoz, Alexandre Cortiella, Marc Marí, Arnau Solanellas and Jaume Jané.

 vi

Revision history and approval record

Revision Date Purpose

0 09/05/2016 Document creation

1 18/05/2016 First chapters revision

2 13/06/2016 Technical chapters revision

3 17/06/2016 Document revision

4 25/06/2016 Final revision

DOCUMENT DISTRIBUTION LIST

Name e-mail

Christian Ballesteros Sánchez christian.bs.8@gmail.com

Adriano Camps Carmona camps@tsc.upc.edu

Carles Araguz López carles.araguz@upc.edu

Written by: Reviewed and approved by:

Date 09/05/2016 Date 24/06/2016

Name Christian Ballesteros Sánchez Name Adriano Camps Carmona

Position Project Author Position Project Supervisor

 Name Carles Araguz López

 Position Project Supervisor

 vii

Table of contents

Abstract ... i

Resum .. ii

Resumen ... iii

Dedication ... iv

Acknowledgements .. v

Revision history and approval record ... vi

Table of contents .. vii

List of Figures ... x

List of Tables ... xi

Glossary ... xii

1. Introduction .. 1

1.1. Graphical User Interface ... 1

1.2. Orbit propagator .. 2

1.3. Morse beacon and Ground Station software structure ... 2

1.4. Testing .. 3

1.5. Work Plan ... 3

2. State of the art .. 5

3. Ground Station software architecture ... 8

3.1. Scope and main objectives.. 8

3.2. Software modules ... 8

4. Framework design .. 9

4.1. Introduction ... 9

4.2. User interface .. 9

4.2.1. Telecommand queue.. 9

4.2.2. User-side software development .. 10

4.2.3. Layout and design of the GUI views ... 10

4.2.4. Front operation ... 11

4.3. Databases and server side .. 13

4.3.1. Database structure ... 13

4.3.2. Server performance ... 14

4.3.3. GS back-end software .. 14

4.4. User authentication and security ... 15

5. Orbit propagator and satellite tracking .. 16

 viii

5.1. The SGP4 model ... 16

5.2. Ground Station field of view ... 16

5.3. Sunset and sunrise algorithm .. 18

6. Morse beacon .. 19

6.1. Beacon signal.. 19

6.2. Reception and decoding .. 19

7. Framework implementation .. 22

7.1. Common features .. 22

7.1.1. Client-side front-end ... 22

7.1.1.1. State .. 22

7.1.1.2. Queue .. 22

7.1.1.3. Telemetry ... 22

7.1.2. Server-side files ... 23

7.2. 3Cat-1 Ground Station ... 23

7.2.1. Architecture .. 23

7.2.2. Client-side front-end ... 24

7.2.3. Server-side and back-end .. 25

7.3. 3Cat-2 Ground Station ... 26

7.3.1. Architecture .. 26

7.3.2. Server-side front-end.. 26

7.3.3. Server-side and back-end .. 27

8. Tests and results .. 28

8.1. Graphical User Interface and end-to-end tests .. 28

8.2. Orbit propagator error calibration... 28

8.3. Morse beacon decoder tests ... 29

9. Budget .. 30

10. Conclusions and future development .. 31

Bibliography .. 32

Appendices ... 33

A. Graphical User Interface... 33

A.1 JavaScript functions .. 33

A.1.1. Common .. 33

A.1.2. State .. 33

A.1.3. Queue .. 34

A.1.4. Telemetry ... 35

 ix

A.2 Operation screenshots .. 37

A.3 Server-side implementation ... 57

B. Test results... 58

B.1 Orbit propagator tests .. 58

B.1.1 Satellite position prediction ... 58

B.1.2 Sunrise and sunset algorithm ... 59

B.1.2.1 Results comparison .. 61

B.1.3 Visibility intervals computation .. 61

B.2 Morse beacon tests ... 62

C. 3Cat-1 Software Validation Plan .. 64

C.1 Methods and Test Types ... 64

C.2 Validation Tests Facilities .. 65

C.3 Units and Subsystems ... 65

C.4 Tests Specifications and Procedures .. 66

C.4.1 Validation Test Specifications ... 66

C.4.2 Validation Test Procedures .. 69

 x

List of Figures

Figure 1.1 Gantt diagram ... 4

Figure 2.1 Nanosat and microsat launches (source: NSR) .. 5

Figure 2.2 CubeSat missions‘ status (left) and type (right) by SLU, MO, USA 5

Figure 2.3 FUNcube-1 Ground Segment .. 6

Figure 2.4 FSW modules of TSL missions ... 7

Figure 3.1 Software modules design ... 8

Figure 4.1 Index page (satellite status) .. 10

Figure 4.2 Commands queue page ... 11

Figure 4.3 Telemetry page .. 11

Figure 4.4 State diagram ... 12

Figure 4.5 Queue diagram ... 12

Figure 4.6 Telemetry diagram.. 13

Figure 4.8 User authentication flowchart ... 15

Figure 5.1 Field of view sketch .. 17

Figure 6.1 Morse receiver and decoder program ... 20

Figure 6.2 State diagram of the morse_mysql module ... 20

Figure 7.1 3Cat-1 GS diagram ... 24

Figure 7.2 3Cat-2 GS diagram ... 26

Figure 8.1 OP-STK error in ECI system ... 28

Figure 8.2 Ground track comparison (op-stk) .. 29

Figure B.1 ECI error op-stk .. 58

Figure B.2 Ground track comparison ... 59

Figure B.3 Beacon recording environment... 62

Figure B.4 Beacon test received signal ... 63

Figure B.5 Beacon test processed signal .. 63

 xi

List of Tables

Table 1.1 Work Plan tasks ... 3

Table 4.1 Data model design ... 13

Table 6.1 Morse beacon message .. 19

Table 7.1 PHP files .. 23

Table 7.2 Telecommands states .. 24

Table 7.3 3Cat-1 database (gsdb) .. 25

Table 8.1 Lab tests conditions ... 29

Table 9.1 Budget table .. 30

Table 9.2 Personnel cost ... 30

Table A.1 Ground Stations comparison ... 57

Table B.1 Sunrise and sunset results .. 61

Table B.2 Visibility intervals comparison .. 62

Table C.1 Verification methods .. 64

Table C.2 Test types ... 64

Table C.3 Validation Tests Specifications .. 66

 xii

Glossary

ACK Acknowledgement (as an answer on a communications protocol)

ACS Attitude Control System

ADCS Attitude Determination and Control System

AJAX Asynchronous JavaScript and XML

AMSAT Amateur Satellites (organization)

AOS Acquisition of Signal

CDS CubeSat Design Specification

COMMS Communications (module)

CSV Comma-Separated Values

ECI Earth-Centered Inertial

EPS Electrical Power System

FIFO First In, First Out

FOV Field of View

GPS Global Positioning System

GS Ground Station

GST Greenwich Sidereal Time

GUI Graphical User Interface

HWMod Hardware Module

IGRF International Geomagnetic Reference Field

ITU International Telecommunication Union

JSON JavaScript Object Notation

LAMP Linux, Apache, MySQL and PHP (archetypal model of web service stack)

LEO Low Earth Orbit

LONESTAR Low-earth Orbiting Navigation Experiment for Spacecraft Testing Autonomous

Rendezvous and docking

LOS Loss of Signal

NORAD North American Aerospace Defense Command

OP Orbit Propagator

OS Operating System

PAE Projecte Avançat d’Enginyeria (Advanced Engineering Project, in Catalan)

PDR Preliminary Design Review

PNG Portable Network Graphics

RTL Realtek chipset

 xiii

SBC Single Board Computer

SGP4 Simplified General Perturbations model (1988 FORTRAN IV publication)

SPI Serial Peripheral Interface

SQL Structured Query Language

SSH Secure Shell

TLE Two-Line Element set

TT&C Telemetry, Tracking and Commands

UHF Ultra High Frequency

UPC Universitat Politècnica de Catalunya

USB Universal Serial Bus

USRP Universal Software Radio Peripheral

VHF Very High Frequency

 1

1. Introduction

During the last years, some CubeSat projects have been developed at the UPC Laboratory

of Small Satellites and Payloads (or UPC NanoSat Lab), located at the A3 building of the

UPC Campus Nord in Barcelona. In particular, the 3Cat project encompasses several

generations of nano-satellites, including 3Cat-1 and 3Cat-2, fully designed and manufactured

at this university, mostly by graduate and undergraduate students.

The essential parts of satellite missions are:

- the space segment, i.e. the satellite

- the ground segment or Ground Station; and

- the launcher, only used on at the beginning of the mission

This thesis is focused on the ground segment and all the technologies involved on the

Telemetry, Tracking and Commands (TT&C) subsystem and the control of the

communications from the Earth to the Satellite. In 3Cat generation satellites, as in other

CubeSat missions, the frequency bands used on the communications are VHF and UHF for

telemetry and commands, which involve few data and need less bandwidth and S band,

higher on the spectrum and used for large amounts of scientific data.

Therefore, the software framework that will be designed must include a user-friendly

interface to manage and visualize the TTC subsystem information and other modules to

automate multiple processes like computing the next visibility intervals, controlling the

antennas hardware or decoding some beacon signals. Then, on this document, three main

parts can be differentiated, with one more that includes the rest of them: a Graphical User

Interface (GUI) development, an Orbit Propagator design, the Ground Station (GS) software

structure design, including a Morse beacon decoder, and the fourth part is dedicated to all

the elementary and full tests.

1.1. Graphical User Interface

A graphical interface is basically an intermediary between the user and the machine, a GS in

this case. It is responsible of showing clearly some information and it must read and correctly

interpret the user inputs.

At first, it is necessary to mention that this part is a continuation of the work previously done

on the Advanced Engineering Project course (PAE), where a preliminary design of the web-

based interface to control the GS software was proposed by the same author of this thesis. It

was divided in three parts: the last state information, a telecommands queue and a telemetry

register. While the first two have been modified, improved and debugged over the last

months from the previous design, the last one, the telemetry part, has been addressed solely

in this thesis. All of them include the management of a MySQL database, which is used by

the GS software to pack, send and receive the commands and it includes the log files

information of sensors, an orbit register, some important data of the satellite, etc. Besides the

implementation of these parts, some other features have been designed and introduced to

the interface in order to meet multiple the needs of the mission or improve the user

experience.

 2

The GUI requirements are detailed here:

- the ability to program commands and update their status once introduced on the

queue,

- a telemetry visualization framework and the ability to monitor the status of the

spacecraft,

- the satellite last state details display,

- data filtering and visualization options to help users on the data analysis, and

- an access control with user authentication protocols.

1.2. Orbit propagator

Once the GS software framework and the communications protocol are defined, there is still

another question to solve: when is the satellite going to pass over the GS field of view (FOV),

so there is a guarantee that the commands will be sent and received properly? This task is

assigned to the orbit propagator. It is, actually, a program able to predict the satellite position

at a given time; therefore determining the satellite "passes" over the GS (i.e., when the GS

has to start and finish the communication process).

The program has to accomplish the following goals:

- calculate the visibility time intervals,

- save them on a table in the database,

- provide other essential parameters, if required (such as velocity, GST time…) and

- manage time divergences on the visibility intervals update

1.3. Morse beacon and Ground Station software structure

A last part related to the GS software is the decoding of a beacon signal. This is something

that was tackled in other students‘ thesis from the NanoSat laboratory, but was never fully

integrated to the GS environment. A first approach is found on a Matlab program designed

by Ms. Elisabet Tremps on her thesis Design and implementation of the ground station for
3Cat satellites [1]. Her design was based on a Matlab program, but has been finally discarded

due to the incompatibility with the Linux platform used in the GS and its high computational

cost.

Another objective, besides the beacon decoder inclusion, is the software framework design

with all the required modules integrated on the same system. This design should be used on

both missions adapting them for the particular specifications of each one. Therefore, the

most important features to focus on are the reusability and the modularity.

The Morse beacon software must fulfil these requirements:

- beacon signal reception and processing to obtain readable data,

- message decoding (from Morse code to text) and

- storage of the message on a database

On the other hand, these are the Ground Station software main parts that have to be

designed, implemented or tested:

 3

- A web server to host the user interface

- A back-end structure for the command and telemetry management and the required

communication protocols in order to send or receive data packets

- The beacon receiver program, including data decoding

- The GS hardware drivers and controllers (e.g. rotors control, polarization switches,

etc.)

1.4. Testing

The test campaign includes all the validation methods developed during the integration of the

previously described software modules. Moreover, the execution of the command

instructions in the satellite subsystems (ADS, EPS, COMMS…) must be verified on a real

communications environment. The methodology includes the link establishment, the

validation of the commands protocol for each case and the data analysis with the obtained

files or the satellite state (e.g. power consumption or sensor values).

Detailed test procedures, values and extended methodology, as well as a thorough break

down of the actions and expected results designed for the test campaign, are presented in

the Validation Plan reports [2][3], also available at the appendix C.

1.5. Work Plan

Table 1.1 shows a list of the tasks performed on the project, with their start and end dates

and an estimated duration.

Table 1.1 Work Plan tasks

Task Start End Duration*

1. GS-1 GUI development 15/02/2016 22/03/2016 27 days

2. GS-2 GUI development 02/05/2016 06/06/2016 26 days

3. GS software restructuring 05/05/2016 10/06/2016 27 days

4.1.1 GS-1 SW testing 25/02/2016 29/03/2016 24 days

4.1.2 GS-1 end-to-end testing 22/03/2016 08/04/2016 14 days

4.2.1 GS-2 SW testing 09/05/2016 10/06/2016 25 days

4.2.2 GS-2 end-to-end testing 13/06/2016 24/06/2016 10 days

5. Orbit propagator design 18/04/2016 18/05/2016 23 days

6. Morse beacon decoder 25/04/2016 20/05/2016 20 days

7. Security protocols implementation 20/04/2016 06/05/2016 13 days

The figure 1.1 shows the Gantt diagram including the previous tasks.

During the project development, some tasks have been modified, basically their milestones

dates, due to multiple decisions associated to an immediate launch of 3Cat-1 satellite,

although it was later postponed. This first mission acquired a critical priority at testing time,

and all other tasks were postponed.

*Weekends are not considered on the duration

 4

The first set of tests detected some bugs in the software that had to be fixed and this was

another reason why the following steps were delayed.

The GS backend responsible of the packet processing was not still fully debugged at the time

of the tests and the process became harder. The GUI had some errors too, that were solved

on those weeks as well.

Otherwise, 3Cat-1 tests were foreseen for the lasts weeks of April in the preliminary review

document. The high priority that they took (the satellite should be delivered by mid-April)

forced to advanced them almost a month. In conclusion, despite all the extra difficulties found,

the time plan was accomplished with a couple of weeks of margin and the new features that

must be included or the oldest ones to be reviewed had the expected time of dedication or

even more.

