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Abstract

The need to combine task planning and motion planning in robotics is well understood. The

task planner generates a plan to solve the problem while the motion planner executes the ac-

tions of the problem. The previous framework is applied in many state machines that solve

complex problems. But in this project we want to present an interface that communicates the

task planner layer and the motion planner layer, and updates the geometric information of the

environment to inform the task planner. This framework allows to solve complex tasks with

basic information of the goal, and replan whenever the motion could not be executed. All the

information of the problems is modelled as logical predicates.

The objective of this project is to generate a generic model of the environment, with a set of

feasible motions of the robot, and use this interface to solve many different planning problems

involving those actions, by just giving simple goals. The result is to make the robot more au-

tonomous and allow that any user could use it by giving simple orders.

Moreover this project presents the different frameworks and algorithms used to simulate

those actions in the robot such as: Sequential Quadratic Programming optimization, Rapidly

Random Exploring Tree (RRT) or SBPL global planning. It also shows an introduction to PDDL

language used to model the problem and the actions, and the Fast-Froward (FF) solver that is

the responsible to translate the problem as a graph and solve it.

Finally we test it on different experiments in simulation, by using the TIAGo platform of PAL

robotics. The results are promising and allow to dream in service robots solving complex tasks

simply computing and modelling basic actions.





High level task planning with inference for the TIAGo robot V

Acknowledgements

Finally I wish to thank all the members of the company, in particular to Mr. Francesco Ferro,

the CEO of the company who let me develop the practises in PAL Robotics. This has made me

learn a lot at a personal and professional level, in a very pleasant working environment.

But I want to specially thank to Mr Hilario Tome, who his a very patient person that helped

me a lot during all the project, developing a lot of the tools and solving many of the problems

that arouse.

To end I want to thank the other internships of the company with whom I have worked these

months and I have developed a friendship relation.



VI High level task planning with inference for the TIAGo robot

Contents

Abstract III

Acknowledgements V

1 Introduction 2

2 The TIAGo robot 4

3 The Planning Domain Definition Language 5

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.1 The Hanoi Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.2 The Trucks problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 FF solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.1 Heuristic estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.2 Enforced Hill-climbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 RRT 21

5 Sequential Quadratic Programming 23

5.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Construction of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 IK as an optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3.1 No-collisions constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Interface Implementation 29

6.1 Creating a library of local actions in C++ . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1.1 Pick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1.2 Place . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1.3 Move Arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1.4 Move Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Modelling the actions in the PDDL language . . . . . . . . . . . . . . . . . . . . . 38

6.2.1 Pick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2.2 Place . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2.3 Move Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



High level task planning with inference for the TIAGo robot VII

6.2.4 Move Arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 Simulating an environment with collision objects . . . . . . . . . . . . . . . . . . . 45

6.3.1 Updating the environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.4 Creating a C++ interface that relates task planning with motion planning . . . . . 47

6.4.1 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Simulation and generated examples 52

7.1 Emptying a library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.2 Moving an object hampered by others . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.3 Closing distances between objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8 Cost planning 67

9 Sustainability Project 68

10 Conclusions 69

11 References 70



High level task planning with inference for the TIAGo robot 1

Glossary

ADL Action Description Language.. 5, 8

FCL Flexible Collision Library.. 46

FF Fast-Forward solver.. III, 16–20, 44, 47, 61, 62, 69

IK Inverse Kinematics.. 23, 26, 30–33, 41, 44, 46, 49–52, 61, 63, 66

KKT Karush-Kuhn-Tucker.. 23–25

NLP Non Linear Optimization Problems.. 23, 24

OMPL Open Motion Planning Library.. 31

PDDL Planning Domain Definition Language.. III, 5–7, 9–11, 29, 38, 40–42, 44, 45, 47–50, 57,

63, 64

QP Quadratic Programming.. 23, 24, 28

ROS Robotic Operating System.. 4, 33, 35, 37, 47

RRT Rapidly-exploring Random Tree.. III, 22, 31–33, 46, 49–51

SBPL Search-based Planning Laboratory researches methodologies and algorithms that en-

able autonomous systems to act fast, intelligently and robustly. His research concentrates

mostly on developing novel planning approaches, combining planning with machine

learning. They investigate on real-time planners ranging from autonomous navigation

and autonomous flight to multi-agent systems and to full-body mobile manipulation..

III, 35, 37, 52

SQP Sequential Quadratic Programming.. 23, 26, 30

STRIPS Stanford Research Institute Problem Solver.. 5



2 High level task planning with inference for the TIAGo robot

1 Introduction

In order to develop high-level tasks, service robots need to combine high-level task planning

with low-level motion planning. Task planning determines the strategies or actions that the

robot should execute at each step, while motion planning is required to carry out the desired

movements. However, combine both is a hard task and a research topic since task planning

descriptions usually ignore the strong geometric constraints that exhibit Robotics planning

problems. For example, before deciding to pick up a cup, we should determine whether it

is geometrically feasible to move the robot base to an appropriate position. Traditionally, such

problems have been attacked top-down, separating high-level task planning (e.g., sequencing

pick-and-place operations) from lower-level planning (e.g., finding feasible paths for the arm).

Task planning is simplified by ignoring low-level details, but the resulting plans may be ineffi-

cient or even infeasible due to missed lower level synergies and conflicts.

The main contribution of this project is to develop a general framework for the TIAGo robot

that allow us to solve different kind of planning problems by combining task planning and mo-

tion planning such as in the work of [20] [3]. Our interface should allow us to generate plans

in a robust manner, reacting and re-planning when facing with unexpected changes. Relevant

geometric information of the environment is transmitted to the task planner in terms of logical

predicates. The task planning layer analyses if the preconditions necessary to execute the ac-

tions are satisfied, and extracts a plan, while the motion planner layer executes the plan.

But sometimes at the beginning we don’t dispose of all the geometric information, or even

the environment changes. To adapt to those changes, instead of use a perception layer to up-

date the information, the motion planner translates all this information into symbolic form to

the task planner. The inference step could be seen as a trial error in which the motion plan

tries to execute the plan, and informs the planner when it fails. The interface translates this

information to the task planner that tries to find a new plan.

In our simulations we work with environments full of obstacles. Once the motion planner

finds that an object is impeding another, updates the information and calls the task planner.

The task planner calls again the solver with the new states. Iteratively the same process is

repeated until the motion planner executes a valid plan.
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The main purpose of this project is to develop an intelligence based framework which allows

the robot to work autonomously by executing a set of basic actions. The robot should be ca-

pable of develop high-level tasks defined with clear and simple goals, by just sequencing low

level tasks.

The following sections describe the used platform, the language used for the Task Planner

to model all the geometric information, the implementation of our interface, and the resolution

of multiple planning problems. In the implementation of the interface, is detailed how it was

developed a simulator to visualise the problem, and the tools necessary to create new problems

or environments; how were implemented the basic motion actions for the robot; and how those

actions are modelled as logical predicates in the language of the Task Planner.
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2 The TIAGo robot

The platform used to develop this project is the TIAGo robot from PAL Robotics, a Spanish

company situated in Barcelona around 2004. The area of activity of the company is mainly

oriented to robotics with branches in electronics, software development and mechanics. His

objective is to create and develop robots for service and research.

The TIAGo robot is one of the newest robots of the company. It is a one hand robot mounted

on a mobile base that can manipulate objects. The robot has a 7-DOF arm that can be mounted

with different interchangeable end effectors, with a maximum payload of 2Kg. The mobile

base is equipped with differential drive wheels and a navigation laser that allows the robot to

navigate and mapping avoiding obstacles. The robot also includes a lift torso providing it a

long reach for manipulation. TIAGo uses Ubuntu Linux LTS as operating system, and could be

"controlled" using ROS.

Figure 2: The TIAGo robot from PAL
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3 The Planning Domain Definition Language

This section introduces to the Planning Domain Definition Language and all of his formalisms.

3.1 Introduction

The Planning Domain Definition Language (PDDL) [15] is a planning language first developed

by Drew McDermott in 1998, as an attempt to standardise previous existing Artificial Intelli-

gence planning languages. All those planning languages are used to model a given planning

problem with certain conditions, and then automatically generate a chain of actions that with

lead to a desired goal which can be expressed as a set of conditions. The described actions will

also depend on conditions, which need to fulfilled in order to be executed, and will produce

effects in the environment once executed.

The first developed planning language was STRIPS (Stanford Research Institute Problem

Solver) developed in 1971 by Richard Fikes and Nils Nilsson, and nowadays is the starting

point for most of the languages for expressing automated planning problems. Later on Ped-

nault (an IBM researcher specialist in the field of Data abstraction ) in 1987 proposed the Action

description language (ADL) which is considered an evolution of STRIPS. Nowadays there ex-

ists a high variety of planning languages and improvements of the original PDDL language that

allow to work with continuous actions, probabilistic planning problems or even with multi-

agent problems. Although we will only focus on STRIPS and ADL, since they are the most

common and used languages.

3.2 Formulation

In the Planning Domain Definition Language the planning task that we want to solve is ex-

pressed as a triple 〈O, s0, g〉, where O is the set of parametrised propositional actions defined

by preconditions and effects, s0 is the initial state, and g is the goal. Each state s including

the initial state and the goal are expressed as a set of logical atoms or conditions. At the same

time the actions are defined as a triple o = 〈pre(o), add(o), del(o)〉; where pre(o) represent the

preconditions necessary to apply the action, add(o) is the list of added effects once the action

is executed, and del(o) is the list of deleted effects. We say that a single condition or atom f is

achieved by the action if f ∈ add(o). Then we say that an action is applicable if our current

state s fulfils s ⊆ pre(o). The result of applying action oi in state si generates a new state si+1,
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such that si+1 = oi(si). Our objective is to find a given a sequence of actions o0, ...,on, such

that si satisfies the preconditions for oi, and at the same time allows us to move from the initial

state s0 to the goal state g (see Equation 1)

g = on...o0(s0) with si ⊆ pre(oi) ∀i = 0, ..., n (1)

Arrived at this point where all the basic concepts surrounding PDDL are defined, the next

step is to describe the basic syntax of the language in order to understand further examples.

All the planning tasks defined in PDDL are separated in two different files that contain:

• Objects: Represent "the things" involved in the problem. It could be for a example a robot,

an object or a position.

• Predicates: Are the conditions or atoms that describe the problem, and represent the

properties of the objects. Although PDDL supports quantified conditions, we be focus

only on true or false conditions.

• Initial state: State from where we begin.

• Goal: State we want to reach.

• Actions: Ways of changing the state of the world.

In the domain file we write all the predicates and actions. In the problem file we specify the

objects, initial state and goal conditions. The objective is to create a generic domain file, linked

with specific actions for the robot that let us solve a large amount of different problems by just

modifying the objects and/or the initial and goal states.

We start by explain the domain file containing the actions, that should be written according

the following structure.

(define (domain domain_name)

(:requirements :adl :typing ...)

(:types a b ...)

(:constants ct1 ...)

(:predicates (pred1 ?x - a) (pred2 ?x - a ?y - b) ...)

(:action action_name

:parameters(?param1 - a)
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:precondition (pred1 ?param1)

:effect (pred2 ?param1)

)

...

)

This file must contain:

• The domain name. Is the name of our problem. Has to be the same as the one in the

problem file.

• The list of requirements. Because PDDL is a very general language and most solvers

support only a subset of rules, domains may declare requirements such as the language

we are using (strips or adl) or if for example we are including types in our files.

• The types of objects. Is not mandatory, and can be substituted by a list of predicates such

as (is_type_a ?obj), (is_type_b ?obj),... Is used to clarify and to avoid writing a bigger list of

preconditions for the actions.

• The constants, that are PDDL objects that exist even considering new environments, or different

conditions. Must be declared when they are used as a parameter in the preconditions or effects of

an action. As for example if after apply some action we end always at a fixed position. If we use

types, the constants can be defined as ct1 - a i.e ct1 is of type a.

• The predicates of the problem define the properties and the geometric constraints of the PDDL

objects as logical conditions. Having unnecessary predicates will consume more time for the

solver, and having less predicates than the necessaries won’t allow us to solve the problem, and

can give us a false set of actions. The predicates are defined as pred_name? param1 param2 ...

with a given name and a list of parameters that represent the objects associated. A predicate could

be as simple as (is_free? arm) which tell us if the arm of the robot is free. Or for example (block?

obj1 obj2 pos1 pos2) which says that the obj1 is blocking to the obj2 in the position pos1 for obj1

and pos2 for obj2. If we define types is possible to define each type of object in the description of

the parameters.

