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A Discrete-Time Approach to the Steady-State and Stability
Analysis of Distributed Nonlinear Autonomous Circuits

Jordi Bonet-Dalmau and Pere Palà-Schönwälder

Abstract—We present a direct method for the steady-state and stability
analysis of autonomous circuits with transmission lines and generic non-
linear elements. With the discretization of the equations that describe the
circuit in the time domain, we obtain a nonlinear algebraic formulation
where the unknowns to determine are the samples of the variables directly
in the steady state, along with the oscillation period, the main unknown in
autonomous circuits. An efficient scheme to build the Jacobian matrix with
exact partial derivatives with respect to the oscillation period and with re-
spect to the samples of the unknowns is described. Without any modifica-
tion in the analysis method, the stability of the solution can be computeda
posterioriconstructing an implicit map, where the last sample is viewed as
a function of the previous samples. The application of this technique to the
time-delayed Chua's circuit (TDCC) allows us to investigate the stability of
the periodic solutions and to locate the period-doubling bifurcations.

Index Terms—Autonomous circuits, bifurcation points, distributed, non-
linear, steady-state response, stability analysis, time-domain discretization.

I. INTRODUCTION

Several techniques have been developed to determine the steady-
state response of nonlinear circuits [1]–[4]. In this paper, we first extend
the discrete-time approach proposed in [5] to nonlinear autonomous
circuits with transmission lines.

Once a solution has been obtained, the next step is to investigate its
stability. The solutions computed using integration methods are inher-
ently stable. This is not true when the steady-state response is computed
using a direct method. Using the harmonic balance approach, stability
may be investigated using perturbation techniques [6] or from a contin-
uation point of view [7]. In this paper, an efficient method to compute
the stability of the solutions obtained using the discrete-time approach
is presented.

II. EQUATIONS FORMULATION

Consider an autonomous circuit with only one bias source, one non-
linear element, and one transmission line to achieve a greater insight in
the formulation of the equations.

Since the two port resulting from the extraction of the bias sourcevb
and the nonlinear elementf(x) is linear, we may apply superposition
in the transformed domain, expressing the control variablex of the
nonlinearity in the form

X(s) = H1(s; e
�s� )F (X) +H2(s; e

�s�)Vb(s) (1)

whereHj(s; e
�s�) = �Bj(s; e

�s�)=A(s; e�s�). With this notation,
we rewrite (1) as

A(s; e�s�)X(s) +B1(s; e
�s�)F (X)
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+B2(s; e
�s�)Vb(s) = 0: (2)

It is worth emphasizing thatBj(s; e
�s�) andA(s; e�s�) are bivariate

polynomials of the following kind:

P (s; e�s�) =

n

i=0

2

k=0

piks
ie�sk�

beingn the order of the lumped linear multiport and� the delay of the
transmission line.

III. EQUATIONS DISCRETIZATION

The operator defined by the polynomialP (s; e�s�) applied to the
Laplace transformU(s) of a generic variableu(t) can be expressed in
the time domain as

P (s; e�s�)U(s)
ILT
�!

n

i=0

2

k=0

pik
di(u(t� k�))

dti
: (3)

First we will separately discretize each one of the operators, deriva-
tion and delay, that appear in (3).

A. Computation of the Derivative

In the g-order Gear method the derivative is approximated at the
instantn� interpolatingu(t) by a polynomial of degreeg fitted to the
latestg+1 samples [8]. Thus, defining the vector of theN samples of
aT -periodic variableu(t)

u = [u1; u2; . . . ; uN ]T ; with un = u(n�); � = T=N

we can approximate the vector of the samples ofd(u(t))=dt

_u = [ _u1; _u2; . . . ; _uN ]T from

d u(t)

dt
t=n�

� _un =

g

r=0

c0run�r (4)

where the coefficientsc0r are obtained from the polynomial fitting pro-
cedure described above. For the subsequent calculation of the Jacobian
matrix, the dependence of the coefficientsc0r on the periodT must be
stated explicitly. This dependence turns out to be

c0r =
1

�
cr =

N

T
cr

where the coefficientscr depend only on the order of the Gear dis-
cretization used.