Figure 1.1 Gantt diagram

 5

2. State of the art

The adoption of CubeSat platforms in satellite systems, specially for Earth Observation and

technology demonstration missions, has grown over the past years and is expected to

increase even more, with the adoption of newer and larger form factors. But, what exactly is

a CubeSat? It is a small satellite (a nano-satellite, actually) based on a cube-shaped basic

structure. These ―cubes‖ can be combined to form larger satellites with more units. The most

common structures are made of one (1U), three (3U) six (6U) or twelve units (12U), but

almost any design is possible.

In the following figure, there are the expectations of the nano-satellites and micro-satellites

launches for the next years.

Figure 2.1 Nanosat and microsat launches (source: NSR
[4]

)

3Cat-1 is included on the 1-3 kg group, while 3Cat-2 is in the 3-10 kg group, as they are 1U

and 6U CubeSats (10x10x10 and 10x20x30 cm). They follow the California Polytechnic State

University standard defined on their document CubeSat Design Specification (CDS) from

The CubeSat Program[5].

A list of all projects developed to the date can be found in a database published by the Saint

Louis University (Missouri, USA), which is divided by launch year, mission type or current

status[4].

Figure 2.2 CubeSat missions‘ status (left) and type (right) by SLU, MO, USA
 [6]

The work in this thesis is focused on Ground Station systems. It includes all the

communications software and hardware and a tracking system, always necessary to

 6

establish a reliable link. Many universities are currently developing their own systems

because they are a rather affordable solution to develop space missions with educational

purposes, although the commercial, industrial and scientific use is clearly growing as figure

2.2 shows on the right chart.

It is important to know how the GS software works to determine whether the developed

program meets the requirements and execute the tests successfully. Anyway, it could be

interesting to mention some other projects that are being or have been performed related to

CubeSats.

An important feature to take into account is the frequency band on which they are operating.

Most of these projects, as they are developed by universities for educational and research

purposes, operate in amateur bands, mainly on the 70 cm band located from 420 to 450 MHz

(UHF) or the 2 m band from 144 to 148 MHz, in ITU Regions 2 and 3, or 146, for Region 1

(VHF)[7]. For example, the Radio Amateur Satellite Corporation (AMSAT) and the Innovative

Solutions In Space (ISIS) company launched in June 2014 the EO-79 satellite [8], also known

as QB50p1 and FUNcube-3, a 2U CubeSat operating in the 435.035 – 435.065 MHz range

for the uplink and the 145.935 – 145.965 MHz range for the downlink.

Even the National Aeronautics and Space Administration (NASA) has its own CubeSat

launch program. The Educational Launch of Nanosatellites (ELaNa)[9] initiative includes

some experimental nano-satellite projects destined to science and engineering students.

ELaNa-XII is their most recent mission (October 2015, although ELaNa-VII launch was finally

one month later), which includes four different CubeSats: ARC, BisonSat, LMRST-Sat and

Fox-1. As an example, the first one, the Alaska Research CubeSat (ARC)[10], is a 1U

CubeSat with a telemetry downlink and CW beacon. In this case, there is also a payload

downlink at 2440.5MHz, equivalent to the S band, as in 3Cat-2.

In terms of the Ground Station segment, a project that has some similarities with the one

being explained on this document is FUNcube-1 (the precursor of the EO-79), an educational

1U CubeSat developed by experts from AMSAT-UK and AMSAT-NL. The ground segment is

based on a USB receiver (to make data reachable to everyone who could be interested in it)

and a computer program which uses the Internet to communicate with a remote database. In

figure 2.3, its basic structure is presented. On the telemetry warehouse webpage [11], the user

can see real time data without installing any program or using any device.

Figure 2.3 FUNcube-1 Ground Segment

 [12]

 7

Another critical part is the command and data handling, which allows both the user and the

satellite to communicate and correctly interpret the given information. One of the latest

research projects in this direction is presented in A Reusable Command and Data Handling

System for University CubeSats [13], where some members of the Texas Spacecraft

Laboratory from the University of Texas at Austin (UT-Austin) have designed a Command

and Data Handling (C&DH) system based on a centralized system architecture, which has

been improved and is being implemented for their current missions. The first one is RACE

(standing for Radiometer Atmospheric CubeSat Experiment), which was on board the

Antares during the launch accident in October 2014. Bevo-2 is part of the second mission of

the LONESTAR program, after Bevo-1, that implemented for the first time a main flight

processor and a C&DH software in C++ and Linux environment. And the last one is

ARMADILLO (standing for Atmosphere Related Measurements And Detection of

submILLimeter Objects). The Flight Software (FSW) is quite alike to 3Cat-2, including a

communications (COMMS) module, an Attitude Determination and Control System (ADCS),

the Electrical Power System (EPS), the Star Tracker software with the associated camera

and the C&DH module itself. The only part that has been added and it does not exists on
3Cat-2 satellite is the GPS receiver, which has a direct relationship to the mission scope,

different on both cases.

Figure 2.4 FSW modules of TSL missions
[13]

Finally, the most important feature that should be emphasized is its reusability. On a large

project, such as 3Cat or LONESTAR, where multiple satellite generations are developed, it is

a key point that could save a lot of time if it is considered from the beginning. Every software

part has to be generalized to a large range of cases and developers must disengage it as

much as possible from the existing hardware, because it could be very different on future

missions, but not the final operation. And, probably, this is the most important challenge to

achieve in the end.

 8

3. Ground Station software architecture

There are some basic requirements that must be fulfilled on any satellite mission. On the GS

segment, these are mainly four:

- transmission of telecommands,

- reception of telemetry,

- reception of scientific data, and

- satellite tracking

For each one, there are multiple modules responsible of every individual task and, in addition,

other features can be implemented to make them easier or more robust.

3.1. Scope and main objectives

As it was previously commented on the introduction, in the framework design for this thesis,

the main user interface is a website-based GUI. It includes all the necessary scripts and

functions to store or display multiple telemetry data types or update a telecommands list.

However, this is not enough for the data handling. A GS back-end software module (not the

same as the website back-end) is responsible of the data packing and sending to the

communications hardware module.

The tracking module has to be divided into two parts: the orbit propagator, to compute the

future passes, and the rotors control, to point on the right direction once the GS is certain of

the satellite visibility. Moreover, other features such as the transmission power can be

controlled, as well as the antennas polarization or periodicity of the next passes update.

In conclusion, the main goal of a GS software structure like this one is a reliable

communications link between the user and the satellite, and it involves multiple protocols,

interfaces or hardware control drivers. Each one can be found on a different system layer but

this document will be focused mainly on the highest parts, including user interaction, data

handling and a high abstraction intelligence, i.e. how the telemetry and commands

information are managed from both user and GS sides tacking into account the subsequent

processes.

3.2. Software modules

Figure 3.1 Software modules design

 9

4. Framework design

4.1. Introduction

The main part of this thesis is focused on the development of a dynamic command and

telemetry management system which automatically schedules commands, plots telemetry

data, and allows the user to interact with the satellite through the GS and communications

subsystem. A basic feature that it must have is the ability of being run on any platform

(computer), with independence of its O.S. or the hardware device. Some alternatives are:

- a GUI written in C/C++ using portable graphical libraries,

- a Java interface, portable by definition (it is executed on a virtual machine), and

- web platforms and technologies

Finally, the GUI was decided to be based on a web platform because it does not require any

type of previous installation, there is a huge amount of available resources for the graphical

development and the communication with the server side is quite simple. In fact, it only

needs a web browser to be executed. The ―intelligence‖ to manage commands, telemetry or

any information is located on the server and it can be controlled directly from the hosting

device or remotely, for example, with an SSH connection.

In addition to the interface, a packet manager was required as well. The telecommands and

telemetry data shown on the GUI needs to be received or sent with some communication

modules coordinated by a main application. It is also the same module responsible of the

database update, processing the information sent from the satellite or changing the state of

the queue, for example. It will be continuously running and managing the whole system,

giving an autonomous operation to the GS.

4.2. User interface

4.2.1. Telecommand queue

As many of other satellites, 3Cat-1 and 3Cat-2 base their communication modules on some

instructions known as telecommands (or simply "commands"). Once sent to the spacecraft,

the commands trigger different system actions (e.g. enable a subsystem, change a given

configuration parameter, set the power mode, etc.) or request mission/housekeeping data

(i.e. payload data, sensor data, system logs, etc.), but all the commands follow the same

structure and protocol, although these are usually mission-specific. The GS command queue

keeps the list of commands programmed by the user on a table from a database and,

following a protocol which will be explained in future sections, they are sent to the satellite in

packets by the communications module.

The commands list is based on a FIFO ordered queue, so the first command introduced is

the first to be sent and the sending process of the next one will not start until a valid

response is received or the GS segment is certain of the command reception on the satellite.

This is, in fact, the simplest way of scheduling but the most robust too.

At any time, the queue can be modified changing the order or deleting a single command,

but the interface software must be ―intelligent‖ enough to prevent undesirable modifications

that could affect the communications protocol. In addition, an extra feature has been

 10

introduced to allow a more complex command scheduling. Even there is only one queue

table in the database, each command has an identifier associated to a future visibility period

(also called orbit or satellite pass). It permits the user to program a queue that can be sent on

a concrete time, not just the first time a link is established on the future.

4.2.2. User-side software development

The front-end architecture includes all the interfaces, functions or scripts that are directly

executed by GUI but two sides can be differentiated: the user and the server side. The

modules located on the first one are basically programmed using two languages, HTML and

JavaScript, apart from the CSS files for the style, at the user side; and . The webpage is

based on three different layouts, namely: satellite status (default view), the commands queue,

and telemetry data. These views are accessed through a navigation bar placed below the

state information header. Their implementation is detailed in appendix A.1.

On the following chapters, the main functions and files used on the GUI development will be

explained.

4.2.3. Layout and design of the GUI views

The satellite status page includes the main information that has to be displayed to know the

state of the satellite vitals, and the last updates from the sensors, EPS, etc. These tables are

based on div tags (http://www.w3schools.com/tags) managed by the Cascade Style Sheets

(CSS), where the elements properties have been defined for the different type of cells, rows

or the table itself. Full page screenshots of the interface design can be consulted in the

appendix A.2, but the following images show some examples of the layout.

Figure 4.1 Index page (satellite status)

The telecommands queue has been divided in two lists: active and completed. It is useful to

separate them to have a clearer vision of both types. The first one is a dynamic list based on

multiple queues, one for each visibility interval stored on the database. The list is blocked

during the communication process by the packet manager, but can be edited by the user if

the back-end module has released it (the ―edit mode‖ state is available). Active commands

have multiple editable options. Their position on the queue can be modified (up or down) or

they can be deleted from the list as well. Each command can be inserted in a given satellite

pass (i.e. GS visibility window determined by the satellite orbit). In addition, the ―queue

option‖, which is referred to the action to perform when there is an erroneous answer or the

Beacon messages

Sensor values

EPS report Status parameters

 11

communication is failed, can be chosen between three options: move the command to the

next window in first position, discard it and continue or stop all queues. Command

parameters cannot be changed. Instead, the command has to be deleted and replaced by a

new one.

For the completed commands, different information is displayed: given that they cannot be

modified (because they have already been processed by the system), there are some

buttons to download, or display in the case of sensor logs, the received attached files data.

In the queue page, there are two important buttons that have been added too: one for a soft

reset, to tell the back-end software not to process any command until a user instruction,

which is replaced by a restart button when the previous is triggered, and another to execute

a hard reset, which consists on killing the process, restarting the whole communication

module and start it again.

Figure 4.2 Commands queue page

Finally, the telemetry page includes tables and areas that plot sensor values in the time axis

and some registers of beacon, system (satellite) and backend errors messages. Some filters

have been added for a proper visualization and the charts have some zoom and slide

features, besides an ID selector for each data set. All the graphs can be also downloaded as

an image, on a PNG file, or CSV.

Figure 4.3 Telemetry page

4.2.4. Front operation

In order to control this interface, there are multiple functions that are required. They require

synchronization between them and have been designed minimize to load and maximize

browser performance, therefore maintaining user experience regardless of the number of

displayed features.

The status page does not require interaction from the user. A periodic function call updates

the whole data and the clock times.

Edit mode button

Orbit window

Reset buttons

Chart selector

Graph options

Legend and

toggle ID buttons

 12

Figure 4.4 State diagram

The queue page, on the other hand, has multiple options, a dynamic layout and allows the

user to interact with the commands list, besides some critical buttons. It controls the edit

mode for active commands, checking whether the queue is blocked by the GS back-end or

not, and displays all the information for each one. For the completed commands queue, the

most important part is related to the attached data that is received from the satellite. The

buttons are created every time the queue is updated and they must have a suitable reference

parameter to download the appropriate file or redirect the interface to the telemetry page to

display the correct data. But there is an especially critical function that is related to the GS

reset. When the user clicks on the ―soft-reset‖ button, the only change is made on a

parameter on the configuration table from the server database, but the ―hard-reset‖ button

implies to kill the communication process and it is recommended to avoid it unless it is strictly

necessary. In any case, the back-end software is responsible of the secure reset.

Figure 4.5 Queue diagram

The last part, and maybe the most complex one, is the telemetry page. On the graphical

design chapter, the general layout has been shown (figure 4.3) but there are multiple

functions that have been implemented for its proper performance and increase its complexity

larger than the previous pages. The graphic charts can be modified by the user, with options

that include zooming for both axis, a data slide on time, a zoom option with mouse selection

and data download buttons, as a PNG image or a CSV file. Another interesting feature on the

graphs is the option of choosing what data sets the user wants to view, helpful when there

are many lines on the chart. The system, beacons and GS errors logs, as well as the rest of

types, include tables where the downloaded data is represented in time descending order,

with filters by start and end time (or data type in case of the satellite system logs).

 13

Figure 4.6 Telemetry diagram

4.3. Databases and server side

This part is referred to all the code that is executed by the GS. On the previous chapter, the

user side was described, but every action that is carried out has necessarily a reaction on the

server. For example, when the user adds a command to the list, the server has to include it

on the database and update its state.

4.3.1. Database structure

All the information about sensors, telecommands, orbit passes or the satellite status is stored

in a MySQL database, which allows an easy data download of ordered or filtered data. This

is an important feature for the project purpose. Any information received from the satellite is

stored in a dedicated table and, in addition, others are created to manage various aspects

from the interface, the GS itself or other modules.

Table 4.1 Data model design

Type of table Columns

Telecommands queue

- packID: command unique identifier

- orbitID: orbit window identifier

- cmd: command name

- state: state of the command (only in

GS-1)

- n/t_parts: received/total files (only in

GS-1)

- argX: arguments (only in GS-1)

- attached_xxx: RX/TX data path (only

in GS-1)

- xxx_path: satellite/GS path (only in

GS-2)

- type: Uplink/Downlink (only in GS-2)

- time: timestamp of last update

Sensor values

- time: measure time

- sensorID: sensor identifier

- value: measure value

Satellite and GS parameters
- param: name of the parameter

- value: value of the parameter

 14

Reports and messages
- time: message generation time

- message: information

Users

- userID: unique identifier

- login: user name

- pass: encrypted password

- cookie: encrypted cookie

- valid: validity period

As a convention, every time field introduced on the database must be on UNIX format or, in

case it is a timestamp, referred to the UTC standard. At the user side, this has to be taken

into account to display them with the local time offset if it is wanted.

