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A Discrete-Time Approach to the Steady-State and Stability + Ba(s,e” "T)Vi(s) = 0. 2

Analysis of Distributed Nonlinear Autonomous Circuits ) o . o
It is worth emphasizing thaB; (s,e™"") andA(s,e™ ") are bivariate

Jordi Bonet-Dalmau and Pere Pala-Schonwalder polynomials of the following kind:

n 2
— 8T i —skt
Abstract—We present a direct method for the steady-state and stability Pls,e™7) = Z Zp k8 €

analysis of autonomous circuits with transmission lines and generic non- =0 k=0
linear elements. With the discretization of the equations that describe the
circuit in the time domain, we obtain a nonlinear algebraic formulation
where the unknowns to determine are the samples of the variables directly
in the steady state, along with the oscillation period, the main unknown in
autonomous circuits. An efficient scheme to build the Jacobian matrix with IIl. EQUATIONS DISCRETIZATION
exact partial derivatives with respect to the oscillation period and with re-
spect to the samples of the unknowns is described. Without any modifica-  The operator defined by the polynomiBls,e™*") applied to the
tion in the analysis method, the stability of the solution can be computed Laplace transfornd/ (s) of a generic variable(¢) can be expressed in
posterioriconstructing an implicit map, where the last sample is viewed as the time domain as‘
a function of the previous samples. The application of this technique to the

beingn the order of the lumped linear multiport andhe delay of the
transmission line.

time-delayed Chua's circuit (TDCC) allows us to investigate the stability of no 2 d (u(t — k7))
the periodic solutions and to locate the period-doubling bifurcations. P(s,e *U(s) LN Z Zplk T‘ (3)
Index Terms—Autonomous circuits, bifurcation points, distributed, non- =0 k=0 '

linear, steady-state response, stability analysis, time-domain discretization. First we will separately discretize each one of the operators, deriva-

tion and delay, that appear in (3).

I. INTRODUCTION . S
A. Computation of the Derivative

Several technlques_ have _bee_n developed tp determine _the SteadYﬁ the g-order Gear method the derivative is approximated at the
state response of nonlinear circuits [1]-[4]. In this paper, we first extend

. . ; . instantn A interpolatingu(t) by a polynomial of degreg fitted to the
the discrete-time approach proposed in [5] to nonlinear autonomqgfestq 1 samzles [8]g 'IEh)usyde?ini?:g the vector?)f tg'esamples of
circuits with transmission lines. ’ ) '

Once a solution has been obtained, the next step is to investigateaig_perIOdIC variablex(t)
stability. The so_lu_tlons computed using integration methods_ areinher- y — [uy, us, ..., un]’, Withu, = u(nd), A=T/N
ently stable. This is not true when the steady-state response is computed
using a direct method. Using the harmonic balance approach, stabiity can approximate the vector of the sampleg(af(t))/dt
may be investigated using perturbation techniques [6] or from a contin-

uation point of view [7]. In this paper, an efficient method to compute u = [y, d,...,an]" from
the stability of the solutions obtained using the discrete-time approach d (u(t)) g
is presented. — U, = ; A ny (4)

t=nA

Il. EQUATIONS FORMULATION - . e
Q where the coefficients. are obtained from the polynomial fitting pro-

Consider an autonomous circuit with only one bias source, one n@edure described above. For the subsequent calculation of the Jacobian
linear element, and one transmission line to achieve a greater insightiatrix, the dependence of the coefficientson the period” must be

the formulation of the equations. stated explicitly. This dependence turns out to be
Since the two port resulting from the extraction of the bias sousce
and the nonlinear elemeyffz) is linear, we may apply superposition o= ic,, - Xt
in the transformed domain, expressing the control variabtd the A T
nonlinearity in the form where the coefficients, depend only on the order of the Gear dis-
cretization used.
X(s)=Hi(s,e " )F(X)+ Ha(s, e "7)Vy(s) (1) Applying the discretization (4), the derivative operation that appears

in (3) can be written as the product of a mafx,(7") by a vecton.
whereH;(s,e”°") = —Bj(s,e”°7)/A(s,e°7). With this notation, Thus, we can compute the derivativeudt) (i = 1,k = 0in (3)) as
we rewrite (1) as
d(u(t)) 4N