Applying the discretization (4), the derivative operation that appears
in (3) can be written as the product of a matrixP10(T ) by a vectoru.
Thus, we can compute the derivative ofu(t) (i = 1; k = 0 in (3)) as

d(u(t))

dt

g;N
�! _u = P10(T )u

where

P10(T ) = circ(c00; c
0

1; . . . ; c
0

g; 0g+1; . . . ; 0N�1)
T =

C

�
(5)

with C, independent ofT , as

C = circ(c0; c1; . . . ; cg; 0g+1; . . . ; 0N�1)
T
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where the notation

circ(a0; a1; . . . ; aN�1)
T =

a0 aN�1 � � � a1

a1 a0 � � � a2
...

...
. . .

...
aN�1 aN�2 � � � a0

:

The nonzero elements ofC

cg = [c0; c1; . . . ; cg] (6)

are given in Table I.

B. Computation of thek� Seconds Delayed Function

Since thek� seconds delayed function evaluated at the instantn�,
i.e.,u(n��k�), does not generally coincide with one of the samples,
its value is obtained by interpolatingu(t) by a polynomial of degreeg
fitted to the sample that follows the instantn��k� and theg previous
samples. So, we can compute the vector of the samples ofu(t� k�)

uk = [uk1; uk2; . . . ; ukN ]T from

u(n�� k�) � ukn =

g

r=0

d
0

krun�q �r (7)

whereqk is defined according to� and� as

qk� � k� < (qk + 1)�

and the coefficientsd0k� are obtained from the polynomial fitting pro-
cedure described above. The dependence of the coefficientsd0k� on the
periodT turns out to be

d
0

kr =

g

j=0

drj(ek)
j (8)

with

ek =
k� � qk�

�
= N

k�

T
� qk

where the coefficientsdrj depend only on the order of the Gear dis-
cretization used.

Applying the discretization (7), the delay operation that appears in
(3) can be written as the product of a matrixP0k(T ) by a vectoru. So,
we can computeu(t) delayedk� s as (i = 0; k in (3))

u(t� k�)
g;N
�! uk = P0k(T )u

where

P0k(T )

= circ(00; . . . ; 0q �1; d
0

k0; . . . ; d
0

kg; 0q +g+1; . . . ; 0N�1)
T (9)

and where the dependence of each coefficientd0k� on the above defined
ek can be written, according to (8), as

d0k0

d0k1
...

d0kg

=

d00 d01 � � � d0g

d10 d11 � � � d1g
...

...
. . .

...
dg0 dg1 � � � dgg

�

(ek)
0

(ek)
1

...
(ek)

g

or in compact form

dk(T ) = Dgek(T ): (10)

The matrixDg, which is independent of bothT andk, is given in
Table II.

TABLE I
VECTORS RELATED TO THE DERIVATIVE

OPERATOR

C. Resulting System of Equations

Now, the discretization of (3) results in

n

i=0

2

k=0

pik
di(u(t� k�))

dti
g;N
�! P(T )u (11)

with

P(T )u =

n

i=0

2

k=0

pikPik(T)u (12)

where it is possible to decomposePik(T ) in terms of the matrices (5)
and (9) as

Pik(T ) = Pi0(T )P0k(T) = (P10(T ))iP0k(T): (13)

If we apply the idea contained in (11) to each of the products that
appear in (2), we obtain an equivalent formulation in the form

A(T )x +B1(T )f(x) +B2(T )vb = 0 (14)

where each matrix only depends onT , once the order of discretization
has been chosen, and is similar in form toP(T ) defined in (12).

Since in autonomous circuits the periodT is unknown, the system
(14) has an infinite number of solutions [5]. From now on, one of the
samples of the control variablex is fixed to a value which,a priori, the
solution is expected to take.

IV. COMPUTATION OF THESENSITIVITIES

Solving (14) efficiently requires to use globally convergent algo-
rithms based on Newton's method [9]. Thus, partial derivatives with
respect to theN unknowns of the system(T; x2; x3; . . . ; xN ) have to
be computed.