4.3.2. Server performance

The website can be run using an open-source HTTP web server called Apache (on its 2.0

release). Moreover, the 5.5.9 version of the PHP interpreter will be used to handle databases

and dynamic content. The GS domain is hosted on the UPC servers and, nowadays, its

access is only available from the university network for security reasons. In future revisions,

a VPN remote access or other technologies can be considered.

PHP functions and scripts are organised into multiple files, which can be divided in some

groups: queue management, telemetry and information download, back-end management

and user login (functionality is described on the next chapter). There is a strong relationship

between these files and the front-end pages because, thanks to the AJAX calls, the

information can be uploaded for each single purpose using a comprehensible structure

named JSON. From it, the front-end functions can extract and display data on a user

readable way, method that makes the program easy to understand.

4.3.3. GS back-end software

The GS back-end is composed of a set of programs and scripts which run in the GS server

machine and are decoupled from the GUI. These programs handle packet generation and

decoding and interface the hardware components of the GS (comms. module driver, rotors,

etc.). Because of that, this set of programs is hardware-specific and its implementation will

differ depending on the mission and communications protocol definition. While the protocols

and data structure definition are out of the scope of this thesis, the treatment of this data and

the implementation of 3Cat-2's packet manager will be addressed in the following chapters.

For example, the data obtained from the sensors has to be stored in a different way than the

scientific data files, as they will need other structure to be properly displayed in the GUI.

Even there is a strong dependence with the data it is working with, the proposed modular

design decouples this from the rest of the GS architecture.

The back-end structure includes the following modules:

- a packet manager and data handler,

- the communications software module,

- an orbit propagator, and

- a beacon signal decoder

Only the last two modules have been designed and implemented during this thesis and will

be described in future chapters.

 15

4.4. User authentication and security

For a website-based GUI, security is an essential aspect to prevent the server from

undesired intrusions or attacks, even more when the managed data is relative to a satellite

mission and its success could be truncated because of it. That is an important reason why

the interface access has been strongly restricted (only from the university network) despite

the used technologies could allow a remote access. On the other hand, the remote use is a

clear advantage that has been considered and, maybe in further revisions, will be added

using a VPN access or other methods, always without compromising its security.

In any case, only known users have to be able to access the interface and, for this purpose,

a user authentication method is required, even inside a secure network. To accomplish it,

some extra functions have been added to both front and back files, which allow the interface

to identify the user with a simple login method based on encrypted passwords. To prevent a

constant validation, cookies are used to save the session for a defined time interval (currently

set in 30 minutes).

Figure 4.7 User authentication flowchart

 16

5. Orbit propagator and satellite tracking

Once the communication protocols are defined, it is necessary to know when the GS must

switch to transmission and reception mode. While there is no satellite visibility, the GS back-

end process remains slept and only awakes to check the next visibility interval. The program

knows it by looking to the orbit table from the database, where there are stored the intervals

for the following passes. To update it, a second program has been developed during this

thesis and the most important features are described on the next chapters.

5.1. The SGP4 model

In order to compute an interval of visibility, the program predicts the satellite position (i.e.

―propagates‖ its orbit trajectory) until a number of passes is detected. The given number of

passes to detect is left as a configurable parameter. At every propagated position, a function

determines whether the satellite is in the Field Of View (FOV) of the GS antenna. Its

implementation is explained on the next chapter.

The orbit propagation is implemented using a publicly available C library [14] based on the

Simplified General Perturbations (SGP) and Simplified Deep Space Perturbations (SDP)

models. The SDP is not used as 3Cat satellites are on LEO orbit, which means that the orbit

height is under 2000 km over the Earth‘s surface, but it is also considered in the library. Both

models were developed by the NORAD in the 1970s and first programmed in FORTAN in the

1980s. SGP4 and SDP4, the real models used in the program, are a modification from the

original implemented in 1988 to handle the larger number of objects in orbit and the error is

~1 km at the Two-line elements set (TLE) epoch. The TLE is a data format that encodes a

list of orbital elements of an Earth-orbiting object for a given time, the epoch

(https://www.celestrak.com/NORAD/documentation/tle-fmt.asp). The library theoretical bases

and the used codes can be found in [15].

To obtain a prediction, the program initializes a structure with all the orbit parameters

extracted from the satellite TLE (downloaded from CelesTrack webpage[16]). Then, a function

named satpos_xyz is called with the orbit ―struct” and the time to compute the position in

Julian date as arguments. It can give as outputs the position and the velocity at this time.

The accuracy of the predictions has been measured comparing multiple results with industry-

renowned mission analysis tools (i.e. Agi's Systems Tool Kit, STK[17]), based on the same

SGP4 model. These results are presented in section 8.2.

5.2. Ground Station field of view

When the satellite position is computed, the program must check if it is on the GS FOV or not,

i. e. if there is visibility on the specified time. On figure 4.1, there is a simple sketch that

illustrates how this is computed. Basically, it is considered that the satellite is on FOV if the

angle between the satellite and the normal vector on the Earth surface at the GS position, θ,

is less than 90º (under 85º considered on the real function to ensure visibility, that could be

affected by multiple causes).

This angle is computed as it follows:

 (̂
 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

‖ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗‖
) (1)

where the vectors are computed:

 17

 ̂
 ⃗⃗⃗⃗ ⃗

‖ ⃗⃗⃗⃗ ⃗‖
 , (2)

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗ . (3)

Figure 5.1 Field of view sketch

There is another important fact that has to be taken into account. All the vectors involved in

the previous equations must be defined on the same coordinate system. In this case, a

Cartesian coordinate system has been used, which considers the Earth rotation: the Earth-

centered inertial (ECI) system. ECI has been chosen given that it is the same coordinate

system used to represent satellite position in the SGDP4 libraries. On the other hand, it is

easier to know the GS position with another coordinates system, based on its latitude,

longitude and height, the geodetic coordinates or LLH. Equations (4) and (5), extracted from

the CelesTrack columns called Satellite Times [14], relate both systems and they have been

used to convert the GS coordinates to the ECI system before computing the θ angle.

Latitude (φ) to ECI:

 , (4)

 , (5)

where Re is the Earth radius on the GS position (~6371 km).

Longitude (λe) to ECI:

 () () , (6)

 () () , (7)

 () () , (8)

where θg(t) is the Greenwich Meridian rotation depending on the time, as the Earth is rotating

on the XY plane.

The next equations are used to obtain the previous value, extracted from the page 50 of the

Explanatory Supplement to the Astronomical Almanac [18]:

 () () , (9)

𝜃

𝐺𝑆⃗⃗⃗⃗ ⃗

𝑆𝑎𝑡⃗⃗ ⃗⃗ ⃗⃗

�̂�

 18

 ()

 , (10)

 , (11)

where du is the (integer) number of days elapsed since JD 2451545.0 (2000 January 1, 12h

UT1), θg(0
h) is the Greenwich Meridian rotation at midnight, ∆t is the amount of seconds

elapsed since 12 PM and ωe is the Earth‘s rotation rate (7.29211510 × 10-5 rad/s).

5.3. Sunset and sunrise algorithm

This is the last part and it is not strictly necessary on the orbit propagation process. The team

decided to establish communications just during the day due to power limitations. The solar

panels can only charge the batteries when the Sun is lighting them and, during the

communication process, a lot of power is consumed. To prevent from spending lots of energy

from the batteries, which could cause a lower lifetime, any link is avoided at night. Then,

another function was added to the program to discard those visibility intervals that are

occurring after the sunset. Only if the start time is before the sunset, the communication

process will be initiated.

The algorithm to compute the sunset and sunrise time can be found, for example, on the Ed

Williams‘ Aviation page [19][20] and its description is in the appendix B.1.2. In order to measure

the predictions accuracy, many calculus have been made and compared with the data found

on some Internet pages like Time and Date sunrise and sunset calculator page [20]. The

accuracy of the algorithm has been considered with no error, as the results are exactly the

same as the found in the mentioned page.

 19

6. Morse beacon

A beacon signal is a periodic message with general information about critical state values, for

example, temperature or the batteries state of charge. On 3Cat-1, this is just the information

included in the beacon. 3Cat-2 has also his own beacon signal, but this chapter is only

focused on the first one, because it is the one implemented in the frame of this project and

they are essentially different (modulation, coding and information contained on them).

6.1. Beacon signal

3Cat-1 beacon is Morse-coded, a simple and widely known code. The main reason to use it

is the amateur band license. In Spain, the spectrum from 435 to 438 MHz is free to the

satellites communications with high restrictions on their use. One of such restriction is that

any user should be able to receive and decode the signal easily. This beacon signal is

modulated in Amplitude Shift Keying (ASK) modulation and the carrier frequency is 437.25

MHz.

The basic unit of a Morse code is a dot or ―dit‖ but there are other units like the dash (or

―dah‖) and silences, long and short. These are the basic rules:

- a dash is three units (dots) ,

- the space between parts of the same letter is one unit ,

- the space between letters is three units and

- the space between words is seven units

Table 6.1 shows the message sent in the beacon signal. There are two distinguishable parts:

the fix structure (header, ‗T‘ and ‗E‘ letters) and the variable numbers, depending on the

temperature in Kelvin degrees and state of charge in %.

Table 6.1 Morse beacon message

Message Temperature State of charge

EC3CTAT###E### Any value 000-100, 255

For the temperature values, any case is considered as possible, even knowing that the most

common will be between 250 to 350 ºK. The state of charge can only have values in the 0-

100 range because it is represented in %, but there is another possibility: when the batteries

are disconnected and all the consumption is supplied by another source (solar panels on the

space or a power supply at the laboratory), this parameter takes the maximum value of an

integer byte (255).

6.2. Reception and decoding

The first part to design is the signal reception. Depending on the input, a different signal

processing method is needed. At the beginning, the beacon signal was decided to be

entered as an audio signal, once it has been filtered and converted with a radio reception

device. Some tests revealed a low SNR signal, which decreases the success rate on the

message decoding. In order to improve it, the existing receiver, with an audio output, was

replaced by a software defined radio (SDR) device (based on the RTL2832U chipset) directly

connected to the antenna and to use SDR tools as well for the signal processing.

 20

GNURadio is an open-source program that allows the user to process any digital signal with

pre-defined modules or custom processing blocks. For this part, a previously designed

program, developed at the NanoSat Lab, has been reused with some changes to filter the

input signal and decode the Morse message. In addition, a new module has been developed

to save the message into the database, in a MySQL table specifically prepared for that

purpose. Figure 6.1 shows the program structure.

Figure 6.1 Morse receiver and decoder program

The input signal is filtered and its power is increased thanks to an auto-gain module (AGC3).

Then, the root mean square (RMS) is computed and a resampler reduces the number of

samples per second, from 106 samp/s, corresponding to the RTL sampling rate, to 9200

samp/s. The threshold module converts the samples under a certain value to 0 and, over it,

to 1. When the signal is binary, the slicer module passes each bit to the morse_sink, which

detects dots and dashes and decodes them to obtain readable characters. After decoding

each letter, it is passed to the morse_mysql module that is responsible to save them into the

database once a complete message is received. As the message structure is previously

known, some ―intelligence‖ has been added to detect and solve some errors.

Figure 6.2 State diagram of the morse_mysql module

 21

A character is considered as empty when the received letter does not correspond to the

expected one, but the next. An error is expressed as the ‗#‘ character on a decoded

message. This is the criterion:

- for the header, the character is different than the expected ,

- it is different to the next character in the structure ,

- a number from the temperature value is a letter ,

- a number from the state of charge value is a letter and

- the first number of the state of charge is different from 0, 1 or 2

To detect the message start, there is a timer set on the previous character reception. This

time is compared to the current date and, after a certain delay, the received character is

considered as the first of a new message. Given that the variable part is made of numbers,

the longest message is ―EC3CTAT000E000‖ (‗0‘ is equivalent to ―-----―, five dashes, in Morse

code). The time of a basic unit, a dot, is set as 100 ms in 3Cat-1, so the longest message

duration, counting silences, is 20.1 seconds. The sending period is 1 or 3 minutes,

depending on the state of charge of the batteries. After doing these calculations, the

threshold time has been set in 20 seconds, which has enough time margin between the

longest message end and the next message start.

 22

7. Framework implementation

Having presented the generic software framework design, this chapter describes the

implementation of this framework both for the 3Cat-1 and the 3Cat-2 Ground Stations. Each

one has its own features, but their architecture and functionality are similar due to the

modular and reusable design. Then, after talking about the common parts in a first section,

there are two dedicated to each particular implementation, focused on the most important

differences

7.1. Common features

7.1.1. Client-side front-end

On the next chapter, the main functions used on each page will be described. For more

information, a larger and detailed list of them is in the appendix X, which includes their input

and output parameters and a brief explanation of their performance.

7.1.1.1. State

The satellite status functions are included on the state.js file. State tables are divided

depending on their content, but the whole information is periodically updated with the same

function: state_update. Beacon messages are updated through a secondary call inside this

function to beacons_update and, moreover, the server and satellite times are updated

simulating a real-time clock with another call every second to times_periodic.

7.1.1.2. Queue

All the functions used in the queue page are defined in the queue.js JavaScript file. There

are three main functions that manage the behaviour of the active queue, which show the

pending commands to be sent: load_active, add and queue_op. The rest are related to one

(or more) of them or they are used to improve the user experience implementing extra

functionalities. With load_active, the webpage shows the stored list of active commands. It

includes the commands name, position on the queue, arguments, size of the sent data, and

the time of the last update. On the same list, when the ―edit mode‖ is enabled, two extra

columns are displayed: ―Move position‖, to change the commands order in a queue or delete

it, and ―Orbit window‖, which allows the user to change the window where this command will

be sent.

For the completed list, load_completed does the same as load_active with a significant

change: the user can download or view the information with different buttons on the attached

data column. On the other hand, add and queue_op functions call a PHP file used to move,

add or delete commands from the list and change the orbit window for a single command too.

7.1.1.3. Telemetry

The third part, telemetry, can be split in two: tables and charts, regardless of all the functions

being defined in telemetry.js. Users can choose the type of information to be presented, but

never both at the same time. In any case, the process behind them is very similar. One

function, table_download or chart_download, is called when a telemetry option is chosen and

it calls, using AJAX, a PHP file to download the required information. Data will be shown

differently depending on the chosen option. There are two display functions: chart_plot to

draw a graph and tabs_update to create a new table.

 23

Finally, there is some extra information that is updated on all pages, but has not been

mentioned. A file called common.js includes the header information update and, depending

on the satellite visibility, it modifies the update period of the previous data (commands queue,

state tables or telemetry data).

7.1.2. Server-side files

This part includes the PHP files used for the front-end data management and the rest of the

software used in this GS framework. As the hardware modules and the GS performance are

quite different, the only module shared by them is the GUI server-side, i.e. the PHP files. In

table 7.1, there is a list of all them with a brief description. Their content will change on each

implementation but the structure and performance are the same.