• The actions. They must be identified by a given name. Each action has a list of parameters that

are used in the preconditions or effects. Constants don’t need to be passed. Each action contain

the list of conditions (as predicates) necessary to be applied and the effects of the predicates once

is applied.
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The second file is called problem file and contains the objects that are not constants, the initial

conditions and the final conditions of the problem.

(define (problem problem_name)

(:domain domain_name)

(:objects x - a ...)

(:init

(pred1 x)

...

)

(:goal

(pred2 x)

)

)

Our purpose is to solve planning problems with just modifying the start conditions and the

goal. That’s why the domain file remain fixed for every problem while we generate a different

problem file for each situation. The initial conditions and the goal conditions are expressed as

a set of predicates. In strips all those predicates that are not initialised are considered as false

while in ADL are considered as unmentioned. The objective is to get a list of actions that set

the predicates of our problem from the initial conditions to the desired ones.

The following list describes a list of tools of the language, necessary to understand further

examples.

• and - Allows to link several conditions. For example if we have (and (pred1 ?x) (pred2

?y)) in the preconditions of an action it will be only applied when both predicates are true. It’s

equivalent to the logic symbol AND (
∧
).

• not - Allows to force a precondition or effect for a given predicate to be negative. For example

if we want to set an object as not free then we write (not (free ?x)). It’s equivalent to the logic

symbol ¬.

• or - Allows to check if a condition or another is satisfied as a precondition of a given action. For

example if our precondition is (or (pred1 ?x) (pred2 ?y)) for a given action, then it’s enough that

it satisfies one of the two predicates. Is equivalent to the logic symbol or
∨

.



High level task planning with inference for the TIAGo robot 9

• forall - Is used to evaluate or set an action for a set of objects. For example if we want to see if

(pred1 ?x -a ?y - b) is satisfied by all the objects of type a.

• when - Is used in the effects of the action to set a predicate once a condition is satisfied. For

example (when (pred1 ?x) (pred2 ?y)) when pred1 is satisfied for x then pred2 y will be true.

• imply - Is equivalent to when but is only used in the preconditions.

3.3 Examples

Now that the basic tools for understand most of the PDDL problems have been explained,

we will present a set of classical planning examples in order to familiarise the reader with the

language.

3.3.1 The Hanoi Problem

The Hanoi problem is a logic game in which a set of discs of different size in a stick (ordered

from the biggest one to the smallest one) should be translated to another stick maintaining the

same order. As a condition we can not put a bigger disc on top of a smaller one, and we can

only take discs from the top of the heap. Figure 3 shows the Hanoi problem with three discs

and three sticks represented as a graph. Each node represent a feasible configuration of the

problem, while the edges represent the possible movement at each configuration. The follow-

ing Code 1, Code 2 represents his implementation in PDDL.

Figure 3: Hanoi Problem represented as a graph
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Listing 1: Domain file

( def ine ( domain hanoi )

( : requirements : s t r i p s )

( : p r e d i c a t e s ( c l e a r ?x ) ( on ?x ?y ) ( smal ler ?x ?y ) )

( : a c t i o n move

: parameters ( ? d i s c ? from ? to )

: precondi t ion ( and ( smal ler ? to ? d i s c ) ( on ? d i s c ? from )

( c l e a r ? d i s c ) ( c l e a r ? to ) )

: e f f e c t ( and ( c l e a r ? from ) ( on ? d i s c ? to ) ( not ( on ? d i s c ? from ) )

( not ( c l e a r ? to ) ) ) )

)

Listing 2: Problem file

( def ine ( problem hanoi3 )

( : domain hanoi )

( : o b j e c t s peg1 peg2 peg3 d1 d2 d3 )

( : i n i t

( smal ler peg1 d1 ) ( smal ler peg1 d2 ) ( smal ler peg1 d3 )

( smal ler peg2 d1 ) ( smal ler peg2 d2 ) ( smal ler peg2 d3 )

( smal ler peg3 d1 ) ( smal ler peg3 d2 ) ( smal ler peg3 d3 )

( smal ler d2 d1 ) ( smal ler d3 d1 ) ( smal ler d3 d2 )

( c l e a r peg2 ) ( c l e a r peg3 ) ( c l e a r d1 )

( on d3 peg1 ) ( on d2 d3 ) ( on d1 d2 ) )

( : goal ( and ( on d3 peg3 ) ( on d2 d3 ) ( on d1 d2 ) ) )

)

In the example we have three sticks (peg1, peg2, peg3) and three discs (d1 d2 d3) which are

objects from PDDL. To model the problem is enough with three predicates.

• smaller - Compares the disc size. If disc d1 is smaller than d2, then (smaller d2 d1) is true.

Is not commutative with the parameters.

• clear - Says if a disc or stick is available to move it, or receive another disc on top.

• on - Says if a disc is on top of another disc or a stick. It’s not recursive in the sense that if
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d1 is above d2 and d2 is above d3, the predicate (on d1 d3) will be false. Like smaller is

not commutative with the parameters.

Figure 4: Hanoi problem visualisation with markers

In the domain file we describe the predicates and actions of the problem. There is only one

action called move disc, that requires that the disc that want to move is clear (clear disc); the

object where we want to move is clear (clear to); the object where we will place the disc on top

must be necessary of a bigger size (smaller ?to ?disc) and the disc that we want to move must be on

top of another object (on ?disc ?from). This last precondition is used to check that the parameter from

corresponds to the current position of the object, in order to set it as false in the effects. Once the action

is applied the object where we come from has to be clear (clear ?from), and the object where we place

the disc is no more clear. (not (clear ?to)). Finally we also have to consider that the disc we are moving

is not anymore where it was i.e (on ?disc ?to) (not (on ?disc ?from)). We start with the three discs in

peg1 and we want to finish with all the discs in the same order but in peg3.

Notice that there doesn’t exists a unique formulation for a problem, or a given technique to model it. It

is only necessary to list all the properties or situations describing a problem and try to adapt the actions

with the effects and predicates.

3.3.2 The Trucks problem

The following example is a classic problem that shows part of the potential of the PDDL language.

Moreover in this example we will see a lot of tools explained in the previous section.

In the general problem a set of trucks has to pick and deliver several packages at different locations at

different times. Our objective is to deliver some of the packages at time in specific locations. As feasible
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actions we can pick objects from our current position, unload objects from our current position, drive

from a location to another, or deliver a package. The trucks has a size called truck-area that specifies the

number of objects that can be load in a truck.

To model the problem the following predicates have been used:

• at - Used to locate a truck into a given location.

• in - Says if a package is inside the truck in a given position.

• connected - True when both locations are connected.

• free - Says if a position inside the truck is free.

• time-now - Specifies the current time that is updated after executing some actions.

• next - Used to specify the following time. For example we could specify that after t3 comes t4.

• le - Says if a time is "less or equal" than another one.

• delivered - Specifies that a package has been delivered at a given location at a specific time.

• at-destination - Specifies that a package is at a given location.

• closer - Used to "organize" the positions inside the truck. For example if we put some package

close to the exit, we will disturb us from putting any other package inside the truck even when

other positions are empty.

In the problem represented in Code 4, we consider only a single truck with two spaces on his trunk,

and a set of three packages that has to be delivered. In the initial conditions we also specify the times as

objects and we also set the connection between locations. Then our objective is two deliver two packages

at a given time, and the other package has no time specified.

To solve the problem the four actions are modelled in Code 3.

• To pick/load an object we need to be at the current position of the package, and we will need at

least one free position in the truck. The predicate (forall (?a2 - truckarea) (imply (closer ?a2 ?a1)

(free ?a2 ?t))) specifies that no other package can block the position where we want to place our

package. Once the action is applied, the package won’t be at the given location since it will be

inside the truck. The position inside the truck won’t be free until we unload the package.
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• The action unload is quite similar to the previous one, denying or inverting the precondition and

effects. Again we have that we use the forall and imply tools to model that we can’t extract an

object from a given position when some other objects are blocking it.

• The drive action is the simplest one since it checks the current time, the current truck, and if there

exists a connection between both locations. It increases one unit of time and locates the truck into

another location.

• The action deliver checks that the deliver time must be less or equal than the current time, and

checks the current position of the truck. Once applied set that the package has bee delivered at

destination at time.

Listing 3: Domain file

( d e f i n e ( domain Trucks )

( : r e q u i r e m e n t s : t y p i n g : a d l )

( : t y p e s t r u c k a r e a t ime l o c a t i o n l o c a t a b l e − o b j e c t

t r u c k package − l o c a t a b l e )

( : p r e d i c a t e s ( a t ? x − l o c a t a b l e ? l − l o c a t i o n )

( i n ? p − package ? t − t r u c k ? a − t r u c k a r e a )

( c o n n e c t e d ? x ? y − l o c a t i o n )

( f r e e ? a − t r u c k a r e a ? t − t r u c k )

( t ime−now ? t − t ime )

( n e x t ? t 1 − t ime ? t 2 − t ime )

( l e ? t 1 − t ime ? t 2 − t ime )

( d e l i v e r e d ? p − package ? l − l o c a t i o n ? t − t ime )

( a t−d e s t i n a t i o n ? p − package ? l − l o c a t i o n )

( c l o s e r ? a1 − t r u c k a r e a ? a2 − t r u c k a r e a ) )

( : a c t i o n l o a d

: p a r a m e t e r s ( ? p − package ? t − t r u c k ? a1 − t r u c k a r e a ? l − l o c a t i o n )

: p r e c o n d i t i o n ( and ( a t ? t ? l ) ( a t ? p ? l ) ( f r e e ? a1 ? t )

( f o r a l l ( ? a2 − t r u c k a r e a )

( imply ( c l o s e r ? a2 ? a1 ) ( f r e e ? a2 ? t ) ) ) )

: e f f e c t ( and ( n o t ( a t ? p ? l ) ) ( n o t ( f r e e ? a1 ? t ) ) ( i n ? p ? t ? a1 ) ) )
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( : a c t i o n u n lo ad

: p a r a m e t e r s ( ? p − package ? t − t r u c k ? a1 − t r u c k a r e a ? l − l o c a t i o n )

: p r e c o n d i t i o n ( and ( a t ? t ? l ) ( i n ? p ? t ? a1 )

( f o r a l l ( ? a2 − t r u c k a r e a )

( imply ( c l o s e r ? a2 ? a1 ) ( f r e e ? a2 ? t ) ) ) )

: e f f e c t ( and ( n o t ( i n ? p ? t ? a1 ) ) ( f r e e ? a1 ? t ) ( a t ? p ? l ) ) )

( : a c t i o n d r i v e

: p a r a m e t e r s ( ? t − t r u c k ? from ? t o − l o c a t i o n ? t 1 ? t 2 − t ime )

: p r e c o n d i t i o n ( and ( a t ? t ? from ) ( c o n n e c t e d ? from ? t o )

( t ime−now ? t 1 ) ( n e x t ? t 1 ? t 2 ) )

: e f f e c t ( and ( n o t ( a t ? t ? from ) ) ( n o t ( t ime−now ? t 1 ) )

( t ime−now ? t 2 ) ( a t ? t ? t o ) ) )

( : a c t i o n d e l i v e r

: p a r a m e t e r s ( ? p − package ? l − l o c a t i o n ? t 1 ? t 2 − t ime )

: p r e c o n d i t i o n ( and ( a t ? p ? l ) ( t ime−now ? t 1 ) ( l e ? t 1 ? t 2 ) )

: e f f e c t ( and ( n o t ( a t ? p ? l ) ) ( d e l i v e r e d ? p ? l ? t 2 )

( a t−d e s t i n a t i o n ? p ? l ) ) )

)

Listing 4: Problem file

( d e f i n e ( problem t r u c k −1)

( : domain Trucks )

( : o b j e c t s

t r u c k 1 − t r u c k

package1 − package package2 − package

package3 − package

l 1 − l o c a t i o n l 2 − l o c a t i o n l 3 − l o c a t i o n

t 0 − t ime t 1 − t ime t 2 − t ime t 3 − t ime

t 4 − t ime t 5 − t ime t 6 − t ime

a1 − t r u c k a r e a a2 − t r u c k a r e a )
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( : i n i t

( a t t r u c k 1 l 3 ) ( f r e e a1 t r u c k 1 ) ( f r e e a2 t r u c k 1 )

( c l o s e r a1 a2 ) ( a t package1 l 2 ) ( a t package2 l 2 )

( a t package3 l 2 ) ( c o n n e c t e d l 1 l 2 ) ( c o n n e c t e d l 1 l 3 )

( c o n n e c t e d l 2 l 1 ) ( c o n n e c t e d l 2 l 3 ) ( c o n n e c t e d l 3 l 1 )

( c o n n e c t e d l 3 l 2 ) ( t ime−now t 0 ) ( l e t 1 t 1 )

( l e t 1 t 2 ) ( l e t 1 t 3 ) ( l e t 1 t 4 ) ( l e t 1 t 5 ) ( l e t 1 t 6 )

( l e t 2 t 2 ) ( l e t 2 t 3 ) ( l e t 2 t 4 ) ( l e t 2 t 5 ) ( l e t 2 t 6 )

( l e t 3 t 3 ) ( l e t 3 t 4 ) ( l e t 3 t 5 ) ( l e t 3 t 6 ) ( l e t 4 t 4 )

( l e t 4 t 5 ) ( l e t 4 t 6 ) ( l e t 5 t 5 ) ( l e t 5 t 6 ) ( l e t 6 t 6 )

( n e x t t 0 t 1 ) ( n e x t t 1 t 2 ) ( n e x t t 2 t 3 ) ( n e x t t 3 t 4 )

( n e x t t 4 t 5 ) ( n e x t t 5 t 6 ) )

( : g o a l ( and

( d e l i v e r e d package1 l 3 t 3 )

( a t−d e s t i n a t i o n package2 l 1 )

( d e l i v e r e d package3 l 1 t 6 ) ) )

)

For this specific problem the solver give us the following list of actions.