A. Partial Derivatives with Respect to the Period

To compute the derivative with respect to the periodT we will pre-
viously compute the Jacobian matrix of (12). Since the samples ofu(t)
do not depend on the periodT;

_P(T )u =

n

i=0

2

k=0

pik _Pik(T )u:

Using (13) and the chain rule, we express

_Pik(T ) = _Pi0(T )P0k(T) + Pi0(T ) _P0k(T ): (15)
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The computation of the derivative that appears in the first product is
computed using (5) as

_Pi0(T ) =
�i

T
Pi0(T ):

For the computation of the derivative that appears in the second product
of (15), we must recall the dependence ofP0k(T ) onek(T ) according
to (9) and (10). First, we may write

_P0k(T )

= circ(00; . . . ; 0q �1; _d0k0; . . . ; _d0kg; 0q +g+1; . . . ; 0N�1)
T
:

Now, using (10), the vector

_d0k(T ) = [ _d0k0; d
0

k1; . . . ; _d0kg]
T

may be expressed as

_dk(T ) = Dg _ek(T ) =
�1

T
DgQkek(T )

with

Qk =

0 0 0 � � � 0

qk 1 0
. . .

...

0 2qk 2
. . . 0

...
. . .

. . .
. . . 0

0 � � � 0 gqk g

defined in terms of theg order of the Gear discretization used andqk.
Once the matrices_Pik(T ) have been computed, the computa-

tion of _B1(T ); _B2(T ) and _A(T ) of (14) is straightforward since
B1(T );B2(T ) andA(T ) are a linear combination of the matrices
Pik(T ). Thus, the first column of the Jacobian matrix is expressed
analytically as

J(:; 1) = _A(T )x + _B1(T )f(x) + _B2(T )vb:

B. Partial Derivatives With Respect to the Samples

The rest of the columns of the Jacobian matrix are easily determined
since only the vectorsx and f(x) depend on theN � 1 unknown
samples and their partial derivatives are immediate. So, the remaining
columns of the Jacobian matrix are expressed analytically as

J(:; 2 : N) = A(:; 2 : N) +B1(:; 2 : N)F0(x)

with

F
0(x) = diag(f 0(x2); . . . ; f

0(xN))

where

f
0(xk) =

d(f(x))

dx
x=x

:

V. STABILITY ANALYSIS

The stability of the solution obtained can be determineda posteriori
with no modification to the method described to analyze the circuit.
Using the matrices that appear in (14), we can express any of theN

equations as

m

k=0

akxn�k +

m

k=0

bkf(xn�k) + c = 0 (16)

TABLE II
MATRICES RELATED TO THE DELAY OPERATOR

Fig. 1. The time-delayed Chua's circuit (TDCC).

whereak andbk are the elements of thekth row of the first column of
the matrixesA(T ) andB1(T ), respectively. Defining

xn = [xn; xn�1; . . . ; xn�m+1]
T
:

Equation(16) may be viewed as an implicit map

xn+1 = '(xn):

In this map, the samplexn is expressed as a function of them pre-
vious samples, beingm the memory of the discretized system of equa-
tions

m � q2 + ng:

Once a periodic solutionx� of periodT = N� has been found using
the technique described, anym subvector ofx� is a fixed point of the
composite map'N . Now, the natural way to study the stability of this
solution is to perturbate it and observe its evolution after one period.
This evolution is inferred from the Jacobian of the composite map

J = JN+1JN � � �J2 (17)
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Fig. 2. Relative error in the real part (above) and absolute error in the imaginary part (below) of the eigenvalues in thes plane for a zero solution with respect to
[11] with N = 512 andR = 1:85 k
. Gear-2 (*), Gear-3 (x), Gear-4 (o).

where

Jn =

@x

@x

@x

@x
� � � @x

@x

@x

@x

1 0 � � � 0 0

0 1 0
...

. . .
...