Table 7.1 PHP files

PHP file Description

backend_reset Executes a hard reset of the gs_backend

chart_download
Downloads telemetry data using a suitable

structure for chart drawing

connection_state Data for the header information update

login_functions Functions set for user login

manage_command
Adds, moves or deletes commands from

the queue

manage_queue Sets or gets queue parameters

queue_list Downloads the commands queue

state_update Downloads the status tables information

telemetry_download Downloads telemetry data

user_login Session check and user register or login

7.2. 3Cat-1 Ground Station

7.2.1. Architecture

The GS-1 design is shown in figure 3.1, with blue blocks for the software modules and green

blocks for hardware devices. The first idea was to allocate all the software in the Rapsberry

Pi SBC and use the computer, with Windows O.S., just to run the mission control and

operations software (i.e. Orbitron suite), which also controls the antenna rotors. This level of

integration has been unreachable due to the Raspberry Pi limitations and a second solution

has been decided. The main software will be located in a computer with Linux O.S. (Lubuntu

16.04) and only the modules required for the communications drivers module (COMMS

HWmod or just HWmod) will be kept in the SBC. This decision is based on the high

computational requirements of the web server. It was really hard for the Raspberry Pi to

manage all the back-end processes and this caused multiple server failures. With this split

design, the communication between modules is more complex but allows a faster and a

robust execution. On the other hand, it allows the use of open-source satellite tracker, like

Gpredict.

 24

It is important to mention that the lowest part of the GS-1 software, corresponding to the

communications module and the back-end had previously been developed by members of

the software team at the NanoSat Lab (Carles Araguz and Marc Marí) who, given their

involvement in the development fo 3Cat-1's on-board software, also contributed during the

verification and test campaign of the GS framework.

Figure 7.1

3
Cat-1 GS diagram

An SPI connector is used to send and receive the data signals in the Raspberry Pi and an

RTL device is connected to the antennas to receive beacon data. The SPI is directly

controlled by the COMMS HWmod, which exchanges information with the gs_backend

software through some FIFO pipes. Then, the GUI back-end is responsible of managing the

―gsdb‖ database where the information is stored in once it is unpacked. On the user side, the

front-end takes it to be properly shown.

7.2.2. Client-side front-end

This part is very similar in both cases because its operation does not depend on the

managed data. It will only affect in minor changes, mostly graphical like titles or input data on

the forms.

Table 7.2 Telecommands states

State Description GUI view

Preparing Value by default. In this state, the

packet can be modified.

Ready The command has been packed.

Sending Trying to send it to the satellite.

Sent There is confirmation that the packet

has been sent.

Answered The packet answer has been

received.

Completed The answer has been processed and

the next command can be send.
No image

 25

However, there is an important feature only included on the 3Cat-1 GUI: the state of the

active command, with a colour code detailed in table 7.2. It is included as a column in the

queue and is updated by the gs_backend when a new stage has been completed during the

transmission process. It helps the user to understand what is currently happening during the

satellite pass.

7.2.3. Server-side and back-end

All the sensors and other data shown in the client-side are received, processed and stored

by three modules, namely:

1. the COMMS HWmod, which is responsible of the packet sending and reception;

2. the gs_backend, which transforms the commands into packets (or the reverse) and

stores the obtained data properly in the database; and

3. the website processes at the server side, which send the required information from

the to the client.

The specific tables used on the GS-1 database, called gsdb, are in table 7.3. Most of them

will not be used for the second implementation, because the stored data is completely

different and new tables will be created.

Table 7.3
3
Cat-1 database (gsdb)

Table Content queue Commands list

ads

Magnetometer,

accelerometer,

gyroscope and

IGRF values.

radiation
Radiation

sensors values

beacon_morse
Morse beacon

messages
sat_state

Times and

pending files

beacon_peltier*
Peltier beacon

messages
soc

Batteries SOC

register

current
Current sensors

values
state

GS status

(visibility,

queue param.,

etc.)

eps_status_report

EPS reports

(batteries

consumption,

resets and initseq)

syslog

Syslog

messages

register

error Server side errors temperature
Temperature

sensors values

irradiance
Irradiance sensors

values
users Users register

orbit
Time intervals with

FOV
voltage

Voltage

sensors values

 26

Finally, the last part to mention is related to the orbit propagator and the beacon decoder.

The first one must be periodically called by the gs_backend to update the orbit table and the

second one is constantly running and uses the RTL‘s data to obtain possible Morse

messages from the satellite.

7.3. 3Cat-2 Ground Station

7.3.1. Architecture

The entire software of GS-2 is implemented in a computer, with a Linux O.S. (Ubuntu 14.04).

While parts of the GS backend are still under development, the main structure of the

proposed design has been implemented successfully. A daemon process acts as the GS

back-end, performing packet management and has been developed by Joan Frances Muñoz,

another member of the NanoSat Lab. To interact with it, there are two functions for

transmission and reception. They need the command to be sent or received as the input and

some other extra parameters. Figure 7.2 shows the complete diagram of the 3Cat-2 GS. The

most important difference with GS-1 is the two SDR‘s devices (namely Universal Software

Radio Peripherals or USRPs) used as communications hardware, one for the UHF uplink

and VHF downlink and the other only for downlink, at S band.

Figure 7.2

3
Cat-2 GS diagram

It is important to emphasize that, since the project started, the team had in mind the target of

making a modular web design to use it on both GS-1 and GS-2. Even they were initially

based on dissimilar technologies, a website-based interface allows its reusability on multiple

platforms. Then, apart from the GS back-end, the rest of software files are exactly the same.

7.3.2. Server-side front-end

On the user side, there are not any relevant changes relative to the interface operation. The

most important changes are related to the content that has to be displayed. Both satellites

have completely different commands and modules, which generate new files that can be

downloaded.

 27

GS-2 has three communication links, one for each antenna: VHF and S band for downlink

and UHF for uplink. Commands are not only differentiated by their content. When the user is

going to introduce a new command to the list, the link direction is required, as well as the

command name (they are not the same for uplink or downlink) and the execution time.

These are the different command types, according to the used link:

 Downlink VHF

 Downlink S-band

 Uplink UHF (with ACK)

 Uplink UHF (without ACK)

The status and telemetry information is different too. For 3Cat-2 it is not differentiated by their

sensors origin, but for the subsystem that generates the information. It implies another

database structure too. In order to keep this distinction on the GUI, these are the new

telemetry classes:

 ADCS sensors

 COMMS antennas

 COMMS TXS (flags and consumption)

 EPS housekeeping

 EPS Vboost (amplifiers)

 EPS current

 EPS temperature

 System logs

 Beacon messages

 GS logs

7.3.3. Server-side and back-end

The server-side files, despite having the same names for both interfaces, manage different

information and they have been implemented from scratch. In any case, the GUI

performance will be very similar and the basis of the code is exactly the same. There are

new database tables, corresponding to the new information shown on the previous list, but

the others that include common data have been kept (error, orbit, state and users).

This thesis is mainly focused on the user interface but some of the back-end functions (in C
language) have been also developed, most of them to read the downloaded log files and
save the extracted data into the database. Although this feature was readily available in GS-
1, it had to be developed for the GS-2. These extra functions have already been designed,
implemented and tested, but they are susceptible to any modification due to changes on the
files content or the team criteria. The implemented functions are detailed in the appendix X.X.

Finally, it is worth mentioning that the other two modules defined in this thesis, the orbit
propagator and the Morse beacon decoder, are not necessary in the GS-2. Previously, the
team decided to use Gpredict for satellite tracking. On the other hand, the beacon message
is completely different and it can include some payload data, so it is impossible to reuse the
current GNURadio software and other solution will be investigated.

 28

8. Tests and results

The complete document with all the tests and the obtained results can be consulted in the

Validation Plan appendix, but on this chapter there is a brief summary of the most important

information.

8.1. Graphical User Interface and end-to-end tests

To test the GUI performance, with all the required devices (GS and satellite, including the

communications modules and others that could be involved), the team scheduled some lists

of commands. Then, the response was analysed using the downloaded data, in the

corresponding files and using the information stored into the database tables.

Appendix C includes all the end-to-end tests, besides the protocol followed in each case, i.e.

the Software Validation Plan.

8.2. Orbit propagator error calibration

On the orbit propagator chapter, the validation methods were already commented. They are

used to measure the error range in the prediction process. Figure 8.1 includes a graphical

plot with the error measured on each axis in the ECI coordinates system and the error

modulus, as well, compared to the STK predictions for the FUNcube-1. Otherwise, in figure

8.2, there is the ground track of both predictions, in latitude and longitude.

Test conditions:

- Start: 2016/06/08 00:00:00

- End: 2016/06/09 00:00:00

- Delta time (between predictions): 1 second

Figure 8.1 OP-STK error in ECI system

 29

Figure 8.2 Ground track comparison (op-stk)

The function to compute visibility periods have been compared with Gpredict future passes

using the 3Cat-1 GS coordinates and the same satellite as before (FUNcube-1), with really

encouraging results. The error between the orbit propagator and Gpredict for the AOS

(Acquisition of Signal) and LOS (Loss of Signal) times is about 5-10 seconds for each case.

These differences may be due to the 10-25 km errors in the position predictions made by the

SGP4 library, irrelevant for this purpose because this program will not be related to the

antennas‘ pointing and it will be only used to start the communications protocol when visibility

is expected.

8.3. Morse beacon decoder tests

Given that the delivery of the 3Cat-1 spacecraft was scheduled early during the development

of this thesis, multiple files with raw and audio data were saved using an SDR device during

the end-to-end tests and have been used to calibrate and test the Morse decoder.

As the tests conditions were not exactly the same as the real environment found during the
mission, there is not absolute certainty that the used configuration will work then. In any case,
the used parameters can be adjusted to the mission requirements. Tests and results can be
consulted in the appendix B.2.

Table 8.1 Lab tests conditions

Parameter Value

Dot time 100 ms

Message structure EC3CTAT###E###

Before processing

Signal power [-20, -25] dBm

Noise level [-65, -70] dBm

After processing

Signal power [-10, -15] dBm

Noise level [-65, -70] dBm

Thresholds (bounded signal 0-1)

Low ≤ 0.2 V

High ≥ 0.24 V

 30

9. Budget

The approximate cost of the components and the personnel is shown in the following tables.

There are more devices involved in the real design, but the hardware design is out of scope

and most of the RF components have been omitted. Other theses more focused on this part

have an accurate budget of these items. For example, it is included in Design and

implementation of the ground station for 3Cat satellites [1].

Table 9.1 Budget table

Concept Units Price (€/unit) Total price (€)

Raspberry Pi B+ 1 30.95 30.95

Computer (Intel i5, 500
GB HDD, 4GB RAM)

2 399 798

USRP B210 2 500 1,000

 1,828.95

Table 9.2 Personnel cost

Personnel Weeks Hours/week €/hour Total (€)

5 20 20 15 30,000

The personnel cost is computed as a junior engineer contract with part time conditions.

Weeks are counted from the semester start (15/02/2016) to the thesis delivery deadline date

(27/06/2016).

 31

10. Conclusions and future development

The software framework detailed in this thesis has been used for its implementation on the
two Ground Stations from the 3Cat-1 and 3Cat-2 project. However, this type of modular
structure meets many specifications of other CubeSat projects and it is precise to remark that
the main objective, the reusability, has been accomplished.

In any case, there is much more work to do now. The most interesting part, after both
satellite launches, will show the real success of the mission and, more specifically to this
thesis, of the GS design. In 3Cat-2 mission, there are some tests already pending to be done,
related to the module between the GUI and the GS back-end or the server implementation
on the final computer.

Moreover, some applications are not coupled and they have only been tested without the rest
of the software, for example the beacon decoder. The next step is to include them in the
structure and make all work together. This is not critical because the remaining parts do not
depend on any other, but they must be run with the rest without the user intervention. In
addition, the software improvement is a continuous task and the final performance in real
conditions will manifest some situations that maybe have not been considered and the team
must solve them on time.

In conclusion, 3Cat missions are far from their end, even they have overcome the hardest
part. A new and exciting stage is coming and all the work done during the last months should
be worth it.

 32

Bibliography

[1] Elisabet Tremps Tor. "Design and implementation of the Ground Staiton for
3
Cat satellites". Degree thesis,

Escola Tècnica Superior d'Enginyeria de Telecomunicació de Barcelona, Universitat Politècnica de
Catalunya, Barcelona, Spain, 2015.

[2] J.F. Muñoz. ―3Cat-2: Software Validation Plan‖, September 2015. Unpublished manuscript.

[3] C. Ballesteros. ―3Cat-1: Software Validation Plan‖, June 2016. Unpublished manuscript.

[4] North Sky Research (NSR). Mass Challenge for CubeSats [Online] Available:
https://sites.google.com/a/slu.edu/swartwout/home/cubesat-database. [Accessed: 15 May 2016].

[5] CubeSat Design Specification, revision 13. California Polytechnic State University, February 2014.

[6] M. Swartwout, PhD on Saint Louis University (Missouri, USA). CubeSat database [Online] Available:
https://sites.google.com/a/slu.edu/swartwout/home/cubesat-database. [Accessed: 15 May 2016].

[7] Radio Amateur Satellite Corporation (AMSAT), EO-79 (QB50p1 and FUNcube-3). [Online] Available:
http://www.amsat.org/?page_id=2944. [Accessed: 15 May 2016].

[8] NASA, Small Satellite Missions: ELaNa – Educational Launch of Nanosatellites. [Online] Available:
http://www.nasa.gov/mission_pages/smallsats/elana/index.html. [Accessed: 15 May 2016].

[9] Alaska Space Grant Program (ASGP), Alaska Research CubeSat (ARC). [Online] Available:
http://spacegrant.alaska.edu/content/alaska-research-cubesat-arc-selected-launch. [Accessed: 16 May 2016].

[10] International Amateur Radio Union (IARU) Regions. [Online] Available: http://www.iaru.org/regions.html.
[Accessed: 16 May 2016].

[11] AMSAT-UK, FUNcube-1 Real Time Data. [Online] Available: http://warehouse.funcube.org.uk. [Accessed: 16
May 2016].

[12] AMSAT-UK, FUNcube Ground Segment. [Online] Available: https://funcube.org.uk/ground-segment/ground-
station. [Accessed: 16 May 2016].

[13] Shaina A.M. Johl and E. Glenn Lightsey. "A Reusable Command and Data Handling System for University
CubeSats ". Journal of Small Satellites (JoSS), Vol. 4, No. 2, pp. 357–369, October 2015.

[14] P. Crawford, The Dundee SGP4 code. [Online] Available: http://www.sat.dundee.ac.uk/psc/sgp4.html.
[Accessed: 17 May 2016].

[15] D.A. Vallado, P. Crawford, R. Hujsak, and T.S. Kelso, "Revisiting Spacetrack Report #3," presented at the
AIAA/AAS Astrodynamics Specialist Conference, Keystone, CO, 2006 August 21–24.

[16] CelesTrack, CubeSats TLE [Online] Available: http://www.celestrak.com/NORAD/elements/cubesat.txt.
[Accessed: 3 June 2016].