1. drive truck1 l3 l2 t0 t1

2. load package1 truck1 a2 l2

3. load package2 truck1 a1 l2

4. drive truck1 l2 l1 t1 t2

5. unload package2 truck1 a1 l1

6. deliver package2 l1 t2 t2

7. drive truck1 l1 l3 t2 t3

8. unload package1 truck1 a2 l3

9. deliver package1 l3 t3 t3

10. drive truck1 l3 l2 t3 t4

11. load package3 truck1 a2 l2

12. drive truck1 l2 l1 t4 t5

13. unload package3 truck1 a2 l1

14. deliver package3 l1 t5 t6
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Figure 5: Solution of the trucks problem using the FD solver

Just changing the initial conditions, for example including more trucks or more packages, we are

solving different problems, all of them modelled in a single file. Adding this to the fact that the solver is

really fast, it encourages us to apply it on the robot.

3.4 FF solver

In this section we describe and evaluate the algorithmic techniques used in the FF planning solver [8].

We have tested other solvers [18], but we realise that FF is the most efficient with a high difference

respect the others. One of the reasons why was the most successful automatic planner at the AIPS-2000

planning competition.

The FF solver relies on a forward state search, using a heuristic that estimates goal distances by a

relaxation of the planning task, and introduces a novel search strategy that combines hill-climbing with

systematic search. His search strategy introduces new pruning techniques that have been motivated by

observing classical examples. Figure 3.4 shows the basic system architecture.
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Figure 6: FF’s base system architecture

The fundamental heuristic technique is the relaxed GRAPHPLAN that informs to the search engine

with a goal distance estimation, and with a set of promising successors also called helpful actions. On

every state the enforced hill-climbing (the FF search algorithm) either outputs a solution plan or reports

that it has failed. But as enforced hill-climbing doesn’t works when the graph contains dead ends, a

complete best-first algorithm is invoked. Finally as enforced hill-climbing sometimes wastes a lot of

time achieving goals that need to be cared for later, two techniques consisting on adding goal deletion

and order the goals are integrated.

3.4.1 Heuristic estimator

In this subsection we introduce the base heuristic method used in FF. But before is necessary to describe

a set of basic concepts.

In previous sections we described a planning task P as triple 〈O, s0, g〉 where O is the set of actions,

S0 is the initial state and g is the goal formed by a set of atoms, facts or conditions.

Definition 3.1. Given a planning task P = 〈O, s0, g〉. The relaxation P′ of P is defined as

P′ = 〈O′, s0, g〉, with

O′ = {〈pre(o), add(o), ∅〉 | 〈pre(o), add(o), del(0)〉 ∈ O}

In other words the relaxed planning task is obtained by ignoring the delete lists of all the actions.

Definition 3.2. An action sequence 〈o1, ..,on〉 is called a relaxed plan of P if and only if solves

the relaxation P′ of P.

The relaxed plan simplifies the planning task and it could be solved in polynomial time. The base

heuristic method in FF is derived by applying GRAPHPLAN to relaxed planning tasks.
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In the GRAPHPLAN algorithm, the planning graph is a directed, layered graph that contains two

kind of nodes: fact nodes and action nodes. Each time step i contains the layer of facts or conditions

that can possibly made true in i steps, and the layer of actions that are possibly applicable given those

conditions. The GRAPHPLAN extends the planning layer until a fact layer that contains all goals. After,

starting from the goal layer a recursive backward search algorithm is invoked until the initial layer. In

the backward search, at each time step i > 0 the algorithm initialises the set of selected actions at layer

i− 1 as empty, and for each condition consider all the achieving actions at layer i− 1 selecting the first

one that not exclude any action previously selected. If it’s not possible then goes back to the i + 1 time

step and chooses a different action.

Definition 3.3. Given a pair of actions (o, o′) we define them as mutually exclusive if one action

deletes a precondition or an add effect of the other.

In the same way we can define two facts ( f , f ′) as mutually exclusive at time step i > 0 if each action

at level i− 1 that achieves f is mutually exclusive from each action at level i− 1 that achieves f ′.

The classic GRAPHPLAN algorithm backtracks each time that all the possible action that achieve a

fact are mutually exclusive with some of the previous selected actions. But in a relaxed plan, as we don’t

have delete effects, the algorithm will never backtrack. In this case if the task is solvable, the planning

graph is extended until a fact containing all the goals; and starting from the top layer going down to the

initial layer a relaxed plan is collected. Moreover all this process only takes polynomial time.

The heuristic of FF is defined as:

h(S) = ∑
i=0,...,m−1

|Oi| (2)

Where each Oi is the set of actions selected in parallel at time step i such tat 〈O0, ..., Om−1〉 from a

relaxed solution. m is the first fact layer containing all goals.

This heuristic don’t assume facts to be achieved independently as other algorithms, and takes in ac-

count possible interactions that can occur.

name 〈pre add, del〉

opG1 = ({P}, {G1} ∅)

opG2 = ({P}, {G2} ∅)

opP = (∅, {P} ∅)
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Considering the short example 3.4.1 and starting by the initial state {∅}, the goal 〈{G1}, {G2}〉}

is achieved in fact layer two by selecting the actions opG1 and opG2 from action layer one. At layer

one is achieved the fact {P} after selecting the action opP at layer 0. Summarising the resulting plan is

〈{opP},{opG1,opG2}〉which has distance estimation of three. Other planners consider independent

facts, and this implies that the distance estimation is four since we consider two unities for achieving fact

G1 and two more unities for achieving G2.

As the returned solution is not always optimal, cause the optimal solutions can not be synthesised

efficiently, the FF applies some techniques to make GRAPHPLAN return solutions as short as possible.

As we are interested in obtain optimal solutions, but in some cases the FF is not optimal, we combine

this planner with the FD solver that returns optimal solutions (see section 5.4). We got in touch with

Jörg Hoffmann (the main developer of FF) that told us that FF is much faster than other solvers because

it doesn’t have to look for the optimal solution. Although in most of the experiments always return the

best solution.

The first technique applied to reduce the length of the solution is consider whenever is possible dummy

functions called NOOPs that propagates facts f from one layer to another. This functions has no other

effect than f and no other precondition than f . The GRAPHPLAN search tries to select the NOOPs first,

before other real actions that achieve f . If no NOOP is available we set the "easiest" real action that

satisfies the fact. The difficulty of an action is defined by:

difficulty(o) := ∑
p∈pre(o)

min{i | p is member of the fact layer at time step i} (3)

The second technique lies on linearize whenever is possible the actions. If some action just add a

precondition from another action we can consider both of them as a single one. This reduces the number

of layers and possible actions for the relaxed plan. There are few situations in which linearization is

applied since linearize a problem is NP-complete.
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3.4.2 Enforced Hill-climbing

In this section we introduce FF base search algorithm. Is a variation of the hill-climbing method because

combine local and systematic search.

In heuristic forward search the search space is the space of all reachable states with their heuristic

evaluation. From the current state S the algorithm uses breadth first search to obtain the nearest state S′

with better heuristics i.e h(S′) < h(S).

If in one iteration breadth first search for a better sate fails, the algorithm restart the search and tries to

solve the task by a complete heuristic search algorithm. This could happen whenever there exists some

dead end in the graph, even being solvable. As is PSPACE-hard decide whether a given planning task

has a dead end or not, the algorithm just starts to apply enforced hill-climbing until the goal is reached

or the algorithm fails.

Finally two heuristic techniques are introduced to prune the search space:

1. Helpful actions selects a set of promising successors to a search state. This imply to restrict the

action choice in any state by just select those actions that are relevant. For example consider a

problem of thousand of objects when the objective is to move two of them. This technique will

only consider the actions related to those objects, throwing away the irrelevant actions. Or it will

consider only those actions that are applicable and add at least one goal to the next time step.

2. Added goal deletion cuts out branches where some goal has apparently been achieved too early. In

such a case that from the current state S the algorithm founds a relaxed solution plan that contains

an action o that deletes one of the goals, we remove this state S from the search space, and we

don’t generate any successor. Also in a preprocessing phase the planner decides heuristically an

ordering for all the goals. These are then fed to enforced hill-climbing in an incremental manner.

And if during the search a state reaches a "future goal" the state is from the search space.
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4 RRT

In this section we briefly introduce the concept of Rapidly-exploring Random Tree [12] as an algorithm

designed to efficiently search in non-convex, high-dimensional spaces by randomly building a space-

filling tree. This method is specially designed to handle non-holonomic constraints or even kinodynam-

ics constrains, and a high degrees of freedom in an efficient manner.

The aim of this algorithm is to generate a continuous path in a given space, from an initial state to a

goal state, avoiding all the obstacles. Usually this space is the configuration space of the joints of the

robot, but for example on a kinodynamic planning problem the space is the tangent of the configuration

space.

Listing 5: RRT Algorithm

GENERATE_RRT(xinit, K, ∆t)

T.init(xinit);

for k=1 to K do

xrand ←− RANDOM_STATE();

xnear ←− NEAREST_NEIGHBOR(xrand, T);

u ←− SELECT_INPUT(xrand, xnear);

xnew ←− NEW_STATE(xnear, u, ∆t);

T.add_vertex(xnew);

T.add_edge(xnear, xnew, u);

Return T

The algorithm generates random samples from the search space, and tries to connect them with the

nearest state in the tree. If the connection is feasible a new state is added to tree. The tree grows until

there exists a connection between some of the sates the start and the goal.

Some of the advantages of this method is that:

• Tends to explore unexplored portions of the state space.

• Is probabilistically complete under very general conditions.

• Is simple which facilitates performance analysis.
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Also there are a lot of variations of this algorithm that include nice properties to the search. For

example RRT growth can be biased to increase the probability of sampling an specific area. The growth

factor (i.e max distance at the random states are generated) also affects the areas explored during the

search.

Figure 7: RRT tree expansion
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5 Sequential Quadratic Programming

This section synthesises the basic concepts of sequential quadratic programming, that is an optimisation

method used when computing the IK of the robot. Sequential Quadratic Programming (SQP)[16][7][9][6]

is one of the most successful methods for the numerical solution of constrained nonlinear optimization

problems. Is very powerful since it can handle any degree of non-linearity including non-linearity in the

constraints. But main disadvantage of this method is that it incorporates several derivatives, which likely

need to be worked analytically.

5.1 Basic definitions

The SQP is used to solve NLP problems such as:

min f (x)

over x ∈ Rn

s. t. h(x) = 0

g(x) ≤ 0

(4)

where f : Rn → R is the objective function, and the functions h : Rn → Rm, g : Rn → Rp describe

the equality and inequality constraints.

In a general case this problem is not a Quadratic Programming problem (QP), since the objective func-

tion needs to be quadratic and the constrains linear. But this optimization method iteratively models the

NLP into a QP sub-problem, and solves it to construct a new iterate QP. Finally the solution converges

to a local minimum x∗.

To construct it uses the Langrangian multipliers and the KKT conditions:

Definition 5.1. The Lagrangian functional L : Rn×m×p → R associated with the NLP is defined

as:

L(x, λ, µ) := f (x) + λh(x) + µg(x) (5)

where λ ∈ Rm, µ ∈ Rp are defined as the Lagrangian multipliers.