0 0 1 0

and

@xn

@xn�k
= �

ak + bkf
0(xn�k)

a0 + b0f 0(xn)
:

Now, the eigenvalues of the JacobianJ defined in (17) give direct
information about the stability of the solution: 1) for autonomous cir-
cuitsJ has unity as eigenvalue since this type of circuits admit infinite
shifted solutions; 2) if the remaining eigenvalues are smaller than unity
in modulus, then the periodic solution is stable; and 3) the solution is
unstable ifJ has at least one eigenvalue with a modulus greater than
unity. Other eigenvalues whose modulus is equal to unity correspond
to special cases. In particular, an eigenvalue equal to�1 indicates the
existence of a period-doubling bifurcation point.

In [10], the relation between the eigenvalues ofJ and the eigenvalues
of the monodromy matrix is stated for lumped circuits.

VI. A PPLICATION TO THETIME-DELAYED CHUA'S CIRCUIT

The technique described has been applied to the determination of the
steady state of the control variablev in the time-delayed Chua's circuit
(TDCC) shown in Fig. 1. The values of the parameters which appear in
the circuit are the same used in [11]. For numerical accuracy reasons,
these parameters have been normalized withR0 = 1 k
 andT0 = 0:1
ms.

For the determination of the periodic solution, the second-order Gear
discretization has been used because it has shown to be a good com-
promise between accuracy and computational cost.

Fig. 3. Eigenvalues in thez-plane for a stable period-1 limit cycle withN =

256; R = 1:8038 k
 andg = 2.

A. Equilibrium Points

The purpose of this section is to check the accuracy of the procedure
that has been described contrasting the results with those obtained an-
alytically at the equilibrium points. IfR = 1:85 k
 the system has
three equilibrium points:v = f0;+3:861;�3:861g. As these equilib-
rium points are direct solutions of (2), no iterative solving process is
needed. So, only the stability analysis is made in this section.

1) Zero Equilibrium Point: Applying the stability study described
in the previous section, the eigenvalues in thez-plane are obtained with
N = 512 samples of value zero. All the eigenvalues rest inside the unit
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Fig. 4. Eigenvalues in thez-plane for an unstable period-1 limit cycle with
N = 256; R = 1:8037 k
, andg = 2.

circle, except one that is outside, of valuez = 130 for a second-order
Gear discretization. So, zero is an unstable solution.

Applying the transformationz = esT our stability study can be
translated to thes plane as in [11]. Figure 2 shows excellent agreement
between the analytical and the numerical method for a second to fourth-
order Gear discretization.

2) Nonzero Equilibrium Points:Repeating the same stability anal-
ysis for the nonzero equilibrium points we observe that all the eigen-
values in thez plane rest inside the unit circle. Therefore the solution
is stable. These equilibrium points become unstable whenR is reduced
to 1.82 k
. So, forR � 1:82 k
 a periodic solution is expected.

B. Period-1 Limit Cycle

Now we investigate the solution forR = 1:82 k
. Initializing the
iterative solving process withN = 128 samples of a sinusoidal signal
of amplitude 3 V, period5� and offset 3.861 V, a stable period-1 limit
cycle is obtained. This solution is interpolated to obtainN = 256 sam-
ples and used as a new initialization. The resulting period-1 phase plane
is depicted in Fig. 5. All the eigenvalues related to this solution rest in-
side the unit circle except one of value equal to one, which indicates
that a shifted solution is possible. So, the solution is stable.

Once a solution has been computed, we change the parameterR to
obtain new solutions using as an initialization the previous one. Ap-
plying this technique, we reduceR using 10
 steps until we observe
that atR = 1:8 k
 the solution obtained is unstable. A more de-
tailed analysis proves that one eigenvalue has crossed the unit circle
at z = �1 betweenR = 1:8038 k
 andR = 1:8037 k
 as is shown
in Figs. 3 and 4. So, a period-doubling bifurcation point is expected.