[17] AGI, Systems Tool Kit . [Online] Available: http://www.agi.com/products/stk/. [Accessed: 3 June 2016].

[18] CelesTrack, Orbital Coordinate Systems, Parts I & II, from Satellite Times columns [Online] Available:
http://www.celestrak.com/columns/. [Accessed: 3 June 2016].

[19] U.S. Naval Observaroty. Explanatory Supplement to the Astronomical Almanac, University Science Books,
1992.

[20] E. Williams, Sunrise/Sunset Algorithm [Online] Available:
http://williams.best.vwh.net/sunrise_sunset_algorithm.htm/. [Accessed: 3 June 2016].

[21] Time and Date, Sunrise and sunset calculator, for the city of Barcelona [Online] Available:
http://www.timeanddate.com/sun/spain/barcelona. [Accessed: 3 June 2016].

 33

Appendices

A. Graphical User Interface

A.1 JavaScript functions

A.1.1. Common

Functions from common.js:

 connection_state

o Arguments: none

o Return value: none

o Action:

Downloads the satellite state information and updates the webpage header

fields: mission time, link data volume, satellite visibility and next pass. It sets,

as well, the update period of the page information (state, queue or telemetry).

Called periodically with a setInterval function on document ready.

 sat_times_update

o Arguments: none

o Return value: none

o Action:

Updates periodically the mission and pass time, simulating a real time clock.

Called by connection_state with setInterval.

A.1.2. State

Functions from state.js:

 state_update

o Arguments: none

o Return value: none

o Action:

Downloads the satellite state information, EPS last report, last sensor and

beacons values and updates the status tables.

 server_difference

o Arguments: none

o Return value: none

o Action:

Downloads the server time and computes the difference with the local time.

 times_periodic

o Arguments:

 delta: Difference between satellite and server time

o Return value: none

o Action:

 34

Updates periodically (due to setInterval call on state_update) the server and

spacecraft time, simulating a real time clock.

.

 beacons_update

o Arguments: none

o Return value: none

o Action:

Downloads the last beacons messages from their respective tables and

updates beacons tables. Called on state_update.

 enable_periodic_update

o Arguments: none

o Return value: none

o Action:

Calls setInterval to run periodically the state_update function every T_state

seconds (a global parameter set on common.js).

A.1.3. Queue

Functions from queue.js:

 enable_periodic_update

o Arguments: none

o Return value: none

o Action:

Calls setInterval to run periodically the load_active or load_completed

functions every T seconds (a global parameter set on common.js). A different

function is chosen depending on the current list the user is watching to.

 load_active

o Arguments: none

o Return value: none

o Action:

Downloads the list of active commands (with a state different to completed;

the whole list is on table 3.1) and displays them as a table on the active queue,

including the position on the queue, the command state and name, its

arguments and the size of the attached data. Depending on the back-end

state, edit mode buttons are shown or the last modification time, instead.

 load_completed

o Arguments: none

o Return value: none

o Action:

Downloads the list of completed commands and displays them as a table on

the completed queue. The displayed information is: time of completion,

command ID, name, arguments, result of the communication procces (OK or

error number) and, in case of received data, a button to download it, one for

each file, with the file size. If this data is a log file, it can be displayed on the

telemetry page by clicking the ―view‖ button.

 35

 filter

o Arguments: none

o Return value: none

o Action:

Sets the filter parameters according to user choose (type of command,

interval ―datepickers‖ or attached data only). Then, it calls the load_completed

function, which takes into account these preferences.

 queue_op

o Arguments:

 op: operation to be executed (―up‖, ―down‖ or ―del‖)

 cmdid: command ID

o Return value: none

o Action:

This function modifies the position of a given command, moving it up or down

on the list, or even deleting it. This is done by calling a PHP file responsible of

managing commands on the queue and the instructions are passed by $_GET

variables.

 add

o Arguments: none

o Return value: none

o Action:

The ―new command form‖ is checked; depending on the chosen type different

values are verified. If there is not any error, the form is submitted (which will

do the same AJAX call as queue_op, changing the operation to ―add‖)

 backend_state

o Arguments:

 state: state the backend must be changed (―start‖ or ―stop‖)

o Return value: none

o Action:

Changes the stop_queue parameter to ―yes‖ or ―no‖ according to the

introduced argument. It is done again with an AJAX call to a PHP file, to

manage the queue state on this case.

A.1.4. Telemetry

Functions from telemetry.js:

 enable_periodic_update

o Arguments: none

o Return value: none

o Action:

Calls setInterval to run periodically the chart_download or table_download

functions every T_tel seconds (a global parameter set on common.js). A

different function is chosen depending on the current view.

 chart_download

o Arguments:

 36

 tel: type of telemetry log to display

o Return value: none

o Action:

Downloads data for the chosen telemetry and calls chart_plot to draw it.

 chart_plot

o Arguments:

 tel: type of telemetry log to display

 tel_data: data structure with the pairs of points to draw

o Return value: none

o Action:

This function draws a chart using the Flot library (release 0.8.3) [8]. In addition,

it sets the image download button URL and calls table_download for the CSV

download button data.

 table_download

o Arguments:

 tel: type of telemetry log to display

 tabs: option to choose whether the table has to be drawn or not

 syslog_type: defines the type of syslog messages (if tel is ―syslog‖ and

optional in any case‖

 from: start date to download data

 to: end date to download data

o Return value: none

o Action:

Downloads data for the chosen telemetry and calls tabs_update, when the

user wants to display a table, or creates the CSV file to be downloaded on the

chart page.

 tabs_update

o Arguments:

 tel: type of telemetry log to display

 tel_time: time set of the downloaded data

 tel_data: values set of the downloaded data

o Return value: none

o Action:

Creates a table for the chosen telemetry type.

 filter_table

o Arguments:

 tel: type of telemetry log to display

o Return value: none

o Action:

Calls table_download with suitable parameters according to user choice. The

table periodic update is disabled until the filter is cleared or the page is

refreshed.

 37

A.2 Operation screenshots

This appendix includes some images extracted from the GUI and represent different

execution modes and options. Due to the huge number of options available, only a few will

been shown (the most representative) because most of them have a similar behaviour but

only changing the context: sensor types, commands on the queue…

All the screenshots that are represented in this chapter have been obtained from the 3Cat-1

user interface, given that the procedures and graphical displays are exactly the same for
3Cat-2. The only major change is on the content (commands, tables, etc.).

The state view has not any editable option but sensor values can be highlighted when they

are abnormally high or low. The first image corresponds to a normal satellite state and the

second one has some sensor alerts.

 38

 39

 40

On the queue page, multiple options can be displayed. The next figures show its operation

when the user is editing its content or just visualizing it. The first one presents a random

active list with three different queues, on for each orbit window. The second image

corresponds to the same queue but with a blocked edit mode.

 41

 42

 43

Next figure includes the new command form before adding, in this case, a ―POWEROFF‖

telecommand (the last one in the previous image).

 44

 45

The three ―queue options‖ (actions to execute when a command returns an error code or its

answer has not been received) display a brief description when the mouse hovers them, as

can be seen in the next images.

The completed queue includes a command filter, which appears on the following figure.

 46

 47

Telecommands related with sensor logs have their own buttons to view (yellow) or download

(blue) their content. There is one yellow button for each sensor type and a blue button for

each received file, with the file size displayed inside it.

 48

 49

Finally, the telemetry page has two types of visualizations: graphical representations and

register tables. They are divided by the information shown on them. The following figures

present a qualitative representation of the telemetry layout.

This is a multi-sensor values graphical display (voltage).

 50

 51

And a single sensor graphical plot (state of charge).

 52

 53

The ADS section includes a chart selector as well in order to choose between three sensor

types: magnetometer, accelerometer, gyroscope and IGRF.

 54

 55

Tables can be displayed by the user changing the ―plot‖ option for every sensor type. System

logs, beacon messages and back-end errors are shown as tables too. The following figure is

an example of it. Tables also have time and type filters that are executed as the completed

queue filter (with dropdown selectors and date-pickers).

 56

 57

A.3 Server-side implementation

GS software operation includes three different parts: the web-site server-side, the back-end

packet manager and the communications module. A brief description of each one is detailed

in the next list:

a) Web-site server-side files

- Technology: AJAX interfacing and PHP

- Operation:

This module is responsible of the user-side communication with the GS. It

includes the required algorithms and features to execute the requests to the

databases and download the proper data for its visualization or update.

b) Back-end packet manager

- 3Cat-1 equivalent module: gs_backend

- 3Cat-2 equivalent module: daemon

- Technology: C-programming executable, connections based on hardware

- Operation:

The back-end software is responsible for the generation of data packets and

the databases update. It also coordinates all the GS modules, such as the

orbit propagator, the beacon decoder, the communications software, etc.

c) Communications module

- 3Cat-1 equivalent module: COMMS HWmod

- 3Cat-2 equivalent module: included in SDR device

- Technology: C-programming executable, connections based on hardware

- Operation:

It includes all the necessary functions for the packets transmission and

reception. They process the data to adjust the structure depending on the final

hardware and control the synchronization of the uplink and downlink channel.

Table A.1 shows the comparison between GS-1 and GS-2 implementations.

Table A.1 Ground Stations comparison

Function GS-1 GS-2

Web-site server-side PHP files PHP files

Packet manager gs_backend daemon

COMMS software COMMS HWmod SDR

FOV passes Orbit propagator Gpredict

Satellite tracking Gpredict Gpredict

Beacon decoder GNURadio Not defined

 58

B. Test results

B.1 Orbit propagator tests

B.1.1 Satellite position prediction

In order to measure the error on the prediction of the satellite position, the SGP4 algorithm

used on the orbit propagator has been compared with the AGI‘s STK tool.

Test conditions:

- TLE set:

FUNCUBE-1 (AO-73)

1 39444U 13066AE 16166.18836951 .00000530 00000-0 72885-4 0 9993

2 39444 97.6811 219.7932 0059655 32.1331 328.3495 14.81071453137137

- Start: 2016/06/08 00:00:00

- End: 2016/06/09 00:00:00

- Step between predictions: 1 second

The results obtained after the tests have been represented on the following graphs. Figure

B.1 includes the error for each axis and its modulus, in ECI coordinates, computed as:

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⃗⃗ ⃗⃗ ⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ (12)

Figure B.1 ECI error op-stk

As can be seen, the error on each axis is based on a sine-wave form around zero, but the

modulus is bounded around the 10 and 25 km of error. Due to the magnitude of the

measures and the high satellite velocity on its orbit, these errors can be considered

acceptable. Anyway, the ground track comparison between the two predictions, in figure B.2,

stresses this conclusion. Both traces cannot be differentiated and the error in latitude or

longitude is about the hundredth of a degree.

 59

Figure B.2 Ground track comparison

B.1.2 Sunrise and sunset algorithm

The function used on the sunset and sunrise calculus has been developed from the Ed

Williams‘ Aviation page [20] transcription of the algorithm found on the Almanac for

Computers[19].

The sunrise and sunset algorithm:

Inputs:

 day, month, year: date of sunrise/sunset

 latitude, longitude: location for sunrise/sunset

 zenith: Sun's zenith for sunrise/sunset

official = 90 degrees 50'

 civil = 96 degrees

 nautical = 102 degrees

 astronomical = 108 degrees

1. First calculate the day of the year

 N1 = floor(275 * month / 9)

 N2 = floor((month + 9) / 12)

 N3 = (1 + floor((year - 4 * floor(year / 4) + 2) / 3))

 N = N1 - (N2 * N3) + day - 30

2. Convert the longitude to hour value and calculate an approximate time

 lngHour = longitude / 15

 if rising time is desired:

 t = N + ((6 - lngHour) / 24)

 if setting time is desired:

 t = N + ((18 - lngHour) / 24)

 60

3. Calculate the Sun's mean anomaly

 M = (0.9856 * t) - 3.289

4. Calculate the Sun's true longitude

 L = M + (1.916 * sin(M)) + (0.020 * sin(2 * M)) + 282.634

 NOTE: L potentially needs to be adjusted into the range [0,360) by adding/subtracting 360

5a. Calculate the Sun's right ascension

 RA = atan(0.91764 * tan(L))

 NOTE: RA potentially needs to be adjusted into the range [0,360) by adding/subtracting 360

5b. Right ascension value needs to be in the same quadrant as L

 Lquadrant = (floor(L/90)) * 90

 RAquadrant = (floor(RA/90)) * 90

 RA = RA + (Lquadrant - RAquadrant)

5c. Right ascension value needs to be converted into hours

 RA = RA / 15

6. Calculate the Sun's declination

 sinDec = 0.39782 * sin(L)

 cosDec = cos(asin(sinDec))

7a. Calculate the Sun's local hour angle

 cosH = (cos(zenith) - (sinDec * sin(latitude))) / (cosDec * cos(latitude))

 if (cosH > 1)

 the sun never rises on this location (on the specified date)

 if (cosH < -1)

 the sun never sets on this location (on the specified date)

7b. Finish calculating H and convert into hours

 if if rising time is desired:

 H = 360 - acos(cosH)

 if setting time is desired:

 H = acos(cosH)

 H = H / 15

8. Calculate local mean time of rising/setting

 T = H + RA - (0.06571 * t) - 6.622

 61

9. Adjust back to UTC

 UT = T - lngHour

 NOTE: UT potentially needs to be adjusted into the range [0,24) by adding/subtracting 24

10. Convert UT value to local time zone of latitude/longitude (not implemented, used times in UTC)

 localT = UT + localOffset

B.1.2.1 Results comparison

Table B.1 shows the results computed with the previous algorithm and the official times

found on http://www.timeanddate.com[21] for different days and locations. In order to adjust

the UTC time to local time, an offset has been added depending on the city and the season

of the year.

Table B.1 Sunrise and sunset results

Location Date OP sunrise T&D sunrise OP sunset T&D sunset

Barcelona 20 August 2016 7:06 7:06 20:56 20:56

Barcelona 3 November 2018 7:25 7:25 17:44 17:44

New York 20 August 2016 5:25 5.25 20:31 20:31

New York 3 November 2018 7:29 7:29 17:50 17:50

Melbourne 20 August 2016 6:59 6:59 17:49 17:49

Melbourne 3 November 2018 6:12 6:12 19:56 19:56

All the computed times are exactly the same as the ones found on the webpage. Then, the

algorithm accuracy is perfect and can be used on the orbit propagator.

B.1.3 Visibility intervals computation

This test is related to the FOV function because, once the position and sunset/sunrise

predictions have been validated, the last feature that could affect the satellite passes

calculation is the field of view. In chapter 5.2, the equations used on it were described and

the next table, B.2, includes various results obtained during the test campaign.

The precision has been measured using the Gpredict prediction software. For a given

satellite (FUNcube-1 in this case), multiple passes are measured and compared. On the test,

night intervals have not been excluded.