The ∇ f (x) denote the gradient of the function f in x, and the second derivative of the function (or

Hessian matrix) is denoted as H f (x).
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Definition 5.2. If x∗ ∈ Rn is a local minimum of the NLP problem then there exists Lagrange

multipliers λ∗ ∈ Rn, µ∗ ∈ R
p
+ such that:

∇L(x∗, λ∗, µ∗) = ∇ f (x∗) +∇h(x∗)λ∗ +∇g(x∗)µ∗ = 0 (6)

With µ∗gi(x∗) = 0 ∀i = 1, ..., p.

Then we say that (x∗, λ∗, µ∗) satisfy the first order necessary optimality or KKT conditions.

Definition 5.3. If x∗ ∈ Rn is a local minimum of the NLP and:

gi(x∗)µi = 0

µ∗i > 0 in the active constraints i.e, {i | gi(x∗) = 0}

This condition is called strict complementary slackness at x∗.

And the matrix G(x) is defined as:

G(x) := (∇h1(x), ...,∇hm(x),∇gi1(x), ..., giq(x) (7)

where i1, ..., iq are the coefficients of the active constraints.

Definition 5.4. Then we say that it satisfies the second order sufficient optimality conditions if:

1. The columns of G(x∗) are linearly independent.

2. Strict complementary slackness holds at x∗.

3. The Hessian of the Lagrangian with respect to x is positive definite on the null space of

G(x∗)T.

If (x∗, λ∗, µ∗) satisfy the first and second order sufficient optimality conditions, then x∗ is a

local minimum, and the Lagrangian multipliers are uniquely defined.

5.2 Construction of the problem

Since we have to transform the problem from Equation 5.1 into a QP problem, the more intuitive idea is

to apply Taylor expansion to linearize the objective function and the constraints. If we apply Taylor until

second order to the objective function and until first order for the constraints we obtain:

min f (xk) +∇ f (xk)(x− xk) +
1
2
(x− xk)T H f (xk)(x− xk)

over x ∈ Rn

s.t. h(xk) +∇h(xk)T · ((x− xk) = 0

g(xk) +∇g(xk)T · ((x− xk) ≤ 0

(8)
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But this kind of approximation doesn’t works, as there are plenty of examples showing that if we choose

a value close to the local minimum, the problem doesn’t converge.

However the first order and second order conditions imply that x∗ is a minimum of the problem.

min L(x, λ∗, µ∗)

over x ∈ Rn

s.t. h(x) = 0

g(x) ≤ 0

(9)

Where λ∗, µ∗ are the Lagrangian multipliers associated to the local minimum x∗.

The Lagrangian functor can be expanded using Taylor and we obtain the problem:

min ∇L(xk, λk, µk)Td(x) +
1
2

d(x)T HL(xk, λk, µk)d(x)

over d(x) = (x− xk) ∈ Rn

s.t. h(xk) +∇h(xk)Td(x) = 0

g(xk) +∇g(xk)Td(x) ≤ 0

(10)

There are two lemmas that demonstrate that if the problem has not inequality constraints or µk = 0

for all the inactive constraints, the Equation 5.2, Equation 5.2 are equivalent. The second condition is

satisfied by the KKT conditions explained in the previous section. This problem is quadratic and thus

must be solved with non-linear methods, but this sub-problem with one variable is much easier to tackle

than the parent problem.

Finally if our initial value (x0, λ0) is close enough to the minimum, the problem from Equation 5.2

can be solved iteratively by the Newton method since it converges quadratically to the solution (x∗, λ∗).

In this case the inequality constraints disappear, cause if the initial value is close enough ot the minimum,

the active constraints are the same.

The solution is obtained iterating over k:

xk+1 = xk + dx (11)

λk+1 = λk + dλ (12)

where (dx, dλ) represents the step or direction that push us to the minimum. This values are the solution
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and the the associated multiplier of the problem from Equation 5.2.

Although there is a drawback applying this method, and is that we have to calculate the Hessian of the

Lagrangian which could be hard to compute. In order to solve that we approximate the Hessian by the

follow equation.

∇L((xk+1, λk+1)−∇L((xk, λk+1) ≈ HL((xk+1, λk+1)(xk+1 − xk) (13)

5.3 IK as an optimization problem

Once that we have already exposed how the the method works and how is constructed, is the moment to

explain how the IK is transformed as an optimization problem.

In our case what we want to minimise is distance and orientation from the pose generated by a given

configuration to the desired pose. So the objective function is to apply forward kinematics over each

configuration and calculate the error in distance and orientation from the desired pose.

But also we want to avoid that the final configuration is in collision or that this solution is outside the

joint limits. This new conditions add new constraints to the problem and at the same time generates new

local minimum.

Since we are just interested in the global minimum, we need a hill climbing method that jumps to the

local minimum to find the global one. We apply a relaxation method [19] of the solution in which the

constraints corresponding to the collisions or the joint limits are added in the objective function, with

variables weights. This strategy turn the infeasible constraints into penalties driving the constraints vio-

lations to zero.

Each inequality constraint gi(x) ≤ 0 is added in the objective function as |gii(x)|+, where |x|+ =

max(x, 0). While the equality constraints hj(x) = 0 are added as |hj(x)|. In all the cases the penalties

are multiplied by some coefficient αj that is increased at each step (for example by a factor of 10), to

drive constraint violations to zero. Since all these functions are not regular, we can not apply the SQP

method.
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Figure 8: Relaxation of the constraints

To solve this issue we add new slack variables t to the objective function, and add new constraints:

0 ≤ t

gi(x) ≤ t

5.3.1 No-collisions constraint

In this subsection we detail how the collision constraints are defined [19].

Definition 5.5. We consider the distance between two sets A, B as:

dist(A, B) = inf{‖T‖|(T + A) ∩ B 6= ∅} (14)

where T express the smallest translation that puts the shapes in contact.

Definition 5.6. And the penetration distance between two sets A, B is defined as:

penetration(A, B) = inf{‖T‖|(T + A) ∩ B = ∅} (15)

Observe that the first one is zero if the shapes are in contact, and the second one is zero when the

shapes are not in contact.

From those distances we define the signed distance:

sd(A, B) = dist(A, B)− penetration(A, B) (16)

That is positive when the objects are not in contact, and negative otherwise.
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Figure 9: Signed distance

So in order to avoid collision we have to ensure that:

sd(Ai, Oj) ≥ dsa f e ∀i ∈ {1, .., Nlinks}, ∀i ∈ {1, .., Nobstacles} (17)

Since the previous constraints are not linear if we consider the l1 distance we have to linearize to add in

to the QP problem. This linearization is done with respect the closest points of both objects (pA, pB), the

direction of the minimum translation n̂ and the poses of the objects in the world (Fw
A (x), (Fw

B (x)).

sdAB(x) ≈ n̂ · (Fw
A (x)pA − Fw

B (x)pw) (18)
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6 Interface Implementation

This section describes the implementation of the whole project step by step. First, we will explain the

implementation of the basic motions for the robot in C++. The second subsection explains how this

actions are modelled in PDDL, according to the geometric information required by the actions in C++.

The third section defines the creation of a simulator to visualise the experiments. The fourth section

explains the development of the interface that stores the current geometric information of the problem,

translates it to PDDL, and executes the actions of the solution. The last section explains the inference

layer, used to update the information of the task planning layer once the motion planner can not execute

the action. Furthermore in each section, we describe all the successive improvements developed to

improve robustness and efficiency.

6.1 Creating a library of local actions in C++

In this subsection we will explain the computation of the basic motions for the robot. This section is a

prerequisite of the project, because we need a set of basic motions for the robot to test our experiments.

Since there are infinite planning problems as simple as bring me an object and as complex as build a

mock-up, the list of actions is infinite. We can define the actions as basic motions such as move to a

position, or as a combination of motions such as iron. The idea behind the project is to have a huge

list of actions for the robot and try to solve real-life tasks autonomously. For our experiments we have

developed the actions pick, move arm, place and move the base.

6.1.1 Pick

The action pick allows the robot to take an object from the environment with his hand or gripper. His

implementation is divided in three steps:

1. Generate grasping candidates

2. Compute the Inverse Kinematics of the robot using the grasping candidates

3. Plan a free collision trajectory from the current configuration to the desired one.

The grasping candidates are the poses poses in which the hand/gripper is almost in contact with the

object, pointing forward to the object. The resultant poses will depend on the shape and the size of the

object. We have calculated them for a cylinder, a rectangle and a sphere. In each case we translate the

frame of the object (in the centre of it) to a new frame in the border by parametrise the shape, and rotating

the new frame with the x-axis pointing inside. In the rectangle the frame is translated to each one of the

faces (excepting the down face) by half of the width, length or height. For each face a different rotation



30 High level task planning with inference for the TIAGo robot

is implemented. We use cylindrical coordinates (see Equation 19) for the cylinder case and spherical

coordinates (see Equation 20) for the sphere case. For the cylinder case is just necessary one rotation in

z of α + π radians, where α is the angle from Equation 19. While for the sphere case we have to rotate

in x and z. To avoid calculations, we use the symmetry of the sphere to generate the hemisphere negative

candidates.

φ(α, t) = (r · cos(α), r · sin(α), h · t) where, r (radius/2) and h (height/2) are constants. (19)

ψ(θ, φ) = (r sin(θ) cos(φ), r sin(θ) sin(φ), r cos(θ)) where, r (radius/2) is constant. (20)

(a) Cube (b) Cylinder

(c) Sphere

Figure 10: Grasp candidates generation

The second step is to calculate the inverse Kinematics of the robot, to obtain a valid joint configuration

for the robot. The problem is solved as an optimisation problem where all the joint limits are defined

as constraints. At the beginning the IK was only calculated for the upper body, meaning that the robot

had to be placed in a convenient position to pick the object. After some improvements we included the

collision detection in the IK, to detect when an object blocks another. In the last version the IK also

returns a solution for the base. This allows us to grasp objects from hard situations such as a shelf. In

both improvements the IK still an optimisation problem in which the obstacles are added as inequality

constraints. Adding obstacles generate local minimum that are not valid solutions, but we solve it by

applying the method described in the SQP section. The floating planar base is added to the model of the

robot as two prismatic joints and a rotational joint, without joint limits.
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(a) Pose 1 (b) Pose 2 (c) Pose 3 (d) Pose 4

Figure 11: Inverse Kinematics for TIAGo

The last step is to find a valid joint trajectory in the C-space avoiding collisions from the current con-

figuration to the solution of the IK. We use the RRT implemented in the OMPL that generates a set of

random nodes free from collision in the C-space, and link them creating a path from the start to the goal.

We use this method because is one of the fastest ones, and is probabilistic complete. The global planners

methods used to plan a path for the base offer a poor result with so many degrees of freedom. The only

drawback is that it gives long trajectories waisting a lot of energy. To solve this problem we optimise the

given trajectory in the joint space minimising the energy.

(a) Case 1 (b) Case 2 (c) Case 3

Figure 12: RRT Trajectory Generation: Red trajectory obtained from the random tree node gen-

eration. Orange trajectory is optimised minimising the energy from the red trajec-

tory
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In simulation the trajectory from the RRT is interpolated using a Catmul-Rom interpolator [21] to

execute a smooth and continuous trajectory, cause in the solution the points are not equidistant.

To avoid check collisions in the IK and the RRT between the gripper tips and the grasping object we

add the grasping object to a blacklist.

We have to extract the best solution for all the grasping candidates. If the IK and the RRT found a

solution for some candidate the solution is executed, otherwise the best solution is computed. In case

that the IK returns collision for all the candidates, we consider the best solution as the one with less

"new objects in contact" that doesn’t collide with the object we want to grasp or with the furniture. The

"new objects in contact" are those objects that are not blocking another objects at the current moment.

The choose of the best solution determines the direction in which the robot pushes away objects when

grasping an object hampered by others. Applying the last condition we enforce the robot to keep pushing

away objects from the same side.

Finally once it executes the solution the arm always return to a fixed configuration with the object on

his hand. This configuration tries to expose the minimum possible the arm to avoid collisions when mov-

ing the base. Although this configuration is not always the same, cause sometimes the final configuration

is in collision and the RRT could not reach it. In this case it takes another configuration from a set of

configurations.

Figure 13: CatmulRom trajectory used to interpolate the points of the RRT trajectory



High level task planning with inference for the TIAGo robot 33

If the IK returns a solution for the base, we have to calculate a plan for the base and move it to

the desired position. The action pick becomes a combination of the actions pick and move base. The

algorithm first tries to calculate if there exists a solution with the IK without base, and if no solution calls

the IK with base. Once the base moves to the desired position, it calls again the IK without base due to

small errors in the real base pose produced by the discretization of the grid map. It could seem that the

improvement of the IK with base is inefficient cause we to calculate several times the inverse kinematics

of the robot. But before this implementation, we calculated random positions for the base until reach a

valid one, which was much more slower. Moreover allows to grasp objects from inside of a shelf which

is a really hard situation.