The problem now is to find the stable solution that corresponds to
R = 1:8037 k
. From the eigenvector associated to the eigenvalue
that has crossed the unit circle, we know the perturbation

pm = [pm; pm�1; . . . ; p1]
T

that transforms the period-1 solution into a period-2 solution. How-
ever, this eigenvector has onlym samples. The rest of the samples,
up to2N = 512, should be computed to initialize the iterative solving
process with two periods of the unstable period-1 solution plus the com-
puted perturbation. If, as expected, the perturbation is small compared

(a)

(b)

(c)

Fig. 5. Phase plane ofv versus ofv. (a) a period-1 limit cycle withN =

256;R = 1:82 k
, andg = 2. (b) A period-2 limit cycle withN = 512;R =

1:8 k
 andg = 2. (c) A period-4 limit cycle withN = 1024; R = 1:7952

k
, andg = 2.
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with the solution, the nonlinear equation (16) can be linearized around
the period-1 solution. Consequently, the rest of the samples can be com-
puted using the vectorpm and the linear expression

pn = �
m

k=1
akpn�k +

m

k=1
bkf

0(xn�k)pn�k

a0 + b0f 0(xn)
n > m:

Once the perturbation vector

p = [p1; p2; . . . ; p2N ]T

of 2N = 512 samples has been computed, we obtain a period-2 solu-
tion adding the vectorp multiplied by a constant� to two periods of
the period-1 solution

xjperiod-2 � [xjperiod-1;xjperiod-1] + �p: (18)

If this constant is well chosen, the approximate solution is close to the
final solution and the iteration will converge.

C. Period-2 and Period-4 Limit Cycles

With the initialization proposed in (18) with� = 0:6, we obtain the
phase plane depicted in Fig. 5. The eigenvalues are all inside the unit
circle. Therefore the solution is stable. Aposterioriwe can verify the
hypothesis made in (18) that the eigenvectorp added to the period-1
solution is indeed close to the period-2 solution.

With the decrease of the parameterR over the period-2 solution a
new period doubling bifurcation point is detected forR = 1:796 k
.
A stable period-4 solution is computed forR = 1:7952 k
 (Fig. 5).

VII. CONCLUSION

A new method to directly determine the steady-state response of non-
linear autonomous circuits with distributed parameters has been pre-
sented. To validate the method, it has been applied to the analysis of
the TDCC in one of its periodic windows, a paradigmatic example of
the kind of circuits to which this paper refers.

A procedure for determining the stability of the steady-state solu-
tions is presented. To check the reliability of this method, it has been
applied to the stability at the equilibrium points of the TDCC in which
analytical results exist [11] and excellent agreement has been obtained.

The combination of the discrete-time approach with the study of the
stability of the solutions obtained allows us to detect period-doubling
bifurcation points. A procedure to initialize the iterative solving process
to obtain the bifurcated solution is explained and successfully applied.
The results coincide with those described in [11], and with those ob-
tained using integration techniques, without having to integrate the re-
sponse until the transient dies out.
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A Low-Voltage Single Input Class AB Transconductor
With Rail-To-Rail Input Range

Ahmed A. El-Adawy and Ahmed M. Soliman

Abstract—A new CMOS programmable rail-to-rail transconductor is
presented. A linear V–I characteristic is obtained by using the principle
of nonlinearity cancellation of matched MOS transistors operating in
the ohmic region. Rail-to-rail operation is achieved by using two comple-
mentary blocks. The circuit is suitable for low voltage as it can operate
from supply voltages down to ±1.5 V. PSpice simulations show that the
transconductance gain can be electronically tuned from 13 to 90µ A/V
with bandwidth of about 40 MHz.

Index Terms—Low-voltage circuits, transconductors.

I. INTRODUCTION

As the advances in the VLSI technology and the demand for portable
electronic products lead VLSI circuits operating in low supply volt-
ages (lower than 3 V), current-mode signal processing techniques
will become increasingly important and attractive [1]–[5]. Circuits
designed to exploit the current-mode techniques improve operating
speed and can be implemented in low-cost digital CMOS fabrication
process. Traditionally, however, most analog signal processing has
been accomplished by using voltage as the signal variable. In order to
maintain compatibility with voltage processing circuits, it is often nec-
essary to convert the input and output signals of a current-mode signal
processor to voltage, that is, to use transconductors (orV-I converters).
Numerous transconductor design schemes have been proposed and
implemented [6]–[12]. However, most of these schemes have the
problem that the control voltage that controls the transconductance
gain also affects the linear operating range. This leads to a conflict
between obtaining large input linear range and high transconductance
gain. The proposed transconductor has a programmable gain while
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