Test conditions:

- Date: 2016/06/24 12:04:00

- Passes to predict: 10

- Time zone offset: UTC

- Location: 41.38º, 2.11º

- Twilight limit: 0º (over horizon)

- Minimum elevation: 0º (over horizon)

 62

Table B.2 Visibility intervals comparison

OP AOS Gpredict AOS OP LOS Gpredict LOS

1 2016/06/24 11:30:13 2016/06/24 11:30:05 2016/06/24 11:36:02 2016/06/24 11:36:16

2 2016/06/24 19:12:05 2016/06/24 19:12:10 2016/06/24 19:22:50 2016/06/24 19:22:50

3 2016/06/24 20:47:04 2016/06/24 20:47:04 2016/06/24 20:59:37 2016/06/24 20:59:39

4 2016/06/24 22:28:28 2016/06/24 22:28:08 2016/06/24 22:32:36 2016/06/24 22:32:54

5 2016/06/25 08:34:30 2016/06/24 08:34:32 2016/06/24 08:47:25 2016/06/24 08:47:25

6 2016/06/25 10:10:53 2016/06/24 10:10:52 2016/06/24 10:23:15 2016/06/24 10:23:20

7 2016/06/25 19:30:31 2016/06/24 19:30:35 2016/06/24 19:42:12 2016/06/24 19:42:13

8 2016/06/25 21:06:27 2016/06/24 21:06:25 2016/06/24 21:18:32 2016/06/24 21:18:36

9 2016/06/26 07:19:48 2016/06/24 07:19:58 2016/06/24 07:26:06 2016/06/24 07:25:54

10 2016/06/26 08:53:26 2016/06/24 08:53:27 2016/06/24 09:06:48 2016/06/24 09:06:49

The maximum error on the time calculus is around 20 seconds, but often it is less than 10

seconds. These errors may be due to the 10-25 km of difference on the position prediction

compared to the STK and a lack of precision in the FOV function (Gpredict uses algorithms

with higher accuracy). Otherwise, the only objective of the orbit propagator is the next

visibility interval determination to start the communication protocol. It also has a configurable

parameter to initiate the sending of the first HELLO command to establish the connection

some minutes before. Therefore, a precision around seconds is enough for that purpose.

B.2 Morse beacon tests

On this chapter, the validation procedures of the Morse beacon decoder are detailed. In

section 6, the basic concepts have been defined (message structure, decoding software

design, etc.) and, in chapter 8.1, the test have been described as well. As was previously

commented, the delivery of the 3Cat-1 spacecraft was scheduled early during the

development of this thesis and all the tests carried out on this part use multiple record files

obtained during the last end-to-end verifications. Figure B.3 illustrates the environment where

the data files have been recorded. In particular, the image corresponds to the batteries tests

at the rooftop of the D4 building. While it was developed, the communications module was

sending beacon messages, recorded on a computer with an RTL chipset connected to a

dipole antenna.

(a) Batteries test equipment (b) RTL chipset

Figure B.3 Beacon recording environment

 63

Figure B.4 shows the GNURadio interface used on the beacon decoder tests with a waterfall
plot of the received signal in the RTL input. Under the graphical representation, there is the
last decoded message, with ‗#‘ (hash) for those unknown characters.

Figure B.4 Beacon test received signal

Received signal:

- Center frequency: 437,25 MHz
- Signal bandwidth: around 100 kHz
- Dot time: 100 ms
- Signal power: around -25 dBm
- Noise level: [-65,-70] dBm

The tests also revealed a low frequency shift during brief shadowing periods up to 100 kHz

Figure B.5 shows the same signal after the GNURadio processing, just before the decoding
modules. It reveals an SNR improvement and a bandwidth reduction.

Figure B.5 Beacon test processed signal

Processed signal (base-band):

- Signal bandwidth: less than 1 kHz
- Signal power: [-10,-15] dBm
- Noise level: [-65,-70] dBm

 64

C. 3Cat-1 Software Validation Plan

This appendix corresponds to the 1.0 release of the 3Cat-1 software Validation Plan. It has

been elaborated by the author of this thesis and reviewed by the same advisors. All the

elementary and end-to-end tests related to software development of the 3Cat-1 project have

been detailed, including the orbit propagator, the beacon decoder, multiple subsystems

validation procedures and the GUI operation.

C.1 Methods and Test Types

There are, basically, three validations methods that have been carried out on the following

verification procedures. These are analysis, inspection and test, which are described on the

table below.

Table C.1 Verification methods

Verification Method Description

Analysis Theoretical or empirical evaluation of the verification test to

obtain some expected results.

Inspection Visual determination of physical characteristics.

Test Performance of concrete procedures by using specific data.

Used to evaluate and measure the requirements fulfilment, as

well as the software robustness.

On the other hand, all tests can be differentiated according to three types: functional,

interface or fault tests.

Table C.2 Test types

Test type Description

Functional test Test used to verify the software usage with nominal

conditions, e.g. when the user introduces expected values

without any error.

Interface test This type of tests checks the communication between two or

more units, verifying their dependences, triggers and data

transfers.

Fault test Reliability and robustness validation testing the items under

unfavorable conditions, for example, errors introduced by the

user or the communication channel.

 65

C.2 Validation Tests Facilities

The software will be validated using the UPC NanoSat Lab facilities and, in case of the end-

to-end tests, the satellite with the required integrated modules will be used as well.

All the tools used during the tests performance are detailed in the following list:

 Spectrum Analyzer, in order to ensure the correct transmitting signals shape and

power.

 Oscilloscope, for PWM signals and voltage signals coming from the EPS board.

 Logic Analyzer, for low level interfaces debug, such as the connections between the

different satellite modules.

 Voltmeter, to measure voltage levels on each module and ensure its correct

performance.

 Power supply, which allows the batteries level regulation

 Raspberry Pi SBC, to manage the web server and the GS architecture

C.3 Units and Subsystems

Validation procedures can be divided in three stages:

1) Development and independent tests, which consist on validating each individual

feature of any software part without the intervention of any other. Usually, it is done at

the same time as the module development, when it is easier to fix any bug.

2) Communications tests, including data sending and reception. They are used to

validate the protocols and data handlers during the communication process, from the

command transmission to the answer reception.

3) End-to-end tests, with all the involved devices. Not only is the link tested, but the

satellite response after a concrete instruction.

As any other mission, it can be divided into three segments: the satellite (space), the GS

(Earth) and the launcher, only present at the beginning. The following figures show all the

modules included in each segment (space and Earth), which are the sub-systems that will be

tested.

 66

C.4 Tests Specifications and Procedures

C.4.1 Validation Test Specifications

On the next table, all the tests that have been performed are listed with a brief description for

each one, known as Validation Test Specifications (VTS). It includes a unique identifier, the

aim of the test (what is going to be verified), the required inputs and the expected outputs,

besides a success criterion.

Table C.3 Validation Tests Specifications

VTS ID Tested functionality Inputs Expected output Success criteria

1 Command upload Command ID,

arguments and

attached file (last

two, if needed)

Command stored in

the queue and file

uploaded to the right

server path

The command

appears correctly

stored on the

queue

2 Command packaging Command in the

queue

Temporal packet file

created

―.out‖ file created

3 Command

completion

procedure

Command packet Satellite answer Command

processed at the

right subsystem

and answer file or

ACK received

4 Queue edit mode User interaction with

edit mode buttons

(GUI)

Change on queue

page (changes applied

and/or message)

Edit mode

enabled/disabled

or queue changes

applied

5 GS back-end soft

reset

User interaction with

soft reset button

(GUI)

―Stop queue‖

parameter modified

Back-end

stops/restarts

processing the

queue

6 GS back-end hard

reset

User interaction with

hard reset button

(GUI)

Back-end processes

restarted

COMMS module

and gs_backend

restarted,

―success‖ message

received on the

front

7 Next visibility period

update

Next visibility period

in orbit table

GUI header

information updated

Remaining time

and date coincide

with Gpredict

8 Visibility intervals

update

Satellite TLE file Orbit table updated Same intervals as

Gpredict

9 Sensor values

update

New log file received New values stored in

the right table

Values properly

stored and same

as log file, shown

 67

on the GUI too

10 Sensor values

interface alerts

Sensor values over a

pre-defined

threshold

Highlighted cells Cell is highlighted

for those values

over threshold

11 Telemetry charts

update

New values in

database

Tables and graphs

updated

Last values

included, time axis

updated

12 Completed

commands files

download

Command with

received files

File(s) received File downloaded

from GUI with

―download‖ button

in completed

queue

13 Completed

commands log files

view

Command with log

files

File(s) values visible in

the proper graph

User redirected to

graph with right

values when ―view‖

button is pressed

14 Morse beacon

message decoding

Beacon signal Message decoded Right message

structure

15 Satellite connection HELLO command ACK received Connection

established

16 Satellite

disconnection

BYE command ACK received Connection

released

17 Syscore reboot REBOOT command RESET_REQ sent to

Syscore

Software reboot

18 Syscore hard reboot HREBOOT

command

HRESET_REQ sent to

Syscore

Power-off software

and EPS hard-

reboot

19 System power off POWEROFF

command (N

seconds)

POWER_OFF_OBC

sent to SDB

Portux turned off

during N seconds

20 System standby

mode

STANDBY command

(N seconds)

System in standby

mode and

TIME_RECAL_REQ to

Syscore

System in standby

mode for N

seconds and time

recal.

21 System mem mode MEM command (N

seconds)

System in mem mode

and

TIME_RECAL_REQ to

Syscore

System in mem

mode for N

seconds and time

recal.

22 Deployment DEPLOY command Run the deployment

system

Deployment

system enabled

 68

23 Deployment stop LINK_OK command Stop the deployment

system

Deployment

system stopped

24 Log files download LOGXXX command Report generation and

file received

File with last

registers received

and content stored

in the database

25 Camera CAMERA command Camera HWmod

started, run and

stopped

Pictures

downloaded and

saved

26 Task enable TASK_EN command Selected task marked

as enabled

Task enabled

27 Task disable TASK_DIS

command

Selected task marked

as disabled

Task disabled

28 Task state report TASK_STATE

command

Task report generated

and received

File with the state

of the selected task

downloaded

29 TLE update TLE command TLE file moved to

TLE_PATH

TLE information

updated

30 Configuration update U_CONF or

U_SCHEDOUT

command

Configuration and/or

scheduling file moved

to right path

System

configuration or

scheduler updated

31 System time update U_RTC command TIME_RECAL_REQ to

Syscore with given

time

UNIX RTC time

reconfigured

32 Mission time update U_MISSIONTIME

command

Updated files

mtfbwy.r{1,2,3} with

given time

Mission time

reconfigured

33 Status report STATE,

SHORT_STATE or

LAST_STATE

command

System report

generated and

received from the

satellite

Subsystems and

sensors registers

received

34 File execution SHELL OR EXEC

command

Execute the given

file(s)

Instructions

executed

35 Downloadable files INFO_DOWNLOAD,

DOWNLOAD

command

File ―infodownload.out‖

or downloadable files

Files downloaded

36 File upload MV command File moved to given

path

Given file saved in

the right path

 69

C.4.2 Validation Test Procedures

On this chapter, all the VTPs performed for each previous specification will be detailed,

including the procedure description, the tested functionality from the VTS list and the test

environment.

VTP ID 1

Associated VTS ID 1

Functionality to be tested Command without files upload

Required test environment
Software parts involved: GUI

Required Hardware: —

Overview test procedure
Ensure that commands are properly stored in the queue table from the
database, with the right argument values (if any)

Detailed description test
procedure

The user adds a command with the GUI.

Then, it is passed to the server using an AJAX request and POST variables.

A PHP file (―manage_command.php‖) stores the information in queue using
an SQL query.

Validation
The test will be passed if the command parameters are stored properly in the
corresponding columns of the table (name, arguments, initial state, chosen
orbit window and current time) with a unique identifier.

VTP ID 2

Associated VTS ID 1

Functionality to be tested Command with attached file upload

Required test environment
Software parts involved: GUI

Required Hardware: —

Overview test procedure
Ensure that commands are properly stored in the queue table from the
database, with the right argument values (if any) and the attached file is
uploaded in the server.

Detailed description test
procedure

The user adds a command with the GUI.

Then, it is passed to the server using an AJAX request and POST variables.

A PHP file (―manage_command.php‖) stores the information in queue using
an SQL query.

Validation

The test will be passed if the command parameters are stored properly in the
corresponding columns of the table (name, arguments, initial state, chosen
orbit window and current time) with a unique identifier and the
―attached_sent‖ field includes a path to the uploaded file (with the same
name given by the user).

 70

VTP ID 3

Associated VTS ID 2

Functionality to be tested Command packaging

Required test environment
Software parts involved: GUI, gs_backend

Required Hardware: —

Overview test procedure Validate the queue packaging process by the GS back-end software

Detailed description test
procedure

The user adds a command with the GUI.

Then, it is passed to the server using an AJAX request and POST variables.

A PHP file (―manage_command.php‖) stores the information in queue using
an SQL query.

Finally, the gs_backend processes the queue and generates a packet
associated to the uploaded command (with ―.out‖ extension)

Validation
A successful test involves the generation of a new packet on the server after
the command upload.

VTP ID 4

Associated VTS ID 3

Functionality to be tested Command without files completion procedure

Required test environment
Software parts involved: GUI, gs_backend

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure
Verify the complete process of a command, from its transmission to the
answer reception

Detailed description test
procedure

The user adds a command with the GUI and it is stored on the database.

The gs_backend generates the packet and tries to send it when visibility is
guaranteed.

An ACK is received when the packet has arrived and the back-end waits for
the command answer.

The satellite processes the command and returns an ACK or a file if it is
required.

When the communication process is finished and the answer has been
processed, the command is sent to the ―completed list‖ in the GUI.

Validation
To pass the test, a valid answer must be received for the given command
and its state has to be updated at every stage (packed, sending, sent,
answered, completed) until the process is ended.

 71

VTP ID 5

Associated VTS ID 3

Functionality to be tested Command with files completion procedure

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure
Verify the complete process of a command, from its transmission to the
answer reception, and the upload of attached files.

Detailed description test
procedure

The user adds a command with the GUI and it is stored on the database.

The gs_backend generates the packet and tries to send it when visibility is
guaranteed.

An ACK is received when the packet has arrived and the back-end waits for
the command answer.

The satellite processes the command and returns an ACK or a file if it is
required.

When the communication process is finished and the answer has been
processed, the command is sent to the ―completed list‖ in the GUI.

Validation

To pass the test, a valid answer must be received for the given command
and its state has to be updated at every stage (packed, sending, sent,
answered, completed) until the process is ended. The attached file has to be
located on a proper location in the satellite system as well.

VTP ID 6

Associated VTS ID 4

Functionality to be tested Queue edit mode (enable/disable)

Required test environment
Software parts involved: GUI, gs_backend

Required Hardware: —

Overview test procedure Validate the edit mode criterion

Detailed description test
procedure

The user presses the edit mode button on the GUI.

A PHP file (manage_queue.php) checks the state of the queue, constantly
updated by the gs_backend.

If the queue is being processed, it cannot be enabled. If not, edit mode is
enabled and new buttons appear on the GUI to add new commands or edit
them on the list.

Validation
Depending on the state of the queue, edit mode must be enabled or not.
When the back-end is blocking it, a message has to appear.