6.1.2 Place

The action of placing an object is quite similar to the one of picking an object. The main difference is

that we don’t have to calculate the grasping candidates, or search for the best solution. We first compute

the IK to the placing pose, and next we calculate the trajectory without collisions. Finally we end at a

fixed up position. At the end we reset the blacklist to detect possible future collisions with the object we

have placed.

6.1.3 Move Arm

The action to move the arm to a new position is quite similar to the one of pick or place. In this case the

desired pose is respect the base link, so we have transform it to the global frame by composing it with the

transformation of the base. The resultant pose is passed to the IK without base, and the RRT calculates a

valid trajectory without collisions.

6.1.4 Move Base

The action move base changes the current position and orientation of the robot in the world, calculating

a path free from obstacles from the current position to the desired one. The action has been implemented

for the TIAGo robot and for the REEM-C robot (humanoid), so both algorithms will be described. More-

over we will explain and compare the two different algorithms used to create a plan for the TIAGo robot.

The first approach implemented on TIAGo, uses the navigation function of the navfn package provided

by ROS [11]. This method receives a grid as a map, where the user determines the size, the discretiza-

tion, and the cells representing obstacles. The planner creates a potential field from the start point (high

potential value) to the goal (lowest potential value), associating a value to each cell. The graph search

algorithm Dijkstraa or A*, depending on the choice of the user, calculates the optimal path. Two different
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kind of controllers has been implemented to follow the resultant trajectory and output the velocity of the

wheels [10]. The first one is a PID controller that interpolates from point to point of the trajectory [5],

and the second one is a Look Ahead controller [4] that controls the curvature. In both cases the linear

velocity is maintained, and what we do is control the direction in which we are driving. Comparing

both controllers, the Look ahead offers smoother trajectories and is easy to tune, but it goes far from the

trajectory when there are sharp curves. The PID trajectory is closer from the trajectory of the plan but

sometimes appears sharp edges. As both controllers only control position; a PID has been implemented

to orientate first with trajectory and at the goal with the desired orientation. This orientation PID min-

imise the angle error, by extracting the minimum angle distance.

(a) Potential field using a PID controller (b) Trajectory obtained using a PID controller

(c) Potential field using a Look ahead con-

troller

(d) Trajectory obtained using a Look ahead

controller

Figure 14: Navfn implementation
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The second method implemented on TIAGo uses the package SBPL [13] [14] [22] from ROS. This

method uses a set of primitives which represent short, kinematically feasible motions which form the

basis of movements that can be performed by the robot. The planner combines this motion primitives

to generate a path from the start position to the goal position. The problem could be seen as a graph

where the three is expanded by linking the primitives. The final result is a trajectory in R2 × SO(2) (i.e

(x, y, θ)) free from collisions.

Figure 15: SBPL

To generate the motion primitives as feasible trajectories of the robot, we calculate them by opti-

misation, giving the start and goal position and adding the model of the robot and his constraints as

optimisation constraints. For each orientation we generate a new set of primitives, cause we won’t finish

at the same position if we are moving forward at 0o or at 180o. The package allows the user to choose

a circle discretization, and each primitive should start and end at some of the discretized angles. More

primitives generate better and smooth trajectories but at the same time spend more time searching for a

plan. Furthermore we give a specific weight to each primitive, giving higher priority to move forward or

backward than turning. Different weight will generate different kind of paths.

Figure 16: SBPL resultant trajectories

The planner uses ARA*, anytime D* or incremental A* as graph search algorithm to find the opti-

mal path. All those methods are derived from A*, and the main advantage they offer is that they keep

the information from previous searches, and in every iterative search they only need to explore the new

states. Moreover in all those planners there is a parameter that relaxes the condition on the graph search
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finding good-enough solution in less time and using less memory. This parameter of "good enough" is

often denoted as epsilon of the best solution, and return a solution that is no worse than epsilon times the

cost of the optimal solution. Figure shows the state expansion of Dijkstraa, A* and weighted A* (i.e A*

with epsilon > 0).

(a) Dijkstraa graph search (b) A* graph search (c) Weighted A*

Figure 17: Planner comparison

As the output trajectory includes the orientation, is not necessary to develop any kind of controller.

We add the previous orientation PID controller once the whole trajectory is executed, due to the error

of the desired orientation and the discretized one. That planner was the one used by the Stanford Team,

when they won in the 2007 the DARPA Urban Challenge.

(a) 22,5o primitives (b) 180o primitives

(c) 337,5o primitives (d) 45o primitives

Figure 18: Generation of the primitives
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Comparing both methods, SBPL offers better results in terms of trajectory and control. But the Navfn

method is more efficient in terms of time at the first plans. This is a generalisation because both methods

have parameters that can be tuned, and the resultant trajectories or the efficiency of both depend on those

parameters.

To implement it on the REM-C robot, we have used the footstep_planner package from ROS. The

package is an extension of SBPL, since it uses it to calculate valid trajectories for the humanoid. In

this case the motion primitives are real steps for the robot, and the planner combine them to extract a

list of steps. Each step has a position, orientation and a leg associated. A zero moment point trajectory

is calculated to follow the trajectory from step to step, and from the inverse dynamics of the robot we

extract the trajectory of the joints of the legs. As the torso has to follow the orientation of the legs, a

quaternion interpolation is used to interpolate between the initial and final orientations. The resultant

trajectory allows to robot to walk over some obstacles as for example stones.

Figure 19: Footstep planner implementation for the humanoid

In all the implementations the grid map is represented as a matrix or a vector. To project all the objects

from the environment onto the grid map, we project the objects onto the XY plane and we check which

cells contain an obstacle. To avoid collisions with the base or the torso we apply a dilation to the grid

map by convolute a mask of a desired size.
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6.2 Modelling the actions in the PDDL language

In the last section we have created a "library" of basic motions for the robot. To combine task planning

and motion planning we need to translate the geometric information to the task planner that checks the

feasibility of the motions and creates a plan. This step is done by the PDDL that models the motions as

geometric prerequisites and effects, in order that the task planner check the feasibility. Is necessary to

model the actions according to the problem we are gonna solve. As our purpose is to create an interface

capable to solve the maximum variety of planning problems we have model it including all the possible

conditions. This section explains in detail how the actions have been modelled in PDDL.

First we start describing the predicates and the type of objects, which define the kind of problems we

are gonna solve. Since we have computed the actions move base, move arm, pick and place we are ca-

pable to solve planning problems that consider moving objects from place. Solve other kind problems as

for example drive a car, do the laundry, etc. requires extra actions as press the accelerator and/or requires

a special modelling as for example is_dirt? cloth. Our problems has to be as real and general as possible

so we have to include blocking situations. If we want to solve problems in which objects are hide within

a drawer we require to create the motion open/close a drawer and model it on PDDL.

Types of objects:

• object - Are the objects from the environment.

• arm - Is the arm of the robot. Considering two arms allows us to grasp and place objects with both

arms, although TIAGo has a single arm.

• base_pos - Are the base poses necessary to move the base

• arm_pos - Are arm poses necessary to move the arm, grasp or place an object. The positions of

the grasping objects are represented as arm poses.

List of predicates:

• (base_path ?x ?y - base_pos) - True when exists a path between two base positions.

• (arm_at ?x - arm_pos) - Stores the current arm position of the arm. True when the arm is at the

given position. As we have a single arm this predicate has only one parameter, otherwise we have

to consider the arm and the arm_pos.

• (base_at ?x - base_pos) - Stores the current base position of the robot. True when the base is at

the given position.
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• (free ?x - arm) - True when the gripper do not have any object.

• (attached_to ?x - object ?y) - True when one object lies above another object. If cube_1 is on

table_1 attached_to cube_1 table_1 is true.

• (base_close_to ?x - object ?y - base_pos) - True when the given base position is close to the given

object. Is used to move the robot close to the table when we want to grasp an object from the table.

• (obj_at ?x - object ?y - arm_pos) - Stores the position of the object. True when the given object is

at the given position. Two objects could be at the same arm position but lying on different objects,

i.e (attached_to obj_1 ref) must be different from (attached_to obj_2 ref).

• (free_pos ?x - object ?y - arm_pos) - True when the given position is free and doesn’t contain an

object. A given position could be free for example for table_1 but not free for table_2, i.e (free_pos

table_1 pos) must be different from (free_pos table_2 pos).

• (graspable ?x - object ) - True when the object is graspable. Not all the objects are graspable, as

for example the tables.

• (block ?x ?y - object ?z ?w - arm_pos) - True when object one blocks object two in the given

positions for object one and two. This predicate will be never set to false in the effects of some

action. If we want to escape from a blocking situation, we have to move object two from his

current position, cause the predicate is associated to the positions of the objects.

Now let’s proceed to model the actions from the last section using the previous object types and

predicates.
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6.2.1 Pick

We start explaining the action pick, that is coded in PDDL as follows:

Listing 6: Pick action

( : a c t i o n p i c k

: p a r a m e t e r s ( ? g r a s p _ o b j ? r e f _ o b j − o b j e c t ? t o o l − arm

? g r a s p _ p o s ? c u r r _ a r m _ p o s − arm_pos ? c u r r _ b a s e _ p o s − b a s e _ p o s )

: p r e c o n d i t i o n ( and ( g r a s p a b l e ? g r a s p _ o b j ) ( a rm_a t ? c u r r _ a r m _ p o s )

( b a s e _ a t ? c u r r _ b a s e _ p o s ) ( f r e e ? t o o l )

( a t t a c h e d _ t o ? g r a s p _ o b j ? r e f _ o b j )

( b a s e _ c l o s e _ t o ? r e f _ o b j ? c u r r _ b a s e _ p o s )

( o b j _ a t ? g r a s p _ o b j ? g r a s p _ p o s )

( f o r a l l ( ? o b j − o b j e c t ? pos − arm_pos )

( imply ( and ( a t t a c h e d _ t o ? o b j ? r e f _ o b j ) ( o b j _ a t ? o b j ? pos ) )

( n o t ( b l o c k ? o b j ? g r a s p _ o b j ? pos ? g r a s p _ p o s ) ) ) ) )

: e f f e c t ( and ( a t t a c h e d _ t o ? g r a s p _ o b j ? t o o l )

( n o t ( a rm_a t ? c u r r _ a r m _ p o s ) ) ( a rm_a t up_pos )

( n o t ( o b j _ a t ? g r a s p _ o b j ? g r a s p _ p o s ) ) ( n o t ( f r e e ? t o o l ) )

( n o t ( a t t a c h e d _ t o ? g r a s p _ o b j ? r e f _ o b j ) ) )

)

The action receives as parameters:

• 2 objects

• 1 arm

• 2 arm poses

• 1 base pose

The solver generates all the possible combinations with the objects of the problem, checks which

combinations are feasible, and selects the best solution. Using the preconditions we check that one of the

objects correspond to the object where is located the grasping object (attached_to ?grasp_obj ?ref_obj).

The arm poses correspond to the position of the object (obj_at ?grasp_obj ?grasp_pos) and the current

arm position (arm_at ?curr_arm_pos). The base pose correspond to the current base position (base_at

?curr_base_pos). Furthermore, to pick an object is mandatory that it satisfies the geometric conditions

of the motion:
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• The object must be graspable. We can not pick a table or a shelf =⇒ (graspable ?grasp_obj)

• The gripper could not carry any object. =⇒ (free ?tool)

• The robot must be close to the reference object where is located. =⇒ (base_close_to ?ref_obj

?curr_base_pos) + (base_at ?curr_base_pos)

• No other object above the table could block the object we want to grasp. =⇒ (forall (?obj -

object ?pos - arm_pos) (imply (and (attached_to ?obj ?ref_obj) (obj_at ?obj ?pos)) (not (block

?obj ?grasp_obj ?pos ?grasp_pos))))

We use the tools imply and for of the PDDL language to check it for every object above the table in

his current positions.

The solver selects the action pick, but also the grasping objects, if it satisfies the conditions and is in-

volved in the solution. The rest of parameters for this action are fixed once we choose the grasping object.

In a first implementation we reset the blocking predicate in the effects and we didn’t consider the

current positions of the objects. But the solver consumed a lot of time. The solution is to maintain the

blocking situations, but just check it in the current positions of the objects. We considered to add the

current base position to the blocking predicate, because once we move to another position the locks are

not the same. But when adding this parameter the solver enters in a loop cause the optimal solution is to

move the base and pick the object.