Zou= P10(T)11
A(s,e " T)X (s) + Bi(s,e > )F(X) dt
where
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where the notation TABLE |
VECTORS RELATED TO THE DERIVATIVE
ag anN—1 -t ay OPERATOR
X T ai ap e ao
circ(ao, a1, ..., an—1)" = : : . e Discretization Vectors in (6)
) ) B order
aN-1 aN-2 ao
The nonzero elements & 1 ¢, =[1 -1]
cg = [cosc1,..., 4] (6) 1
! ! 2 e, == -4 1]
are given in Table I. 2
B. Computation of thé+ Seconds Delayed Function 3 <, =l.[11 -18 9 -2]
6

Since thek seconds delayed function evaluated at the instant
i.e.,u(nA — k7), does not generally coincide with one of the samples, 1
its value is obtained by interpolating¢) by a polynomial of degreg 4 ¢, =—" [50 -96 72 -32 6]
fitted to the sample that follows the instanh — k7 and they previous 24
samples. So, we can compute the vector of the sampleg 6f & 7)

W = [unr, wgas .. upn]’ from C. Resulting System of Equations
g Now, the discretization of (3) results in
'LL(NA — kT) N Ukn = Zd’krunqufr (7) ;
r=0 L d'(u(t — k7)) 9N
) ) ) Zzpikii == P(T)u (112)

whereg;. is defined according ta\ andr as =0 o dt

A <kt < (e + DA with
and the coefficientd,. are obtained from the polynomial fitting pro- P(T)u= i ip-kP < (T)u 12)

cedure described above. The dependence of the coeffidignt:n the
period7" turns out to be

1=0 k=0

. where it is possible to decompoPRe, (T') in terms of the matrices (5)
Qi = Y doser)’ g andOas
= Pii(T) = Pio(T)Por(T) = (P1o(T) Por(T).  (13)
with
If we apply the idea contained in (11) to each of the products that
— % _ kT . appear in (2), we obtain an equivalent formulation in the form
T
where the coefficientd,.; depend only on the order of the Gear dis-
cretization used. . . o
Applying the discretization (7), the delay operation that appears\f\ﬁhere each matrix only depends‘@nonce the order of discretization

(3) can be written as the product of a maf#ty,. (7") by a vectona. So, has_beer_l chosen, and is §|m|l_ar in for R @) defined in (12).
) Since in autonomous circuits the periddis unknown, the system
we can compute(t) delayedk™ sas { = 0, % in (3))

(14) has an infinite number of solutions [5]. From now on, one of the
samples of the control variahteis fixed to a value whicha priori, the
solution is expected to take.

ek

A(T)x + By (T)f(x) + Bo(T)vy, = 0 (14)

g,N

w(t = k7) == up = Por(T)u

where
IV. COMPUTATION OF THE SENSITIVITIES
Pox(T
Ok(‘ ) , , T Solving (14) efficiently requires to use globally convergent algo-
= circ(Op. ..., 0gper dyos - - . Qg Ogrtgits- - One)' (9) . . e :
cre(Oo, -+, Ogy—1: dros - -+ dkgs Ogprgns - « rithms based on Newton's method [9]. Thus, partial derivatives with

respect to theéV unknowns of the systeff¥’, =2, x3,...,xx) have to

and where the dependence of each coeffiaignton the above defined
be computed.

e, can be written, according to (8), as

dio doo do1 -+ dog (ex)? A. Partial Derivatives with Respect to the Period

i di di --- dyg (ex)' To compute the derivative with respect to the periode will pre-
: : : n : viously compute the Jacobian matrix of (12). Since the sample&pf

' do not depend on the peridd
- dgo dgr -+ dgg (e)? p p )

n

H . 2 -
or in compact form P(T)ll _ Z ZpikPik (T)ll.

di(T) = D, ex(T). (10) =0 k=0
Using (13) and the chain rule, we express
The matrixD,, which is independent of both" and %, is given in ) ) )
Table II. Pi(T) =Pio(T)Pok(T) + Pio(T)Por(T). (15)
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The computation of the derivative that appears in the first product is TABLE I
computed using (5) as MATRICES RELATED TO THE DELAY OPERATOR