 72

VTP ID 7

Associated VTS ID 4

Functionality to be tested Queue edit mode (up/down)

Required test environment
Software parts involved: GUI

Required Hardware: —

Overview test procedure Check the feature of moving commands in the queue

Detailed description test
procedure

With the edit mode enabled, users can modify the position of a command on
the list, moving it up or down.

When a command is moved, the position of the previous (up) or the next one
(down) must be changed as well.

Validation
A command is properly moved when its position and the one of the affected
command are properly updated depending on their situation in the queue.

VTP ID 8

Associated VTS ID 4

Functionality to be tested Queue edit mode (delete)

Required test environment
Software parts involved: GUI

Required Hardware: —

Overview test procedure Verify the command deletion option

Detailed description test
procedure

With the edit mode enabled, users can delete a command from the queue.

When a command is deleted, all the attached files and the generated
packets must be removed from the server file system and it has to be
deleted from the database table too.

Validation
A command is properly deleted if all the stored information is removed from
the queue and the server.

 73

VTP ID 9

Associated VTS ID 4

Functionality to be tested Queue edit mode (window up/down)

Required test environment
Software parts involved: GUI

Required Hardware: —

Overview test procedure Check the command window change feature

Detailed description test
procedure

With the edit mode enabled, users can change the orbit window where a
command has to be sent, up or down.

When a command is moved from a window to another, it must be added at
the end of the new list and removed from the previous one.

Validation

To validate the orbit window change, the command must be shown on the
new window list (in last position) and not on the oldest one. If the database is
checked, the orbitID must correspond to the new one.

In case the new window is not available, the GUI has to inform that the
command cannot be moved and keep it in the same window at the same
position.

VTP ID 10

Associated VTS ID 5

Functionality to be tested GS back-end soft reset (stop)

Required test environment
Software parts involved: GUI, gs_backend

Required Hardware: —

Overview test procedure Validate the soft reset feature to stop/restart the queue processing

Detailed description test
procedure

From the GUI, the user can press the ―Stop GS‖ button.

The ―stop_queue‖ parameter is set to ―yes‖ in the database and, as it is
periodically checked by the gs_backend, it stops processing the queue and
waits.

On the user interface, the button changes to ―Restart GS‖.

Validation
When the button is pressed, the back-end has to complete the current
process (send or receive) and, then, wait until the queue is released.

 74

VTP ID 11

Associated VTS ID 5

Functionality to be tested GS back-end soft reset (restart)

Required test environment
Software parts involved: GUI, gs_backend

Required Hardware: —

Overview test procedure Validate the soft reset feature to stop/restart the queue processing

Detailed description test
procedure

From the GUI, the user can press the ―Restart GS‖ button.

The ―stop_queue‖ parameter is set to ―no‖ in the database and, as it is
periodically checked by the gs_backend, it starts processing the queue
again. If there is any command, it will generate the packet and try to send it
in the next visibility period.

On the user interface, the button changes to ―Stop GS‖.

Validation
When the button is pressed, the back-end has to start processing the queue
again.

VTP ID 12

Associated VTS ID 6

Functionality to be tested GS back-end hard reset

Required test environment
Software parts involved: GUI, gs_backend

Required Hardware: Raspberry Pi

Overview test procedure Validate the hard reset feature

Detailed description test
procedure

From the GUI, the user can press the ―Hard reset‖ button.

The server has to send a reboot signal to the Raspberry Pi SBC and reset
the gs_backend process too.

Validation
The test will be passed if all the involved modules are properly stopped and
restarted (COMMS HWmod on the SBC and gs_backend on the server).

 75

VTP ID 13

Associated VTS ID 7

Functionality to be tested Next visibility period update (satellite far)

Required test environment
Software parts involved: GUI, gs_backend

Required Hardware: —

Overview test procedure Check GS operation when satellite is not visible

Detailed description test
procedure

The next visibility period is updated without visibility at the test time.

The gs_backend has to set the visibility parameter from the state table to
―far‖ and stop the communication process.

On the GUI, the new interval start time is shown on the header and the
connection state changes to ―disconnected‖ (red-colored).

Validation
The test is considered successful if the back-end software updates the
visibility state and stops the transmission of commands. The GUI must show
the new values properly.

VTP ID 14

Associated VTS ID 7

Functionality to be tested Next visibility period update (satellite visible)

Required test environment
Software parts involved: GUI, gs_backend

Required Hardware: —

Overview test procedure Check GS operation when satellite is visible

Detailed description test
procedure

The next visibility period is updated with visibility at the test time.

The gs_backend has to set the visibility parameter from the state table to
―visible‖ and start the transmission of a HELLO command.

On the GUI, the next pass value is changed to ―now‖ on the header and the
connection state changes to ―visible‖ (orange-colored).

Validation
The test is considered successful if the back-end software updates the
visibility state and tries to start a communication. The GUI shows the new
values properly.

 76

VTP ID 15

Associated VTS ID 7

Functionality to be tested Next visibility period update (satellite connected)

Required test environment
Software parts involved: GUI, gs_backend

Required Hardware: —

Overview test procedure Check GS operation when satellite is visible

Detailed description test
procedure

After entering into a period of visibility, the gs_backend sends the HELLO
command.

When the first answer is received, it updates the visibility parameter to
―connected‖ and starts sending the first command of the queue, if any.

On the GUI, the connection state changes to ―connected‖ (green-colored
and blinking).

Validation
The test is considered successful if the back-end software updates the
visibility state and starts processing the queue. The GUI shows the new
values properly.

VTP ID 16

Associated VTS ID 9

Functionality to be tested Sensor values update

Required test environment
Software parts involved: GUI, gs_backend

Required Hardware: —

Overview test procedure Check GS operation when satellite is visible

Detailed description test
procedure

When a new log file is received, the gs_backend processes the information
depending on its type and stores the content in a table of the database.

The last value of the sensors can be consulted on the status tables at the
website index page, which has to be updated when the new data has been
stored.

Validation
The test will be passed if the last sensor values are the same as the new log
file ones.

 77

VTP ID 17

Associated VTS ID 11

Functionality to be tested Telemetry charts update (graphs)

Required test environment
Software parts involved: GUI, gs_backend

Required Hardware: —

Overview test procedure Check GS operation when satellite is visible

Detailed description test
procedure

When a new log file is received, the gs_backend processes the information
depending on its type and stores the content in a table of the database.

The new sensors registers can be visualized on the GUI telemetry page as
graphical charts with the latest values included at the end.

The time axis must correspond to the time of the last introduced values.

Validation
The test will be passed if the last values are the same as the new log file
ones.

VTP ID 18

Associated VTS ID 11

Functionality to be tested Telemetry charts update (tables)

Required test environment
Software parts involved: GUI, gs_backend

Required Hardware: —

Overview test procedure Check GS operation when satellite is visible

Detailed description test
procedure

When a new log file is received, the gs_backend processes the information
depending on its type and stores the content in a table of the database.

The new registers (sensor values or system messages) can be consulted on
the GUI telemetry page as tables.

Validation
The test will be passed if the last registers are the same as the new log file
ones.

 78

VTP ID 19

Associated VTS ID 10

Functionality to be tested Sensor values interface alerts

Required test environment
Software parts involved: GUI, gs_backend

Required Hardware: —

Overview test procedure Verify alerts for undesired temperature values

Detailed description test
procedure

New temperature values are added to the database when the gs_backend
processes a temperature file.

If there is a value > 378.15 ºK (105ºC) on the status table, the corresponding
cell alerts the user with an orange background.

Validation
A sensor cell has to change its state to alert (orange) when the contained
value is over the threshold.

VTP ID 20

Associated VTS ID 10

Functionality to be tested Sensor values interface alerts

Required test environment
Software parts involved: GUI, gs_backend

Required Hardware: —

Overview test procedure Verify alerts for undesired temperature values

Detailed description test
procedure

New temperature values are added to the database when the gs_backend
processes a temperature file.

If there is a value < 275.15 ºK (2 ºC) on the status table, the corresponding
cell alerts the user with an orange background.

Validation
A sensor cell has to change its state to alert (orange) when the contained
value is under the threshold.

 79

VTP ID 21

Associated VTS ID 10

Functionality to be tested Sensor values interface alerts

Required test environment
Software parts involved: GUI, gs_backend

Required Hardware: —

Overview test procedure Verify alerts for undesired voltage values

Detailed description test
procedure

New voltage values are added to the database when the gs_backend
processes a voltage file.

If there is a value > 9 V on the status table, the corresponding cell alerts the
user with an orange background.

Validation
A sensor cell has to change its state to alert (orange) when the contained
value is over the threshold.

VTP ID 22

Associated VTS ID 10

Functionality to be tested Sensor values interface alerts

Required test environment
Software parts involved: GUI, gs_backend

Required Hardware: —

Overview test procedure Verify alerts for undesired current values

Detailed description test
procedure

New current values are added to the database when the gs_backend
processes a current file.

If there is a value > 300 mA on the status table, the corresponding cell alerts
the user with an orange background.

Validation
A sensor cell has to change its state to alert (orange) when the contained
value is over the threshold.

 80

VTP ID 23

Associated VTS ID 10

Functionality to be tested Sensor values interface alerts

Required test environment
Software parts involved: GUI, gs_backend

Required Hardware: —

Overview test procedure Verify alerts for undesired irradiance values

Detailed description test
procedure

New irradiance values are added to the database when the gs_backend
processes a irradiance file.

If there is a value > 354 W/m
2
 on the status table, the corresponding cell

alerts the user with an orange background.

Validation
A sensor cell has to change its state to alert (orange) when the contained
value is over the threshold.

VTP ID 24

Associated VTS ID 10

Functionality to be tested Sensor values interface alerts

Required test environment
Software parts involved: GUI, gs_backend

Required Hardware: —

Overview test procedure Verify alerts for critical state of charge values

Detailed description test
procedure

New state of charge values are added to the database when the
gs_backend processes a state of charge file.

If the current value is < 30%, the cell alerts the user with an orange
background.

Validation
The state of charge cell has to change its state to alert (orange) when the
contained value is under the threshold.

 81

VTP ID 25

Associated VTS ID 15

Functionality to be tested Satellite connection

Required test environment
Software parts involved: gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Check the connection establishment

Detailed description test
procedure

Before the upcoming visibility interval starts (with a pre-established margin),
the gs_backend starts sending a first HELLO command.

Once the satellite has answered it, the connection is established.

Validation
The test is passed when the back-end software automatically starts sending
a HELLO command if a satellite pass is expected, the answer is properly
received and the connection state is set to connected.

VTP ID 26

Associated VTS ID 16

Functionality to be tested Satellite disconnection

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Check the connection end

Detailed description test
procedure

Whenever the user wants to end the transmission, a BYE command can be
sent.

Once the satellite has answered it, the connection is considered to be
concluded.

Validation
The test is passed when the command is sent, answered by the satellite and
the connection state is set to disconnected.

 82

VTP ID 27

Associated VTS ID 17

Functionality to be tested Satellite reboot

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Validate the satellite reboot process

Detailed description test
procedure

The user sends a REBOOT command from the GUI.

Then, it is sent by the back-end software and waits for an answer.

When the satellite receives it, a RESET_REQ instruction is sent to the
System Core (Syscore), which is responsible of the safely reboot of the
entire satellite.

Once the process is completed, an OK answer is received.

Validation The satellite must reboot and answer to the GS.

VTP ID 28

Associated VTS ID 18

Functionality to be tested Satellite hard reboot

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Validate the satellite hard reboot process

Detailed description test
procedure

The user sends a HREBOOT command from the GUI.

Then, it is sent by the back-end software and waits for an answer.

When the satellite receives it, a HRESET_REQ instruction is sent to the
System Core (Syscore), which is responsible of the safely hard reboot of the
entire satellite.

Once the process is completed, an OK answer is received.

Validation The satellite must do a hard reboot and answer to the GS.

 83

VTP ID 29

Associated VTS ID 22

Functionality to be tested Deployment

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Verify the deployment process

Detailed description test
procedure

The user sends a DEPLOY command from the GUI.

Then, it is sent by the back-end software and waits for an answer.

When the satellite receives it, an ENABLE_POL instruction with POL number
10 is sent to the System Data Bus (SDB).

The deployment system starts running.

Finally, an OK answer is received.

Validation The satellite must run the deployment system and answer to the GS.

VTP ID 30

Associated VTS ID 33

Functionality to be tested Status report

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Ensure that the status reports are generated and received

Detailed description test
procedure

The user sends a STATE command from the GUI.

Then, it is sent by the back-end software and waits for an answer.

When the satellite receives it, the following files are generated and sent:

 - syscore.log

 - Syscore log database (all registers except INFO up to 64 kB)

 - Procman log database (all registers except INFO up to 64 kB)

 - SDB log database (all registers except INFO up to 64 kB)

 - HWmod log database (all registers except INFO up to 64 kB)

 - Each of the sensors database (up to 64 kB)

 - mem.log

 - time.log

Validation
The satellite must generate the previous files with the detailed system report
and the GS has to receive them.

 84

VTP ID 31

Associated VTS ID 33

Functionality to be tested Status report

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Ensure that the short status reports are generated and received

Detailed description test
procedure

The user sends a SHORT_STATE command from the GUI.

Then, it is sent by the back-end software and waits for an answer.

When the satellite receives it, the following files are generated and sent:

 - syscore.log

 - Syscore log database (all FATAL registers in last 3h or up to 64 kB)

 - Procman log database (all FATAL registers in last 3h or up to 64 kB)

 - SDB log database (all FATAL registers in last 3h or up to 64 kB)

 - HWmod log database (all FATAL registers in last 3h or up to 64 kB)

 - Each of the sensors database (last 10 or up to 64 kB)

 - mem.log

 - time.log

Validation
The satellite must generate the previous files with the last 3h system report
and the GS has to receive them.

VTP ID 32

Associated VTS ID 33

Functionality to be tested Status report

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Ensure that the last state reports are generated and received

Detailed description test
procedure

The user sends a LAST_STATE command from the GUI.

Then, it is sent by the back-end software and waits for an answer.

When the satellite receives it, the following files are generated and sent:

 - Each of the sensors database with last register

 - time.log

Validation
The satellite must generate the previous files with the minimum system
report and the GS has to receive them.

 85

VTP ID 33

Associated VTS ID 24

Functionality to be tested Log files download

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Test the log files download

Detailed description test
procedure

The user sends a LOGFILES command from the GUI.

Then, it is sent by the back-end software and waits for an answer.

The satellite generates a log database files with all registers in new_out,
received or new_tarball.

Once generated and transmitted, these files have to be received on the GS.

Validation
The satellite must generate the previous files and the GS has to receive
them.

VTP ID 34

Associated VTS ID 24

Functionality to be tested Log files download

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Test the kernel log files download

Detailed description test
procedure

The user sends a LOGKERN command from the GUI.

Then, it is sent by the back-end software and waits for an answer.

The satellite generates the kern.log file cut to last 64 kB.

Once generated and transmitted, this file has to be received on the GS.

Validation
The satellite must generate the previous files and the GS has to receive
them.