The effects after applying the action pick are:

• The object is attached to the gripper. =⇒ (not (attached_to ?grasp_obj ?ref_obj)) + (attached_to

?grasp_obj ?tool)

• The gripper has an object. =⇒ (not (free ?tool))

• The arm ends up at a fixed up position. =⇒ (not (arm_at ?curr_arm_pos)) + (arm_at up_pos)

Using the IK with base, the predicate base_close_to is not more necessary. But we have to include the

base_path predicate between the current pose and the grasping pose as a precondition; and update the

base position in the effects. The final base pose is considered as a PDDL constant since is created in the

motion planner.
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6.2.2 Place

We proceed explaining the action place modelled in PDDL as follows:

Listing 7: Place action

( : a c t i o n p l a c e

: p a r a m e t e r s ( ? g r a s p _ o b j ? r e f _ o b j − o b j e c t ? t o o l − arm

? p l a c e _ p o s ? c u r r _ a r m _ p o s − arm_pos ? c u r r _ b a s e _ p o s − b a s e _ p o s )

: p r e c o n d i t i o n ( and ( a rm_a t ? c u r r _ a r m _ p o s ) ( b a s e _ a t ? c u r r _ b a s e _ p o s )

( n o t ( f r e e ? t o o l ) ) ( a t t a c h e d _ t o ? g r a s p _ o b j ? t o o l )

( b a s e _ c l o s e _ t o ? r e f _ o b j ? c u r r _ b a s e _ p o s )

( f r e e _ p o s ? r e f _ o b j ? p l a c e _ p o s )

( f o r a l l ( ? o b j − o b j e c t ? pos − arm_pos )

( imply ( and ( a t t a c h e d _ t o ? o b j ? r e f _ o b j ) ( o b j _ a t ? o b j ? pos ) )

( and ( n o t ( b l o c k ? g r a s p _ o b j ? o b j ? p l a c e _ p o s ? pos ) )

( n o t ( b l o c k ? o b j ? g r a s p _ o b j ? pos ? p l a c e _ p o s ) ) ) ) ) )

: e f f e c t ( and ( f r e e ? t o o l ) ( o b j _ a t ? g r a s p _ o b j ? p l a c e _ p o s )

( n o t ( a rm_a t ? c u r r _ a r m _ p o s ) ) ( a rm_a t up_pos )

( a t t a c h e d _ t o ? g r a s p _ o b j ? r e f _ o b j )

( n o t ( f r e e _ p o s ? r e f _ o b j ? p l a c e _ p o s ) )

( n o t ( a t t a c h e d _ t o ? g r a s p _ o b j ? t o o l ) ) )

)

This action is modelled quite similar to the pick action. Some of his preconditions and effects are

think to work with harmony with the previous action.

The action receives the following parameters:

• 2 objects

• 1 arm

• 2 arm poses

• 1 base pose
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In this case the preconditions check that one of the objects is the object we are grasping (attached_to

?grasp_obj ?tool). One of the arm poses is the current arm pose (arm_at ?curr_arm_pos). The base

pose is the current base pose (base_at ?curr_base_pos). The rest of parameters are chosen by the solver

and correspond to the reference object where we place our object, the arm position corresponding to the

place position and the arm.

The geometric conditions necessary to apply the motion are:

• The gripper has an object. =⇒ (not (free ?tool))

• The robot must be close to the reference object where we want to place the object. =⇒ (base_close_to

?ref_obj ?curr_base_pos) + (base_at ?curr_base_pos)

• The placing position doesn’t contain any object =⇒ (free_pos ?ref_obj ?place_pos)

• We can not place an object if there is another one blocking it, or if the placing object blocks

another one in the given placing position. =⇒ (forall (?obj - object ?pos - arm_pos) (imply (and

(attached_to ?obj ?ref_obj) (obj_at ?obj ?pos)) (and (not (block ?grasp_obj ?obj ?place_pos ?pos))

(not (block ?obj ?grasp_obj ?pos ?place_pos)))))

As in the pick action we didn’t set as free the position previously occupied by the object, once an

object occupies a position is not free anymore. So the place position must be always a new position.

Otherwise we realised that when several objects are blocking another, the solver moves one of them to a

new position, but uses the position of the first to place the second one creating a new blocking situation.

Although is necessary to generate a lot of poses to solve the problem, and is necessary to create two

times the same pose with different names if we want to interchange objects from position.

Check that in the given place pose the object won’t block any other is redundant cause the place posi-

tion has to be new. The inverse condition checks that there is enough space to place the object. Moving

the objects blocking the place position let the place pose "free" to place the object.

The effects after applying the action are:

• The object is attached to the reference object. =⇒ (not (attached_to ?grasp_obj ?tool)) + (at-

tached_to ?grasp_obj ?ref_obj)

• The arm end up at a fixed up position. =⇒ (not (arm_at ?curr_arm_pos)) + (arm_at up_pos)

• The object is located at the place position. =⇒ (obj_at ?grasp_obj ?place_pos)
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• The place position is not free anymore =⇒ (not (free_pos ?ref_obj ?place_pos))

• The arm dosn’t carry any object =⇒ (free ?tool)

Using the IK with base we don’t need the base_close precondition, but at the same time we have to

update the position for the base. Although when using the IK with base the task planner doesn’t have

any geometric information of the final base position. This causes that for the task planner is the same to

place an object close to his position than far from it. To solve this problem an option is to implement two

different kind place actions, one with the fixed IK and another one with the base IK with a higher cost.

But this increases the computational time and FF doesn’t allow cost in the functions.

6.2.3 Move Base

The action move base is computed as follows in PDDL:

Listing 8: Move Base action

( : a c t i o n move_base

: p a r a m e t e r s ( ? c u r r _ p o s ? n e x t _ p o s − b a s e _ p o s )

: p r e c o n d i t i o n ( and ( b a s e _ p a t h ? c u r r _ p o s ? n e x t _ p o s )

( b a s e _ a t ? c u r r _ p o s ) )

: e f f e c t ( and ( b a s e _ a t ? n e x t _ p o s ) ( n o t ( b a s e _ a t ? c u r r _ p o s ) ) )

)

In the preconditions we check that:

• The parameter curr_pos is the current base position. =⇒ (base_at ?curr_pos)

• There exists a path between the current pose and the desired pose. =⇒ (base_path ?curr_pos

?next_pos)

In the effects we update the position of the base. =⇒ (base_at ?next_pos) + (not (base_at ?curr_pos))
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6.2.4 Move Arm

The action move arm is computed as follows in PDDL:

Listing 9: Move Arm action

( : a c t i o n move_arm

: p a r a m e t e r s ( ? c u r r _ p o s ? n e x t _ p o s − arm_pos )

: p r e c o n d i t i o n ( and ( a rm_a t ? c u r r _ p o s ) )

: e f f e c t ( and ( a rm_a t ? n e x t _ p o s ) ( n o t ( a rm_a t ? c u r r _ p o s ) ) )

)

We check that the parameter curr_pos is the current pose of the arm (arm_at ?curr_pos). And we

update the arm position once executed (arm_at ?next_pos + (not (arm_at ?curr_pos)).

6.3 Simulating an environment with collision objects

To visualise our experiments we have created a Kinematic simulator using the markers of RVIZ. Com-

monly the simulations are run with Gazebo but since we ignore the physics and perception of the robot

we have created our own simulator.

Figure 20: Environment with collision objects
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The first step is to create the objects and associate it to collision objects. We have created two different

classes in C++ one for the robot objects and one for the environment objects, that inherit from a base

class, and store the basic properties of the objects and create the collision objects. To create the collision

objects we use Bullet [1] or FCL [17][2] that are libraries in C++ that compute collisions between ob-

jects. When computing the IK or RRT the program calls to this collision objects to check if there exists

solution. Also we have created a method that visualises the collision objects as markers in RVIZ.

Since we want to create many planning problems to test our framework, we create a parser in XML

that reads the objects and his properties from a file, and create them as C++ objects. The objects are

defined as it follows in the XML:

Listing 10: XML object description

< o b j e c t >

<name name=" c y l i n d e r _ o n _ t a b l e −1"/>

< c o l o r r = " 1 . 0 " g = " 0 . 1 8 8 2 " b = "0 .1 882" / >

< s i z e r a d i u s = " 0 . 0 5 " h e i g h t = " 0 . 2 " / >

< p o s i t i o n x ="0" y ="0" z = " 0 . 1 " / >

< o r i e n t a t i o n x = " 0 . 0 " y = " 0 . 0 " z = " 0 . 0 " w= " 1 . 0 " / >

< r e f e r e n c e r e f =" t a b l e −1"/>

< shape shape =" c y l i n d e r " / >

< g r a s p a b l e g r a s p a b l e =" t r u e " / >

</ o b j e c t >

Although there is no perception in this step, all the properties described and stored in the C++ object

could be extracted using a laser or a camera. To make real environments we have created synthetic

objects as a shelf or a table combining several collision objects.

6.3.1 Updating the environment

As our purpose is to interact with the objects of the environment we need to update the position of those

objects. To simplify it we have created a tree structure containing all the objects and his positions, or-

dered by the reference objects. If the cube is on the table the reference of cube is table, and the reference

of table is world since it is on the world. Structuring in this way has many advantages. First if we

reference the object to the gripper of the robot, it automatically updates his position when we move the

gripper. Second allows to compute the positions in the local frame. Is much more intuitive to set the goal

at 10cm at the left of the center of the table than to define it in the global frame. Otherwise the IK and
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RVIZ use global coordinates. As we have defined our structure obtain the global coordinate is as simple

as compose the homogeneous transformations from the local coordinates.

In all our problems the first step is be to parse the XML of the environment creating the collision

objects, and create a tree with all the objects to visualise the environment.

6.4 Creating a C++ interface that relates task planning with motion planning

This section is the most important of the project since it explains how the task planning layer communi-

cates with the motion planning layer and vice versa to find a solution.

The task planner layer generates a plan from the current state using the computed actions. This step

is done by the PDDL and the solver. While the motion planning executes the actions in simulation. In

this way of communication the task planner creates a plan and the motion planner execute it step by

step. But even with the proper predicates usually doesn’t exists a solution or the motion plan could not

execute it. Maybe because in the PDDL there are not enough positions, or because the current state in the

PDDL doesn’t show all the information from the environment. This usually happens in the real problems

in which a priori we don’t know if an object is blocking another. Is necessary that the motion planner

communicates with the task planner and we call it inference.

But first is necessary to crate a structure in C++ that contains the geometric information of the envi-

ronment, that updates it when necessary, and parse it to a PDDL in order to call the solver. In a first

attempt (the Hanoi Problem) we created a class containing all the attributes with a method set and get

for all of them. It worked for this problem, but since we have to generate a new class for every different

problem we discard it. The second approach was to create one class for the PDDL objects, one for the

PDDL predicates and other for the PDDL problem. It worked but it was complex to understand and only

allowed to generate predicates with one or two parameters. Finally we create a single class problem that

contains all the objects and predicates. His main functionality is to update the problem (changing some

predicates or adding/deleting objects) and print the true predicates in a PDDL problem file format.

We also have implemented a ROS service that receives the generated problem file and the parsed do-

main file, and returns the solution. This service creates two temporary files and calls the executable of

the solver. The solution is parsed in a string and send it back to the main program, that parse it and tries

to execute the actions by order. Since FD is slower in comparison with FF specially when doesn’t exists

solution, but FF is not optimal, in some experiments we call the service using FF until a solution is found
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when we call again the service using FD to obtain the optimal solution. This step produces a higher cost

in most of the cases but we ensure that the obtained solution is optimal.

To generate the different experiments we only modify the environments and the goal. The goal is in

fact a PDDL problem object that remains constant.

Figure 21: Chart class in C++
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6.4.1 Inference

This subsection explains how the motion planner updates the geometric information when it could not

execute the action, or the task planner doesn’t found a solution.

If the solver doesn’t found a solution is because the problem is unsolvable, or because there are not

enough positions. For example if we want to move a set of objects to an empty table is necessary to

create as many poses as objects we want to move and a pose for the base close to the empty table. As

our objective is that the robot a priori just have the basic information, the goal, and it has to discover all

by itself; by default this poses are not generated. To solve this issue, we generate random base poses and

random arm poses for each object referenced in the world. The base poses are calculated close to the

objects, and the arm poses correspond to place positions in the upper surface of the object. If we have two

tables with three cylinders at each execution without solution we generate one random base pose for each

table and one placing pose fir each table. All the random poses are generated using Gaussians centred

in the object. Moreover, the base poses must be in a free cell of the grid map, while the arm positions

must be inside the limits of the object and free from collision. To generate poses free from collision we

generate a random cube with a fixed size in the given pose and check that there is no collision. Generate

poses until the problem found a solution spends a lot of time in some cases during the task planning and

generate unnecessary objects, but is a price we have to pay if we want the robot to work autonomously.