: —i
Py(T) = =Pu(T). . .
T Dlscregzatlon Matrices in (10)
For the computation of the derivative that appears in the second product order
of (15), we must recall the dependencéf, (1) one(T') according
to (9) and (10). First, we may write . D,:[l —1]
0 1
POI.",(T‘)
:CiI‘C(Oo,...,qu_l,d;w,..../(I;Cg./oqk_;_g_;_l./..../01\7_1)[. 2 =3 1
1
Now, using (10), the vector 2 DZ_E'E ‘: _21
d' (T) = [d'vo, diers- - oo diy]”
6 -11 6 -1
may be expressed as
; p _Lll0 18 -15 3
du(T) = D,éx(T) = D, Quex(T) *“6lo -9 12 -3
0 2 -3 1
with
0 0 o --- 0 24 -50 35 -10 1
w 1 0 .o 1096—104 36 -4
Q=10 2 2 - 0 4 D= 0 -72 114 -48 6
0 32 =56 28 -4
L 0 0 -6 11 -6 1
0 -+ 0 gu g

defined in terms of thg order of the Gear discretization used and
Once the matricesi’ik(T) have been computed, the computa-

tion of B, (T),B2(T) and A(T) of (14) is straightforward since VW

B.1(T),B2(T) and A(T) are a linear combination of the matrices

P, (T). Thus, the first column of the Jacobian matrix is expressed

analytically as

+
=
+ ¥y~

J(: 1) = A(D)x + By(T)f(x) + Ba(T)vs. _ _

B. Partial Derivatives With Respect to the Samples Fig. 1. The time-delayed Chua's circuit (TDCC).
The rest of the columns of the Jacobian matrix are easily determined

since only the vc_ectorx_ and f_(x)_ depend_ on th_eV — 1 unknown . wherea;, andb;, are the elements of tHeh row of the first column of
samples and their partial derivatives are immediate. So, the remainjpg matrixesA (T) andB1 (T), respectively. Defining
columns of the Jacobian matrix are expressed analytically as ' '

-
J(:,2:N)=A(2: N)+Bi(,2: N)F'(x) Xp = [Tns Tn—ts o Tnomp]
with Equation(16) may be viewed as an implicit map
I i g gl e .
F (X)—dl&g(f (rl)*'~f ('7/]\)) Xn+1 :ij(xn)
where
; In this map, the sample,, is expressed as a function of thepre-
Flan) = d(f(x)) vious samples, being the memory of the discretized system of equa-

de | _ 7 tions

m < g2 + ng.
V. STABILITY ANALYSIS
The stability of the solution obtained can be determiagasteriori Once a periodic solutior™ of periodT" = N'A has been found using
with no modification to the method described to analyze the circutfie technique described, any subvector ofk™ is a fixed point of the

Using the matrices that appear in (14), we can express any of thecomposite mag" . Now, the natural way to study the stability of this
equations as solution is to perturbate it and observe its evolution after one period.

This evolution is inferred from the Jacobian of the composite map

m

Zakwn—k + Zbkf(l’n—k) +c=0 (16)
k=0

k=0

J=InpiIn- o (17)
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Fig. 2. Relative error in the real part (above) and absolute error in the imaginary part (below) of the eigenvaluepiartedor a zero solution with respect to
[11] with N = 512 andR = 1.85 k(). Gear-2 (*), Gear-3 (x), Gear-4 (0).

where
owy Oy owy, Oy 1 1
Oxp_1  Oxy_o Oty —my1  OTp_m
1 0.8
_ 0 1 0
=1 " . : 06} 1
0 0 1 0 04r 1
0.2+ _
and
’ or 7
dun  _ ak+bef (wn—s)
OTp—k ao +bof'(x,) 0.2} 1

Now, the eigenvalues of the Jacobidrdefined in (17) give direct 0.4r
information about the stability of the solution: 1) for autonomous cir-
cuitsJ has unity as eigenvalue since this type of circuits admit infinite
shifted solutions; 2) if the remaining eigenvalues are smaller than unity -0 g}
in modulus, then the periodic solution is stable; and 3) the solution is
unstable ifJ has at least one eigenvalue with a modulus greater than 1|
unity. Other eigenvalues whose modulus is equal to unity correspond . . : . .
to special cases. In particular, an eigenvalue equalttdndicates the -1 0.5 0 0.5 1
existence of a period-doubling bifurcation point.

In[10], the relation between the eigenvalued @ind the eigenvalues
of the monodromy matrix is stated for lumped circuits.

Fig. 3. Eigenvalues in the-plane for a stable period-1 limit cycle witN' =
256, R = 1.8038 k2 andg = 2.