 86

VTP ID 35

Associated VTS ID 25

Functionality to be tested Camera

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Validate the camera operation

Detailed description test
procedure

The user sends a CAMERA command from the GUI.

Then, it is sent by the back-end software and waits for an answer.

On the satellite, the camera is started, run and stopped.

At the GS, the last pictures must be received.

Validation The test will be passed if the last taken pictures are received.

VTP ID 36

Associated VTS ID 35

Functionality to be tested Downloadable files

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Ensure that the report of downloadable files is properly generated

Detailed description test
procedure

The user sends an INFO_DOWNLOAD command from the GUI.

Then, it is sent by the back-end software and waits for an answer.

The satellite generates the infodownload.out file with:

 - Number of valid files (existing and not empty)

 - Combined size

 - Biggest file size

 - Smallest file size

Finally, it has to be received and the information at the state table must be
updated.

Validation
The test will be passed if the previous file is received and the data
information is updated.

 87

VTP ID 37

Associated VTS ID 35

Functionality to be tested Downloadable files

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Ensure that new files are downloaded

Detailed description test
procedure

The user sends a DOWNLOAD command from the GUI (N or all files).

Then, it is sent by the back-end software and waits for an answer.

The satellite transmits N (or all) files of type ―new_out‖.

Finally, they are received on the GS.

Validation The test will be passed if the indicated number of files is received.

VTP ID 38

Associated VTS ID 23

Functionality to be tested Deployment stop

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Validate that the deployment stop instruction is processed

Detailed description test
procedure

The user sends a LINK_OK command from the GUI.

Then, it is sent by the back-end software and waits for an answer.

When it is received by the satellite, the EPS stops the deployment system.

At the GS, an OK answers has to be received.

Validation The EPS stops the deployment system and answers an ACK.

 88

VTP ID 39

Associated VTS ID 19

Functionality to be tested System power off

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Check the power off instruction

Detailed description test
procedure

The user sends a POWEROFF command from the GUI (Nx10 minutes).

Then, it is sent by the back-end software and waits for an answer.

Once the command is processed at the satellite, a POWER_OFF_OBC
instruction is sent to the SDB and all HWmod, except the EPS, are
requested to halt.

Before doing the power off, if there is not any error, an ACK is transmitted.

Validation
A successful test implies the satellite power off during the indicated time and
a proper reboot.

VTP ID 40

Associated VTS ID 20

Functionality to be tested System standby mode

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Check the standby instruction

Detailed description test
procedure

The user sends a STANDBY command from the GUI (N seconds).

Then, it is sent by the back-end software and waits for an answer.

The system enters in standby mode for the given number of seconds and
then sends TIME_RECAL_REQ to Syscore.

Validation
A successful test implies the satellite in standby mode during N seconds and
a time recalculation, besides an ACK answer.

 89

VTP ID 41

Associated VTS ID 21

Functionality to be tested System mem mode

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Check the standby instruction

Detailed description test
procedure

The user sends a MEM command from the GUI (N seconds).

Then, it is sent by the back-end software and waits for an answer.

The system enters in mem mode for the given number of seconds and then
sends TIME_RECAL_REQ to Syscore.

Validation
A successful test implies the satellite in mem mode during N seconds and a
time recalculation, besides an ACK answer.

VTP ID 42

Associated VTS ID 31

Functionality to be tested System time update

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Check the standby instruction

Detailed description test
procedure

The user sends an U_RTC command from the GUI (Unix seconds).

Then, it is sent by the back-end software and waits for an answer.

The system sends TIME_RECAL_REQ to Syscore with the given time.

In order to check the time update, a RTCTIME command can be sent.

A file containing the system time in Unix format will be received.

Validation
The test is passed if the updated time corresponds to the same as the given
by the user.

 90

VTP ID 43

Associated VTS ID 24

Functionality to be tested Log files download

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Validate the download of temperature log files

Detailed description test
procedure

The user sends a LOGTEMP command (with start, max. number of registers
and end date) from the GUI.

Then, it is sent by the back-end software and waits for an answer.

The satellite generates a temperature database file between start and end
time with the maximum number of registers up to 64 kB.

Once generated and transmitted, this file has to be received on the GS and
the content is stored at the temperature table of the database.

Validation
The satellite must generate the previous file and the GS has to receive and
process them.

VTP ID 44

Associated VTS ID 24

Functionality to be tested Log files download

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Validate the download of power log files

Detailed description test
procedure

The user sends a LOGPOWER command (with start, max. number of
registers and end date) from the GUI.

Then, it is sent by the back-end software and waits for an answer.

The satellite generates three database files between start and end time with
the maximum number of registers up to 64 kB: voltage, current and state of
charge.

Once generated and transmitted, they have to be received on the GS and
the content is stored at the corresponding tables of the database.

Validation
The satellite must generate the previous files and the GS has to receive and
process them.

 91

VTP ID 45

Associated VTS ID 24

Functionality to be tested Log files download

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Validate the download of ACS log files

Detailed description test
procedure

The user sends a LOGACS command (with start, max. number of registers
and end date) from the GUI.

Then, it is sent by the back-end software and waits for an answer.

The satellite generates an ACS database file between start and end time
with the maximum number of registers up to 64 kB.

Once generated and transmitted, this file has to be received on the GS and
the content is stored at the ACS table of the database.

Validation
The satellite must generate the previous files and the GS has to receive and
process them.

VTP ID 46

Associated VTS ID 24

Functionality to be tested Log files download

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Validate the download of Syscore log files

Detailed description test
procedure

The user sends a LOGSYSCORE command (with start, end and debug
depth) from the GUI.

Then, it is sent by the back-end software and waits for an answer.

The satellite generates a Syscore database file between start and end time
including registers until the indicated debug depth up to 64 kB and a
syscore.log file.

Once generated and transmitted, they have to be received on the GS and
the content is stored at the syslog table of the database.

Validation
The satellite must generate the previous files and the GS has to receive and
process them.

 92

VTP ID 47

Associated VTS ID 24

Functionality to be tested Log files download

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Validate the download of Procman log files

Detailed description test
procedure

The user sends a LOGPROCMAN command (with start, end and debug
depth) from the GUI.

Then, it is sent by the back-end software and waits for an answer.

The satellite generates a Procman database file between start and end time
including registers until the indicated debug depth up to 64 kB.

Once generated and transmitted, this file has to be received on the GS and
the content is stored at the syslog table of the database.

Validation
The satellite must generate the previous files and the GS has to receive and
process them.

VTP ID 48

Associated VTS ID 24

Functionality to be tested Log files download

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Validate the download of SDB log files

Detailed description test
procedure

The user sends a LOGSDB command (with start, end and debug depth)
from the GUI.

Then, it is sent by the back-end software and waits for an answer.

The satellite generates an SDB database file between start and end time
including register until the indicated debug depth up to 64 kB.

Once generated and transmitted, this file has to be received on the GS and
the content is stored at the syslog table of the database.

Validation
The satellite must generate the previous files and the GS has to receive and
process them.

 93

VTP ID 49

Associated VTS ID 24

Functionality to be tested Log files download

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Validate the download of HWmod log files

Detailed description test
procedure

The user sends a LOGHWMOD command (with start, end and debug depth)
from the GUI.

Then, it is sent by the back-end software and waits for an answer.

The satellite generates an SDB database file between start and end time
including register until the indicated debug depth up to 64 kB.

Once generated and transmitted, this file has to be received on the GS and
the content is stored at the syslog table of the database.

Validation
The satellite must generate the previous files and the GS has to receive and
process them.

VTP ID 50

Associated VTS ID 36

Functionality to be tested File upload

Required test environment

Requirement:

Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Ensure that files are uploaded and moved properly

Detailed description test
procedure

The user sends a MV command (with the file to move and the destination
path) from the GUI.

Then, it is sent by the back-end software and waits for an answer.

An OK answer should be received after the file has been uploaded and
moved to the right path.

Validation The test will be passed if the file is in the chosen path

 94

VTP ID 51

Associated VTS ID 26

Functionality to be tested Task enable

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Check the task enabling instruction

Detailed description test
procedure

The user sends a TASK_EN command (with the ―taskID‖ to enable) from the
GUI.

Then, it is sent by the back-end software and waits for an answer.

The task corresponding to the selected identifier is marked as enabled in the
task database.

Once it is done, the satellite answers with an ACK message.

Validation The task has to be enabled in the database to pass the test

VTP ID 52

Associated VTS ID 27

Functionality to be tested Task disable

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Check the task disabling instruction

Detailed description test
procedure

The user sends a TASK_DIS command (with the ―taskID‖ to disable) from
the GUI.

Then, it is sent by the back-end software and waits for an answer.

The task corresponding to the selected identifier is marked as disabled in the
task database.

Once it is done, the satellite answers with an ACK message.

Validation The task has to be disabled in the database to pass the test

 95

VTP ID 53

Associated VTS ID 28

Functionality to be tested Task state report

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Validate the task report feature

Detailed description test
procedure

The user sends a TASK_STATE command (with a ―taskID‖) from the GUI.

Then, it is sent by the back-end software and waits for an answer.

At the satellite, a file containing the state of the specified task is generated
and transmitted.

Finally, it is received by the GS.

Validation The test is passed if the file is received with the precise information

VTP ID 54

Associated VTS ID 34

Functionality to be tested File execution

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Ensure the execution of shell script files

Detailed description test
procedure

The user sends a SHELL command (with a ―.sh‖ file) from the GUI.

Then, it is sent by the back-end software and waits for an answer.

When the file is processed by the satellite, it has to execute the instructions
contained on it.

Once it is done, the satellite answers with an ACK message.

Validation The test will be passed if the file is executed on the satellite

 96

VTP ID 55

Associated VTS ID 34

Functionality to be tested File execution

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Ensure the execution of binary files

Detailed description test
procedure

The user sends an EXEC command (with a binary file) from the GUI.

Then, it is sent by the back-end software and waits for an answer.

When the file is processed by the satellite, it has to execute the instructions
contained on it.

Once it is done, the satellite answers with an ACK message.

Validation The test will be passed if the file is executed on the satellite

VTP ID 56

Associated VTS ID 30

Functionality to be tested Configuration update

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Validate the update of the satellite configuration

Detailed description test
procedure

The user sends a U_CONF command from the GUI with one of these
attached files: sycore.conf, procman.conf, sdb.conf, comms.conf, acs.conf,
camera_noacs.conf, wpt.conf, gt.conf, mems.conf, mems_mode{N}.conf or
geiger{N}.conf.

Then, it is sent by the back-end software and waits for an answer.

The satellite copies the configuration file to the proper location (depending
on its name).

If a file was syscore.conf or procman.conf, the change has to be notified.

Once it is done, the satellite answers with an ACK message.

Validation
The test will be passed if all the sent files are copied on their corresponding
locations

 97

VTP ID 57

Associated VTS ID 29

Functionality to be tested TLE update

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Validate the update of the TLE information

Detailed description test
procedure

The user sends a TLE command (with a text file containing the telemetry
information) from the GUI.

Then, it is sent by the back-end software and waits for an answer.

The satellite moves the given file to the TLE_PATH.

Once it is done, the satellite answers with an ACK message.

Validation
The test is considered as passed if the telemetry information is properly
updated after copying the file

VTP ID 58

Associated VTS ID 29

Functionality to be tested Configuration update

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Validate the update of the scheduler configuration

Detailed description test
procedure

The user sends a U_SCHEDOUT command and two attached files
(syscore.conf and task_planner.conf) from the GUI.

Then, it is sent by the back-end software and waits for an answer.

The satellite moves the scheduling file and the syscore configuration file to
their respective locations and the Syscore is notified.

Once it is done, the satellite answers with an ACK message.

Validation
The test is passed when the Syscore is notified and the information is
updated

 98

VTP ID 59

Associated VTS ID 32

Functionality to be tested Mission time update

Required test environment
Software parts involved: GUI, gs_backend, COMMS HWmod

Required Hardware: Raspberry Pi with COMMS module and the satellite

Overview test procedure Check the mission time update instruction

Detailed description test
procedure

The user sends a U_SCHEDOUT command (with the new mission start time
in Unix format) from the GUI.

Then, it is sent by the back-end software and waits for an answer.

The satellite updates (or creates) the mtfbwy.r{1,2,3} files with the given
time.

Once it is done, the satellite answers with an ACK message.

To check that the time has been properly updated, a MISSIONTIME
command is sent.

A missiontime.out file is received and the mission time information is
updated in the database.

Validation
The test is passed if the new mission time is the same as the time introduced
by the user

VTP ID 60

Associated VTS ID 14

Functionality to be tested Morse beacon message decoding

Required test environment
Software parts involved: GUI, Morse beacon decoder (GNURadio)

Required Hardware: RTL chipset

Overview test procedure Validate the proper reception and decoding of beacon messages

Detailed description test
procedure

While the satellite is operative, a Morse beacon message is transmitted
every minute (or three minutes when the batteries are under the 20% of
charge).

The signal is received with the VHF antenna directly connected to an RTL
chipset.

The beacon decoder program is responsible for the signal processing and
message decoding.

Once decoded, the message is stored at the beacon table in the database.

Validation
A valid message (following the ―EC3CTAT###E###‖) stored in the
corresponding table ensures the test success

 99

VTP ID 61

Associated VTS ID 8

Functionality to be tested Visibility intervals update (sunrise/sunset)

Required test environment
Software parts involved: Orbit Propagator

Required Hardware: —

Overview test procedure Verify the correct sunset and sunrise time calculation

Detailed description test
procedure

For a given date (the same as the test date, for example) and a certain
position (the GS coordinates), the sunset and sunrise times are calculated.

Then, they are compared to the official ones that can be found in some
websites (e.g. http://www.timeanddate.com/sun/spain/barcelona)

The process is repeated for multiple dates and locations (10 days and 5
dispersed locations can be representative enough).

Validation The test is passed if the error for all the predictions is less than 1 minute.

VTP ID 62

Associated VTS ID 8

Functionality to be tested Visibility intervals update (position prediction)

Required test environment
Software parts involved: Orbit Propagator, AGI‘s STK

Required Hardware: —

Overview test procedure Verify the correct sunset and sunrise time calculation

Detailed description test
procedure

For a given TLE file (FUNcube-1 orbital elements where used in this test),
the satellite position is propagated between a start and end date with one
second steps.

The same prediction is calculated with AGI‘s STK.

To obtain reliable results, the prediction should include more than one orbit.
In this case, a 24h prediction is computed.

Validation The test is passed if the maximum error is under 25 km.

VTP ID 63

Associated VTS ID 8

Functionality to be tested Visibility intervals update (field of view)

Required test environment
Software parts involved: Orbit Propagator, Gpredict

Required Hardware: —

Overview test procedure Verify the correct sunset and sunrise time calculation

Detailed description test
procedure

For a given TLE file (FUNcube-1 orbital elements where used in this test),
the next visibility intervals are calculated, up to 5 by default.

The same intervals are obtained with Gpredict software and compared.

Validation The test is passed if the maximum error is less than one minute.

http://www.timeanddate.com/sun/spain/barcelona