The second problem appears when some motion fails because there exists a mismatch between the real

state and the current state of the PDDL. In such case we have to update some precondition. By default

all the base_path predicates between positions are set to true, and the unknown predicates as the block

predicates are set to false.

Table 1 summarises which predicate we update if the action pick fails

If the RRT doesn’t found solution we could not reach the object and we consider that the problem is

not solvable. As the IK always consider a valid position without collision for all the joints if the RRT fails

is because the solution is very complex and we didn’t give enough time, which never happens. Usually

fails when it tries to move the arm back to the up position, but we have generated a set of different up

positions to fix it.
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Table 1: Pick action fails

Step where if fails Predicate of the PDDL to update

Couldn’t compute IK (base_close_to) = false for the current base

pose and we generate a new base pose

IK collides with the reference object (base_close_to) = false for the current base

pose and we generate a new base pose

IK collides with an object (not the reference) (block block_obj grasp_obj ...) = true and we

generate a new place pose for each blocking

object

No solution for the RRT In this case the problem could not be solved

There is a special case in which an object blocks another one and is blocked by the other. This hap-

pens sometimes when there are a lot of objects above the table, because the robot doesn’t grasp from the

same side due to the grasping candidates. If such a case appears, setting the block condition the problem

doesn’t found solution, cause to move object one needs to move object two but to move object two needs

to move object one. In this situation we move the base setting base_close_to as false.

Table 2 summarises which predicate we update if the action place fails:

Table 2: Place action fails

Step where if fails Predicate of the PDDL to update

Couldn’t compute IK and count < 10 Search for a new place position, and count ++

Couldn’t compute IK and count >= 10 (base_close_to) = false for the current base

pose and we generate a new base pose

IK collides with the reference object (base_close_to) = false for the current base

pose and we generate a new base pose

IK collides with an object (not the reference) (block block_obj grasp_obj ...) = true and we

generate a new place pose for each blocking

object

No solution for the RRT In this case the problem could not be solved
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The counter is used to search new place positions without moving the base. The action place tries to

place the object in the new positions without calling the solver, because we don’t care about the exact

position where it leaves the object. We can not set this counter as infinite because as the given base

positions are random, maybe the current position is to far from the reference object to find IK.

If the action move arm fails is due to the RRT or because we are not giving it a valid position. In both

cases there is no solution.

The action move base fails because the base planner didn’t found a solution from the current pose to

the desired one. We set base_path as false and generate a new base position. Sometimes we are so close

to a invalid position that the planner detects the start as an invalid position. In this case we "magically"

translate the robot to the attached free square in the grid.

We also generate new base positions or place positions when we update the predicates. If the base_close

is set to false we have to generate a new base pose close to the obstacle to move there. And if several

objects are blocking another one we need to move them and place them on new place positions.

The IK with base introduce a lot of changes to the inference. Since the predicates base_close_to and

base_path doesn’t exists those updates disappear. If the action move base fails we consider that there

is no solution. If the action pick and place fails cause the IK didn’t found any solution means that we

can’t grasp or place the object so the problem is unsolvable. Finally when the problem founds a double

blocking we clear all the blocking conditions and call again the solver. Is like restarting the problem

from the current state.
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7 Simulation and generated examples

This section presents different planning problems solved with our algorithm. In all the problems the

robot has to move objects from position. We used the last implementation of our algorithm that uses

SBPL as a base planner and computes the IK with base.

All experiments were carried out on Intel Core i7-2.93GHz machine with 8GB of RAM. In each

experiment the results exhibit the accumulated execution times when running the solver (i.e the task

planner layer) and the total execution time. We also show the total time moving the base, considering the

plan and the execution time with the real speed of the robot. Moreover, we consider the total execution

times when executing the RRT trajectories, considering feasible joint velocities. Excepting the plan for

the base, the execution times of the RRT trajectories and the base should be zero if we want to analyse

the total time spend by the motion layer. But since we want to visualise it as in the real robot we have to

take those times in account since they are considerably large.

7.1 Emptying a library

In the first problem the environment simulates a library with 12 shelf’s and a table in the centre of the

scenario. In this experiment the robot has to pick 11 cubes distributed in the different shelf’s and has to

place all of them in the table.

At the beginning the PDDL contain the objects of the environment, the position of the objects, the arm

of the robot, and the initial position for the base and the arm. As initial conditions we consider where the

objects and the robot is located, and also that the gripper.
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(a) Initial conditions

(b) Goal conditions

The following code describes it in PDDL:

(:objects cube10_on_table-1 - object cube10_on_table-1_pos - arm_pos

cube1_on_table-1 - object cube1_on_table-1_pos - arm_pos

cube2_on_table-1 - object cube2_on_table-1_pos - arm_pos

cube3_on_table-1 - object cube3_on_table-1_pos - arm_pos

cube4_on_table-1 - object cube4_on_table-1_pos - arm_pos

cube5_on_table-1 - object cube5_on_table-1_pos - arm_pos

cube6_on_table-1 - object cube6_on_table-1_pos - arm_pos

cube7_on_table-1 - object cube7_on_table-1_pos - arm_pos

cube8_on_table-1 - object cube8_on_table-1_pos - arm_pos

cube9_on_table-1 - object cube9_on_table-1_pos - arm_pos
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cube_on_table-1 - object cube_on_table-1_pos - arm_pos

initial_base_pos - base_pos robot - arm shelf-0 - object

shelf-1 - object shelf-10 - object shelf-11 - object shelf-2 - object

shelf-3 - object shelf-4 - object shelf-5 - object

shelf-6 - object shelf-7 - object shelf-8 - object

shelf-9 - object table-2 - object )

(:init

(arm_at up_pos )

(attached_to cube10_on_table-1 shelf-11 )

(attached_to cube1_on_table-1 shelf-11 )

(attached_to cube2_on_table-1 shelf-3 )

(attached_to cube3_on_table-1 shelf-4 )

(attached_to cube4_on_table-1 shelf-5 )

(attached_to cube5_on_table-1 shelf-6 )

(attached_to cube6_on_table-1 shelf-7 )

(attached_to cube7_on_table-1 shelf-8 )

(attached_to cube8_on_table-1 shelf-8 )

(attached_to cube9_on_table-1 shelf-9 )

(attached_to cube_on_table-1 shelf-1 )

(base_at initial_base_pos )

(free robot )

(graspable cube10_on_table-1 )

(graspable cube1_on_table-1 )

(graspable cube2_on_table-1 )

(graspable cube3_on_table-1 )

(graspable cube4_on_table-1 )

(graspable cube5_on_table-1 )

(graspable cube6_on_table-1 )

(graspable cube7_on_table-1 )

(graspable cube8_on_table-1 )

(graspable cube9_on_table-1 )

(graspable cube_on_table-1 )

(obj_at cube10_on_table-1 cube10_on_table-1_pos )

(obj_at cube1_on_table-1 cube1_on_table-1_pos )
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(obj_at cube2_on_table-1 cube2_on_table-1_pos )

(obj_at cube3_on_table-1 cube3_on_table-1_pos )

(obj_at cube4_on_table-1 cube4_on_table-1_pos )

(obj_at cube5_on_table-1 cube5_on_table-1_pos )

(obj_at cube6_on_table-1 cube6_on_table-1_pos )

(obj_at cube7_on_table-1 cube7_on_table-1_pos )

(obj_at cube8_on_table-1 cube8_on_table-1_pos )

(obj_at cube9_on_table-1 cube9_on_table-1_pos )

(obj_at cube_on_table-1 cube_on_table-1_pos )

)

While the goal is written as:

(:goal (and (attached_to cube10_on_table-1 table-2 )

(attached_to cube1_on_table-1 table-2 )

(attached_to cube2_on_table-1 table-2 )

(attached_to cube3_on_table-1 table-2 )

(attached_to cube4_on_table-1 table-2 )

(attached_to cube5_on_table-1 table-2 )

(attached_to cube6_on_table-1 table-2 )

(attached_to cube7_on_table-1 table-2 )

(attached_to cube8_on_table-1 table-2 )

(attached_to cube9_on_table-1 table-2 )

(attached_to cube_on_table-1 table-2 )))

)

At the beginning the solver doesn’t found a solution because it has to generate 11 new positions above

the table to place the objects. But once it founds a solution it never replans since there is no blockage

situation. Table 3 shows the time for each execution of the solver.

Each iteration without solution the problem increases his complexity generating more actions and

evaluating in more states, which produces a high execution time. In the last iteration the evaluation of

states is lower because the solver founds a solution. In this case we have only used the FF solver, since

it returns the optimal solution and we save execution time.
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Table 3: FF solver execution

Iteration of the FF Execution time (s) Number of eval states Number of gen actions

Iter 1 0.14 601 2175

Iter 2 2.68 14510 3588

Iter 3 5.14 20608 5179

Iter 4 5.16 15928 6948

Iter 5 5.19 12825 8895

Iter 6 5.23 10663 11020

Iter 7 5.26 9004 13323

Iter 8 5.31 7733 15804

Iter 9 5.35 6756 18463

Iter 10 5.42 5903 21300

Iter 11 0.45 78 24315

Figure 23: Screenshots of the experiment
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The total execution time has been:

Table 4: Results experiment

Process Execution time (seconds)

FF solver 45

RRT execution 88

Move Base 196

Total time execution 437

The table shows that the simulation spend most of the time in the motion planning and executing the

plan. The task planning layer just spends 45 seconds searching for a solution.

7.2 Moving an object hampered by others

In this problem we have created and environment with two tables. One containing 25 cubes forming a

square and another empty. The objective is to pick the cube located in the middle of the structure and

place it on the other table. As the robot could grasp cubes from above we delete this option to force it to

move the cubes around the object.

(a) Initial conditions (b) Goal conditions

Figure 24: Initial and final conditions of the experiment

As in the previous section we consider the objects, his positions, the arm of the robot and the initial

positions of the robot. As preconditions we don’t consider any blockage since in a real situation is

unknown. We just consider the gripper as free and the location of the cubes. This initial conditions are

formulated in PDDL as follows:
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(:objects cube10_on_table-1 - object cube10_on_table-1_pos - arm_pos

cube12_on_table-1 - object cube12_on_table-1_pos - arm_pos

cube13_on_table-1 - object cube13_on_table-1_pos - arm_pos

cube14_on_table-1 - object cube14_on_table-1_pos - arm_pos

cube15_on_table-1 - object cube15_on_table-1_pos - arm_pos

cube16_on_table-1 - object cube16_on_table-1_pos - arm_pos

cube17_on_table-1 - object cube17_on_table-1_pos - arm_pos

cube18_on_table-1 - object cube18_on_table-1_pos - arm_pos

cube19_on_table-1 - object cube19_on_table-1_pos - arm_pos

cube1_on_table-1 - object cube1_on_table-1_pos - arm_pos

cube21_on_table-1 - object cube21_on_table-1_pos - arm_pos

cube22_on_table-1 - object cube22_on_table-1_pos - arm_pos

cube23_on_table-1 - object cube23_on_table-1_pos - arm_pos

cube24_on_table-1 - object cube24_on_table-1_pos - arm_pos

cube25_on_table-1 - object cube25_on_table-1_pos - arm_pos

cube26_on_table-1 - object cube26_on_table-1_pos - arm_pos

cube2_on_table-1 - object cube2_on_table-1_pos - arm_pos

cube3_on_table-1 - object cube3_on_table-1_pos - arm_pos

cube4_on_table-1 - object cube4_on_table-1_pos - arm_pos

cube5_on_table-1 - object cube5_on_table-1_pos - arm_pos

cube6_on_table-1 - object cube6_on_table-1_pos - arm_pos

cube7_on_table-1 - object cube7_on_table-1_pos - arm_pos

cube8_on_table-1 - object cube8_on_table-1_pos - arm_pos

cube9_on_table-1 - object cube9_on_table-1_pos - arm_pos

cube_on_table-1 - object cube_on_table-1_pos - arm_pos

initial_base_pos - base_pos robot - arm table-1 - object table-2 - object )

(:init

(arm_at up_pos )

(attached_to cube10_on_table-1 table-1 )

(attached_to cube12_on_table-1 table-1 )

(attached_to cube13_on_table-1 table-1 )

(attached_to cube14_on_table-1 table-1 )