VI. APPLICATION TO THE TIME-DELAYED CHUA'S CIRCUIT A. Equilibrium Points

The technique described has been applied to the determination of th&he purpose of this section is to check the accuracy of the procedure
steady state of the control variahlén the time-delayed Chua's circuit that has been described contrasting the results with those obtained an-
(TDCC) shown in Fig. 1. The values of the parameters which appeardlytically at the equilibrium points. IR = 1.85 k2 the system has
the circuit are the same used in [11]. For numerical accuracy reasahsee equilibrium points = {0, +3.861, —3.861}. As these equilib-
these parameters have been normalized Rith= 1 kQ2 andZ; = 0.1  rium points are direct solutions of (2), no iterative solving process is
ms. needed. So, only the stability analysis is made in this section.

For the determination of the periodic solution, the second-order Gearl) Zero Equilibrium Point: Applying the stability study described
discretization has been used because it has shown to be a good darthe previous section, the eigenvalues inthglane are obtained with
promise between accuracy and computational cost. N = 512 samples of value zero. All the eigenvalues rest inside the unit
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Fig. 4. Eigenvalues in the-plane for an unstable period-1 limit cycle with
N = 256, R = 1.8037 k{2, andg = 2. 1 1
circle, except one that is outside, of value= 130 for a second-order
; o - . 050 1
Gear discretization. So, zero is an unstable solution.
Applying the transformationr = ¢*” our stability study can be
translated to the plane as in [11]. Figure 2 shows excellent agreemer | |
between the analytical and the numerical method for a second to four
order Gear discretization.
2) Nonzero Equilibrium Points:Repeating the same stability anal- 5 _
ysis for the nonzero equilibrium points we observe that all the eige
values in thez plane rest inside the unit circle. Therefore the solutiol
is stable. These equilibrium points become unstable whiesreduced -1 .
to 1.82 K2. So, forR < 1.82 k2 a periodic solution is expected.
B. Period-1 Limit Cycle 135, y 3 3 y 5 6 7
Now we investigate the solution fa&2 = 1.82 k2. Initializing the ()
iterative solving process with = 128 samples of a sinusoidal signal , 5 . , } ‘ .
of amplitude 3V, period and offset 3.861 V, a stable period-1 limit
cycle is obtained. This solution is interpolated to obt&ir= 256 sam-
ples and used as a new initialization. The resulting period-1 phase ple 1} 1
is depicted in Fig. 5. All the eigenvalues related to this solution rest it
side the unit circle except one of value equal to one, which indicat
that a shifted solution is possible. So, the solution is stable. 0.5F ]
Once a solution has been computed, we change the paraféter
obtain new solutions using as an initialization the previous one. A|
plying this technique, we redude using 102 steps until we observe  °f i
that atR = 1.8 k2 the solution obtained is unstable. A more de-
tailed analysis proves that one eigenvalue has crossed the unit cii 05k |
atz = —1 betweenR = 1.8038 kQ2 andR = 1.8037 k{2 as is shown
in Figs. 3 and 4. So, a period-doubling bifurcation point is expected.
The problem now is to find the stable solution that corresponds | |
R = 1.8037 kS2. From the eigenvector associated to the eigenvalt
that has crossed the unit circle, we know the perturbation
1 2 3 s 5 6

Pm = [pmvprn—l-/ .. vpl]T
(©)

that transforms the period-1 solution into a period-2 solution. How-
ever, this eigenvector has only samples. The rest of the samples

' N - . “Fig. 5. Phase plane af, versus ofv. (a) a period-1 limit cycle withV =

T

up to2N = 512, shogld be computed to |n|t|.aI|ze the |t_erat|ve soIV|ng2567R = 1.82 k2, andg = 2. (b) A period-2 limit cycle withV = 512, R =
process with two periods of the unstable period-1 solution plus the cofs k. andg = 2. (c) A period-4 limit cycle withV = 1024, R = 1.7952
puted perturbation. If, as expected, the perturbation is small compaked andg = 2.
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with the solution, the nonlinear equation (16) can be linearized around6] V. Rizzoli and A. Lipparini, “General stability analysis of periodic
the period-1 solution. Consequently, the rest of the samples can be com-  steady-state regimes in nonlinear microwave circutsEE Trans.

; ; ; Microwave Theory Techvol. 33, pp. 30-37, Jan. 1985.
puted using the vect.. and the linear expression [7]1 D.Hente and R. H. Jansen, “Frequency domain continuation method for

m m , the analysis and stability investigation of nonlinear microwave circuits,”
pn = — 2zt WPk + Dk bef @tk Proc Inst. Elect. Engvol. 133, pp. 351362, Oct. 1986.
" ap + bo f'(xn) [8] A. M. Schneider, J. T. Kaneshige, and F. D. Groutage, “Higher order
s-to-z mapping functions and their application in digitizing contin-
Once the perturbation vector uous-time filters,"Proc. IEEE vol. 79, pp. 1661-1674, Nov. 1991.

[9] J. E.Dennis and R. B. SchnabBlumerical Methods for Unconstrained
Optimization and Nonlinear Equations Englewood Cliffs, NJ: Pren-
tice-Hall, 1983.

. . [10] J. M. Mir6-Sans, P. Pala-Schénwalder, and O. Mas-Casals, “Stability
of 2N = 512 samples has been computed, we obtain a period-2 solu-  analysis of periodic solutions in nonlinear autonomous circuits: A dis-
tion adding the vectop multiplied by a constant to two periods of crete-time approach|ht. J. Circuit Theory Appl.vol. 24, pp. 511-517,
the period-1 solution 1996. _ _ o

[11] E. A. Hosny and M. I. Sobhy, “Analysis of chaotic behavior in lumped-
distributed circuits applied to the time-delayed Chua's circUEEE
X|period-2 & [X|period-1: X|period-1] + aP- (18) Trans. Circuits Syst, hol. 41, pp. 915-918, Dec. 1994.

T
P =[p1.p2,...,p2n]

If this constant is well chosen, the approximate solution is close to the
final solution and the iteration will converge.

C. Period-2 and Period-4 Limit Cycles
With the initialization proposed in (18) with = 0.6, we obtainthe A Low-Voltage Single Input Class AB Transconductor

phase plane depicted in Fig. 5. The eigenvalues are all inside the unit With Rail-To-Rail Input Range
circle. Therefore the solution is stable.pdsterioriwe can verify the _
hypothesis made in (18) that the eigenvegicadded to the period-1 Ahmed A. El-Adawy and Ahmed M. Soliman

solution is indeed close to the period-2 solution.
With the decrease of the parameferover the period-2 solution a

new period doubling bifurcation point is detected for= 1.796 k<. Abstract—A new CMOS programmable rail-to-rail transconductor is

presented. A linear V—I characteristic is obtained by using the principle

A stable period-4 solution is computed fir= 1.7952 k<2 (Fig. 5). of nonlinearity cancellation of matched MOS transistors operating in
the ohmic region. Rail-to-rail operation is achieved by using two comple-
VIl. CONCLUSION mentary blocks. The circuit is suitable for low voltage as it can operate

from supply voltages down to +1.5 V. PSpice simulations show that the

A new method to directly determine the steady-state response of ngansconductance gain can be electronically tuned from 13 to 9 A/V
linear autonomous circuits with distributed parameters has been pp&h bandwidth of about 40 MHz.
sented. To validate the method, it has been applied to the analysis ofidex Terms—tow-voltage circuits, transconductors.
the TDCC in one of its periodic windows, a paradigmatic example of
the kind of circuits to which this paper refers.

A procedure for determining the stability of the steady-state solu-
tions is presented. To check the reliability of this method, it has beenAs the advances in the VLSI technology and the demand for portable
applied to the stability at the equilibrium points of the TDCC in whiclelectronic products lead VLSI circuits operating in low supply volt-
analytical results exist[11] and excellent agreement has been obtainggks (lower than 3 V), current-mode signal processing techniques

The combination of the discrete-time approach with the study of théll become increasingly important and attractive [1]-[5]. Circuits
stability of the solutions obtained allows us to detect period-doublingksigned to exploit the current-mode techniques improve operating
bifurcation points. A procedure to initialize the iterative solving processeed and can be implemented in low-cost digital CMOS fabrication
to obtain the bifurcated solution is explained and successfully appligstocess. Traditionally, however, most analog signal processing has
The results coincide with those described in [11], and with those obeen accomplished by using voltage as the signal variable. In order to
tained using integration techniques, without having to integrate the faaintain compatibility with voltage processing circuits, it is often nec-

|. INTRODUCTION

sponse until the transient dies out. essary to convert the input and output signals of a current-mode signal
processor to voltage, that is, to use transconductorg-{aronverters).
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