(attached_to cube15_on_table-1 table-1 )

(attached_to cube16_on_table-1 table-1 )
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(attached_to cube17_on_table-1 table-1 )

(attached_to cube18_on_table-1 table-1 )

(attached_to cube19_on_table-1 table-1 )

(attached_to cube1_on_table-1 table-1 )

(attached_to cube21_on_table-1 table-1 )

(attached_to cube22_on_table-1 table-1 )

(attached_to cube23_on_table-1 table-1 )

(attached_to cube24_on_table-1 table-1 )

(attached_to cube25_on_table-1 table-1 )

(attached_to cube26_on_table-1 table-1 )

(attached_to cube2_on_table-1 table-1 )

(attached_to cube3_on_table-1 table-1 )

(attached_to cube4_on_table-1 table-1 )

(attached_to cube5_on_table-1 table-1 )

(attached_to cube6_on_table-1 table-1 )

(attached_to cube7_on_table-1 table-1 )

(attached_to cube8_on_table-1 table-1 )

(attached_to cube9_on_table-1 table-1 )

(attached_to cube_on_table-1 table-1 )

(base_at initial_base_pos )

(free robot )

(graspable cube10_on_table-1 )

(graspable cube12_on_table-1 )

(graspable cube13_on_table-1 )

(graspable cube14_on_table-1 )

(graspable cube15_on_table-1 )

(graspable cube16_on_table-1 )

(graspable cube17_on_table-1 )

(graspable cube18_on_table-1 )

(graspable cube19_on_table-1 )

(graspable cube1_on_table-1 )

(graspable cube21_on_table-1 )

(graspable cube22_on_table-1 )

(graspable cube23_on_table-1 )
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(graspable cube24_on_table-1 )

(graspable cube25_on_table-1 )

(graspable cube26_on_table-1 )

(graspable cube2_on_table-1 )

(graspable cube3_on_table-1 )

(graspable cube4_on_table-1 )

(graspable cube5_on_table-1 )

(graspable cube6_on_table-1 )

(graspable cube7_on_table-1 )

(graspable cube8_on_table-1 )

(graspable cube9_on_table-1 )

(graspable cube_on_table-1 )

(obj_at cube10_on_table-1 cube10_on_table-1_pos )

(obj_at cube12_on_table-1 cube12_on_table-1_pos )

(obj_at cube13_on_table-1 cube13_on_table-1_pos )

(obj_at cube14_on_table-1 cube14_on_table-1_pos )

(obj_at cube15_on_table-1 cube15_on_table-1_pos )

(obj_at cube16_on_table-1 cube16_on_table-1_pos )

(obj_at cube17_on_table-1 cube17_on_table-1_pos )

(obj_at cube18_on_table-1 cube18_on_table-1_pos )

(obj_at cube19_on_table-1 cube19_on_table-1_pos )

(obj_at cube1_on_table-1 cube1_on_table-1_pos )

(obj_at cube21_on_table-1 cube21_on_table-1_pos )

(obj_at cube22_on_table-1 cube22_on_table-1_pos )

(obj_at cube23_on_table-1 cube23_on_table-1_pos )

(obj_at cube24_on_table-1 cube24_on_table-1_pos )

(obj_at cube25_on_table-1 cube25_on_table-1_pos )

(obj_at cube26_on_table-1 cube26_on_table-1_pos )

(obj_at cube2_on_table-1 cube2_on_table-1_pos )

(obj_at cube3_on_table-1 cube3_on_table-1_pos )

(obj_at cube4_on_table-1 cube4_on_table-1_pos )

(obj_at cube5_on_table-1 cube5_on_table-1_pos )

(obj_at cube6_on_table-1 cube6_on_table-1_pos )

(obj_at cube7_on_table-1 cube7_on_table-1_pos )
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(obj_at cube8_on_table-1 cube8_on_table-1_pos )

(obj_at cube9_on_table-1 cube9_on_table-1_pos )

(obj_at cube_on_table-1 cube_on_table-1_pos )

)

The goal is that the cube_on_table-1, which is the central one, end on table-2.

(:goal (and (attached_to cylinder_on_table-1 table-2 )))

In this experiment we call the FF solver, and if it founds solution we call the FD solver. When there

is no solution the FD spends a lot of time until it stops the search. So is more efficient to guarantee the

solution with the FF solver and found the optimal one with FD.

In the first iteration the solver doesn’t found solution cause it needs to generate a pose on table-2. But

in the second iteration it solves the problem as:

(pick cylinder_on_table-1 table-1 robot cylinder_on_table-1_pos up_pos initial_base_pos)

(place cylinder_on_table-1 table-2 robot random_table-2_pos2 up_pos ik_base)

; cost = 2 (unit cost)

Once it tries to execute the plan, it fails picking the object because the IK is in collision. The inference

updates the problem adding the blocking condition and calls again the FD solver. We don’t call the FF

solver because there exists enough positions to solve it.

...

(block cylinder10_on_table-1 cylinder_on_table-1 cylinder10_on_table-1_pos

cylinder_on_table-1_pos )

(block cylinder1_on_table-1 cylinder_on_table-1 cylinder1_on_table-1_pos

cylinder_on_table-1_pos )

...

The FD solver outputs the following solution:

(pick cylinder10_on_table-1 table-1 robot cylinder10_on_table-1_pos up_pos initial_base_pos)

(place cylinder10_on_table-1 table-1 robot random_table-1_pos1 up_pos ik_base)

(pick cylinder1_on_table-1 table-1 robot cylinder1_on_table-1_pos up_pos ik_base)

(place cylinder1_on_table-1 table-1 robot random_table-1_pos3 up_pos ik_base)

(pick cylinder_on_table-1 table-1 robot cylinder_on_table-1_pos up_pos ik_base)

(place cylinder_on_table-1 table-2 robot random_table-2_pos2 up_pos ik_base)

; cost = 6 (unit cost)
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Which results the valid one.

Figure 25: Screenshots of the experiment

The following table summarises the execution of the solvers:

Table 5: Solver execution

Iteration Solver used Execution time (s) Number of eval. states Number of gen actions

Iter 1 FF 0 - -

Iter 2 FF 0.86 27 16188

Iter 3 FD 7 84 -

Iter 4 FD 14 263 -

In comparison with the FF the FD solver much more time.

The following table summarise the execution times:

Table 6: Results experiment

Process Execution time (seconds)

Solvers 22

RRT execution 24

Move Base 23

Total time execution 96

As in the previous section it spends most of the time executing the motions.
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7.3 Closing distances between objects

This experiment is the same as the previous one, but closing the distances between the cubes complicat-

ing the problem. In the last experiment we have seen that the IK is very precise since it grasps the cube

in a narrow situation. Now we pretend to test the capabilities of the inference and the task planning.

Figure 26: Screenshots of the experiment without finding solution

Since we have tested many times the previous problem reducing the distance without success, we have

simplify it a bit maintaining the short distances between cubes. The main issue is that the IK founds

double blocking situations when there are a lot of objects. This makes restart the PDDL problem, and

causes that the robot tends to "explore" in new directions. Figure 27 shows one of the failed executions in

which the problem is almost solved, but the robot decides to explore new directions. Instead of consider

a structure of 25 cubes we have consider a structure of 22, and we have enlarged the size of the table to

give more space to place the cubes.

(a) Initial conditions (b) Goal conditions

Figure 27: Initial and goal conditions of the simplified experiment
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Figure 28: Screenshots of the simplified experiment finding solution

Table 7: Solver execution

Iteration Solver used Execution time (s) Number of eval. states Number of gen actions

Iter 1 FF 0 - -

Iter 2 FF 0.64 25 13836

Iter 3 FD 6 78 -

Iter 4 FD 25 639 -

Table 8: Results experiment

Process Execution time (seconds)

Solvers 32

RRT execution 56

Move Base 43

Total time execution 594

Table 8 shows that the main execution time is spent during the motion planning. But this result is

not maintained when considering others situations as the ones from Figure 29. Table 9 and Table 10

show the results of this experiment. During this experiment the PDDL problem is restarted twice due to

blocking situations. The results evince that the Task planner layer, in particular the solver, spends most

of the execution time.
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(a) Initial conditions (b) Goal conditions

Figure 29: Alternative experiment with solution

Table 9: Solver execution

Iteration Solver used Execution time (s)

Iter 1 FF 0

Iter 2 FF 0.65

Iter 3 FD 7

Iter 4 FD 28

Iter 5 FD 22

Iter 6 FD 26

Iter 7 FD 65

Iter 8 FD 84

Iter 9 FD 54

Iter 10 FD 81

Iter 11 FD 90

Iter 12 FD 77

Iter 13 FD 116

Iter 14 FD 116

Iter 15 FD 108

Iter 16 FD 110

Iter 17 FD 125
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Table 10: Results experiment

Process Execution time (seconds)

Solvers 1109

Total time execution 1898

The success and efficiency in this complex problems depends on the number of blocking conditions

that the IK generates. Till there is no object blocking the grasping object we can not take it, even when

the blocking object is rear the grasping object. Is fundamental choose the best grasping candidate (i.e the

best solution) as the one which generates less new blocking conditions. But as shown in the simulations

this heuristic not always choose the best way.
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8 Cost planning

It’s hard to describe in detail the total cost of this project. Basically, because the project doesn’t have any

material cost or rental cost associated, except the hours of work. Moreover it’s hard to assign a number

of hours, since a lot of tools and libraries were already developed by the company once I arrived, or some

of them are open libraries such as Eigen or SBPL.

Anyway Table 11 details the costs for manufacturing each one of the parts for the TIAGo robot.

Table 11: Cost in materials of the TIAGo robot

Part of the robot Total cost in materials(e)

Mobile base 5.150,43

Torso 4.457,64

Arm 10.909,01

Wrist 3.826,29

Gripper 1.695,59

Head 2.543,28

Total cost 28.582,23
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9 Sustainability Project

In this section we will analyse the impact of the project from all the points of view.

Starting by the environmental impact, this project doesn’t cause any kind of impact, since to develop

it we have just used a single computer. It could be analysed in detail the processes and materials used for

manufacturing the TIAGo, but nowadays the company doesn’t have a study of this type.

From an economic or social point of view is difficult to estimate the impact it may have in our society.

Is clear that this project makes the robot more autonomous, and is a first step to make the robots develop

human tasks such as cook, do the laundry, layout the table or much other tasks. This makes us ask if the

robots are gonna replace employees in the near future, or if they are gonna increase our possibilities and

make our life easier.

So the economical or social impact of this project could be seen as a high advance to develop service

robots that will help in our daily lives, and will represent a transformation of our jobs. When for detrac-

tors this project will represent a way of destroying jobs, and make the companies earn more money by

substitute his employees by machines.

But there is also another social benefit around robotics that is rarely mentioned, that is that robots

actually could take care of us. Nowadays there are a lot of European projects that try to focus on this

topic, by developing technology that will help old people or sick people. All this projects are based on

help people that live in remote regions by teleoperate a robot; or alert the emergency service when an

accident occurs. Furthermore robots allow to interact with humans in a different way, and could be seen

as a friend or a game for the kids.

In all chases, is philosophise around this topic since we can not predict the future and how the robots

will affect on it. This project just pretends that robots could develop useful and complex tasks by just

giving simple goals. This change will make that robots could be easily "programmable" by any kind of

people not necessary engineers.
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10 Conclusions

This project presents an approach that combines task planning and motion planning, and is able to solve

non-trivial planning problems by just giving simple goals. All the geometric information from the envi-

ronment is modelled in a PDDL, that tries to be generic for many robot tasks. Creating a single PDDL

and giving different objectives, the robot is capable to solve a variety of planning problems, in different

environments.

Moreover during the development of the actions we have tested different frameworks trying to com-

pare them, and make the robot more efficient in his actions. This improvements allowed the robot to pick

objects from a shelf which is a really hard situation.

Finally we also describe how the FF solver works, since is the one that offers better results compared

with the others. In our experiments we present the time of execution for task planning and motion plan-

ning. We conclude that when the problem is complex, i.e there are many objects or conditions, the solver

spends much of the time task planning. This fades the idea to create a single generic PDDL including all

the feasible actions of the robot and his conditions. But in a near future, when computers will be more

efficients, this will be possible and we are pretty sure on the application of the project since it will allow

robots to work autonomously by just giving simple instructions.

It remains to test all this work on the real robot. And the next step will be to generate the actions for

another robots of the company. A positive point on this project, is that it could be extrapolated to any

other robot. Furthermore generating new PDDL’s and new actions, the robot will be possible to develop

completely different planning problems, or even problems in which many multiple robots are involved.
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